General Aviation Pilot's Guide to Preflight Weather
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Light Commercial and General Aviation Chair: Gerald S
A1J03: Committee on Light Commercial and General Aviation Chair: Gerald S. McDougall, Southeast Missouri State University Light Commercial and General Aviation Growth Opportunities Will Abound GERALD W. BERNSTEIN, Stanford Transportation Group DAVID S. LAWRENCE, Aviation Market Research The new millennium offers numerous opportunities for light commercial and general aviation. The extent to which this diverse industry can take advantage of these opportunities depends on our ability to: (1) maintain steady, albeit slow, economic growth; (2) undertake research and development of new and enhanced technologies that improve performance and lower costs, (3) forge alliances and approach aircraft production from a total system perspective; and (4) develop and maintain an air traffic system (facilities and control) that is able to efficiently accommodate the expected growth in demand for all categories of air travel. The greatest challenge for the industry is whether government policies and regulations continue to adhere to fiscal and monetary policies that promote economic growth worldwide and provide the necessary investments in our air traffic system to reduce congestion and avoid the distorting influences of user fees or artificial limits to access. HELICOPTER AVIATION Subcommittee A1J03 (1) The helicopter industry can be characterized as technologically mature but unstable in the structure of both its manufacturing and operating sectors. This anomaly is the result of worldwide reductions in military helicopter procurement after years of buildup as well as reduced tensions between the United States and the Soviet Union. In addition, and not unrelated to military cutbacks, the trend toward consolidation of military contractors has seriously affected the mostly subsidiary helicopter business. -
Aviation Weather Services (AC 00-45H)
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Aviation Weather Services Date: 1/8/18 AC No: 00-45H Initiated by: AFS-400 Change: 1 1 PURPOSE OF THIS ADVISORY CIRCULAR (AC). This AC explains U.S. aviation weather products and services. It provides details when necessary for interpretation and to aid usage. This publication supplements its companion manual, AC 00-6, Aviation Weather, which documents weather theory and its application to aviation. The objective of this AC is to bring the pilot and operator up-to-date on new and evolving weather information and capabilities to help plan a safe and efficient flight, while also describing the traditional weather products that remain. 2 PRINCIPAL CHANGES. This change adds guidance and information on Graphical Forecast for Aviation (GFA), Localized Aviation Model Output Statistics (MOS) Program (LAMP), Terminal Convective Forecast (TCF), Polar Orbiting Environment Satellites (POES), Low-Level Wind Shear Alerting System (LLWAS), and Flight Path Tool graphics. It also updates guidance and information on Direct User Access Terminal Service (DUATS II), Telephone Information Briefing Service (TIBS), and Terminal Doppler Weather Radar (TDWR). This change removes information regarding Area Forecasts (FA) for the Continental United States (CONUS). 1/8/18 AC 00-45H CHG 1 PAGE CONTROL CHART Remove Pages Dated Insert Pages Dated Pages iii thru xii 11/14/16 Pages iii thru xiii 1/8/18 Pages 1-8 and 1-9 11/14/16 Page 1-8 1/8/18 Page 3-57 11/14/16 Pages 3-57 thru -
On the Use of Radiosondes in Freezing Precipitation
