Indian Journal of Geo-Marine Sciences Vol. 44(7), July 2015, pp. 1071-1095 Study of TRMM estimated freezing level height in the 36N – 36S region Rajasri Sen Jaiswal *, Sonia R Fredrick, M Rasheed, V S Neela & Leena Zaveri Centre for Study on Rainfall and Radio wave Propagation, Sona College of Technology, Salem-636005, India [E-mail:
[email protected] ] Received 21 April 2014; revised 14 October 2014 In this paper the freezing level height (HFL), a very important parameter in cloud physics has been studied in the latitudinal belt 36N-36S, during the period 1999-2002 and 2007-2008. Present study shows that the latitude is the major controlling factor of the HFL, rather than LH or temperature. Further, it is seen that the HFL depends on season. The study also reveals that the HFL responds in a different manner over the continental and the oceanic sites. Functional relationship between the HFL and latitude shows seasonal dependence. It also presents the range of the HFL, its maximum and minimum values and the months of occurrence of the maxima/minima over few selected locations, including India. [Keywords: Freezing level height, latitude, temperature, latent heat] Introduction In the troposphere, the temperature decreases percentage of liquid precipitation8. This is shown with altitude. The height at which the temperature for both mid latitude and Arctic region. Freezing falls to 0°C is known as 0°C isotherm height, or level height is a very important parameter in freezing level1. The freezing level during rainy climatology. During the precipitation process, condition is known as the rain height.