MARCH 2018 W AUGH AND SCHUUR 459 On the Use of Radiosondes in Freezing Precipitation SEAN WAUGH NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma TERRY J. SCHUUR Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma (Manuscript received 13 April 2017, in final form 4 January 2018) ABSTRACT Radiosonde observations are used the world over to provide critical upper-air observations of the lower atmosphere. These observations are susceptible to errors that must be mitigated or avoided when identified. One source of error not previously addressed is radiosonde icing in winter storms, which can affect forecasts, warning operations, and model initialization. Under certain conditions, ice can form on the radiosonde, leading to decreased response times and incorrect readings. Evidence of radiosonde icing is presented for a winter storm event in Norman, Oklahoma, on 24 November 2013. A special sounding that included a particle imager probe and a GoPro camera was flown into the system producing ice pellets. While the iced-over temperature sensor showed no evidence of an elevated melting layer (ML), complementary Particle Size, Image, and Velocity (PASIV) probe and polarimetric radar observations provide clear evidence that an ML was indeed present. Radiosonde icing can occur while passing through a layer of supercooled drops, such as frequently found in a subfreezing layer that often lies below the ML in winter storms. Events that have warmer/deeper MLs would likely melt any ice present off the radiosonde, minimizing radiosonde icing and allowing the ML to be detected. -
Final Report Cessna -152 Aircraft Accident Investigation in Bangladesh
FINAL REPORT CESSNA -152 AIRCRAFT ACCIDENT INVESTIGATION IN BANGLADESH FINAL REPORT Aircraft Cessna-152; Training Flight Call Sign S2-ADI Shah Makhdum Airport, Rajshahi, Bangladesh Cessna-152 Aircraft of Flying Academy & General Aviation Ltd. This is to certify that this report has been compiled as per the provisions of ICAO Annex 13 for all concerned. The report has been authenticated and is hereby Approved by the undersigned with a view to ensuring prevention of aircraft accident and that the purpose of this activity is not to apportion blame or liability. Capt Salahuddin M Rahmatullah Head of Aircraft Accident Investigation Group of Bangladesh CAA Headquarters, Kurmitola, Dhaka, Bangladesh E-mail: [email protected] _____________________________________________________________________________________ AIRCRAFT ACCIDENT INVESTIGATION GROUP OF BANGLADESH (AAIG-BD) 28 MAY 2017 PAGE | 0 FINAL REPORT CESSNA -152 AIRCRAFT ACCIDENT INVESTIGATION IN BANGLADESH TABLE OF CONTENTS SL NO TITLE Page No 0 Synopsis 2 1 BODY (FACTUAL INFORMATION) 2 1.1 Introductory Information 2 1.2 Impact Information 3 Protection and Recovery of Wreckage and Disposal of 1.3 4 Diseased/Injured Persons 1.4 Analytical information 4 2 ANALYSIS 7 2.1 General 7 2.2 Flight Operations and others 7 2.3 Cause Analysis 10 3 CONCLUSION 12 3.1 Findings 12 3.1.2 Crew/Pilot 13 3.1.3 Operations 13 3.1.4 Operator 14 3.1.5 Air Traffic Services and Airport Facilities 14 3.1.6 Medical 14 3.2 CAUSES 14 3.2.1 Primary Causes 14 3.2.2 Primary Contributory Causes 15 4 SAFETY RECOMMENDATIONS 15 _____________________________________________________________________________________ AIRCRAFT ACCIDENT INVESTIGATION GROUP OF BANGLADESH (AAIG-BD) 28 MAY 2017 PAGE | 1 FINAL REPORT CESSNA -152 AIRCRAFT ACCIDENT INVESTIGATION IN BANGLADESH 0. -
General Aviation Activity and Airport Facilities
New Hampshire State Airport System Plan Update CHAPTER 2 - AIRPORT SYSTEM INVENTORY 2.1 INTRODUCTION This chapter describes the existing airport system in New Hampshire as of the end of 2001 and early 2002 and served as the database for the overall System Plan. As such, it was updated throughout the course of the study. This Chapter focuses on the aviation infrastructure that makes up the system of airports in the State, as well as aviation activity, airport facilities, airport financing, airspace and air traffic services, as well as airport access. Chapter 3 discusses the general economic conditions within the regions and municipalities that are served by the airport system. The primary purpose of this data collection and analysis was to provide a comprehensive overview of the aviation system and its key elements. These elements also served as the basis for the subsequent recommendations presented for the airport system. The specific topics covered in this Chapter include: S Data Collection Process S Airport Descriptions S Airport Financing S Airport System Structure S Airspace and Navigational Aids S Capital Improvement Program S Definitions S Scheduled Air Service Summary S Environmental Factors 2.2 DATA COLLECTION PROCESS The data collection was accomplished through a multi-step process that included cataloging existing relevant literature and data, and conducting individual airport surveys and site visits. Division of Aeronautics provided information from their files that included existing airport master plans, FAA Form 5010 Airport Master Records, financial information, and other pertinent data. Two important element of the data collection process included visits to each of the system airports, as well as surveys of airport managers and users. -
GAMA General Aviation Shipment Report 2017
May 8, 2018 General Aviation Aircraft Shipment Report General Aviation Manufacturers Association 1400 K Street NW, Suite 801 | Washington, DC 20005 | USA Rue de la Loi 67 | Brussels 1040 | Belgium 2017 Year End Aircraft Shipments1, 2, 6 by Type Manufactured Worldwide QI QII QIII QIV Year-To-Date Single-Engine Piston 176 224 217 319 936 Multi-Engine Piston 27 41 39 42 149 Total Piston Airplanes 203 265 256 361 1,085 Single-Engine Turboprops 88 116 113 156 473 Multi-Engine Turboprops 14 19 24 33 90 Total Turboprop Airplanes 102 135 137 189 563 Business Jets 130 166 137 244 677 Total Turbine Airplanes 232 301 274 433 1,240 Grand Total Airplane Shipments 435 566 530 794 2,325 Grand Total Airplane Billings $3,711,776,146 $5,318,308,082 $4,091,055,785 $7,079,653,950 $20,200,793,962 Piston Helicopters 58 67 65 74 264 Turbine Helicopters 129 209 133 233 704 Grand Total Helicopter Shipments 187 276 198 307 968 Grand Total Helicopter Billings $569,248,132 $1,307,430,224 $807,121,192 $1,435,910,092 $4,119,709,642 Airplane Shipments1, 2, 6 by Type Manufactured in United States3 Type QI QII QIII QIV Year-To-Date Single-Engine Piston 130 178 168 269 745 Multi-Engine Piston 9 5 12 15 41 Total Piston Airplanes 139 183 180 284 786 Single-Engine Turboprops 67 77 76 103 323 Multi-Engine Turboprops 12 19 24 31 86 Total Turboprop Airplanes 79 96 100 134 409 Business Jets 93 100 97 114 404 Total Turbine Airplanes 172 196 197 248 813 Grand Total 311 379 377 532 1,599 Airplane Shipments1, 2 by Type Manufactured in Europe3 Type QI QII QIII QIV Year-To-Date Single-Engine -
Airport Listings of General Aviation Airports
Appendix B-1: Summary by State Public New ASSET Square Public NPIAS Airports Not State Population in Categories Miles Use Classified SASP Total Primary Nonprimary National Regional Local Basic Alabama 52,419 4,779,736 98 80 75 5 70 18 25 13 14 Alaska 663,267 710,231 408 287 257 29 228 3 68 126 31 Arizona 113,998 6,392,017 79 78 58 9 49 2 10 18 14 5 Arkansas 53,179 2,915,918 99 90 77 4 73 1 11 28 12 21 California 163,696 37,253,956 255 247 191 27 164 9 47 69 19 20 Colorado 104,094 5,029,196 76 65 49 11 38 2 2 27 7 Connecticut 5,543 3,574,097 23 19 13 2 11 2 3 4 2 Delaware 2,489 897,934 11 10 4 4 1 1 1 1 Florida 65,755 18,801,310 129 125 100 19 81 9 32 28 9 3 Georgia 59,425 9,687,653 109 99 98 7 91 4 18 38 14 17 Hawaii 10,931 1,360,301 15 15 7 8 2 6 Idaho 83,570 1,567,582 119 73 37 6 31 1 16 8 6 Illinois 57,914 12,830,632 113 86 8 78 5 9 35 9 20 Indiana 36,418 6,483,802 107 68 65 4 61 1 16 32 11 1 Iowa 56,272 3,046,355 117 109 78 6 72 7 41 16 8 Kansas 82,277 2,853,118 141 134 79 4 75 10 34 18 13 Kentucky 40,409 4,339,367 60 59 55 5 50 7 21 11 11 Louisiana 51,840 4,533,372 75 67 56 7 49 9 19 7 14 Maine 35,385 1,328,361 68 36 35 5 30 2 13 7 8 Maryland 12,407 5,773,552 37 34 18 3 15 2 5 6 2 Massachusetts 10,555 6,547,629 40 38 22 22 4 5 10 3 Michigan 96,716 9,883,640 229 105 95 13 82 2 12 49 14 5 Minnesota 86,939 5,303,925 154 126 97 7 90 3 7 49 22 9 Mississippi 48,430 2,967,297 80 74 73 7 66 10 15 16 25 Missouri 69,704 5,988,927 132 111 76 4 72 2 8 33 16 13 Montana 147,042 989,415 120 114 70 7 63 1 25 33 4 Nebraska 77,354 1,826,341 85 83 -
Benefits of a General Aviation Airport* Compiled by Pavlik and Associates
Benefits of a General Aviation Airport* compiled by Pavlik and Associates for the City of Ennis July 25, 2016 General Aviation is all civil aviation activity other than that of commercial airlines; including business aviation, law enforcement flying, agricultural application, recreational aviation, air medical services, freight and package delivery, and more. • A General Aviation (GA) Airport is an essential community asset. Key economic benefits include: o Economic Multiplier Effect: Business aircraft travel to and from local airports across the country every day, bringing marketing, professional, technical service and support staffers efficiently and quickly to their destination. These individuals, in turn, spend money in the local economy by staying in local hotels and eating at nearby restaurants, creating the economic “multiplier effect” in the area. o Competitive Advantage: Airports help keep existing employers in a community and attract new ones to a region because companies value the transportation and competitive business advantages offered by GA airports. Business developers look for ready access to air transportation when they make decisions on where to locate new operations and facilities. o Essential Access: The ability to move people and goods quickly to and from airports has tangible benefits for everyone, not just air travelers. Overnight mail and package delivery, the transport of fresh fruits, vegetables, flowers and more to locations that would not otherwise have that access, all would not be possible without an airport nearby. • A GA airport allows a city to offer and enjoy expanded services that raise the quality of life in the area, including: o Lifesaving Services: Emergency medical services and air ambulance operators provide critically ill or injured people with timely access to specialized medical treatment through airlift operations, organ transports and more. -
Chapter: 2. En Route Operations
Chapter 2 En Route Operations Introduction The en route phase of flight is defined as that segment of flight from the termination point of a departure procedure to the origination point of an arrival procedure. The procedures employed in the en route phase of flight are governed by a set of specific flight standards established by 14 CFR [Figure 2-1], FAA Order 8260.3, and related publications. These standards establish courses to be flown, obstacle clearance criteria, minimum altitudes, navigation performance, and communications requirements. 2-1 fly along the centerline when on a Federal airway or, on routes other than Federal airways, along the direct course between NAVAIDs or fixes defining the route. The regulation allows maneuvering to pass well clear of other air traffic or, if in visual meteorogical conditions (VMC), to clear the flightpath both before and during climb or descent. Airways Airway routing occurs along pre-defined pathways called airways. [Figure 2-2] Airways can be thought of as three- dimensional highways for aircraft. In most land areas of the world, aircraft are required to fly airways between the departure and destination airports. The rules governing airway routing, Standard Instrument Departures (SID) and Standard Terminal Arrival (STAR), are published flight procedures that cover altitude, airspeed, and requirements for entering and leaving the airway. Most airways are eight nautical miles (14 kilometers) wide, and the airway Figure 2-1. Code of Federal Regulations, Title 14 Aeronautics and Space. flight levels keep aircraft separated by at least 500 vertical En Route Navigation feet from aircraft on the flight level above and below when operating under VFR. -
Adaptive Trajectory Planning for Flight Management Systems
From: AAAI Technical Report SS-01-06. Compilation copyright © 2001, AAAI (www.aaai.org). All rights reserved. Adaptive Trajectory Planning for Flight Management Systems Igor Alonso-Portillo Ella M. Atkins Aerospace Engineering Department University of Maryland College Park, MD 20742 {alonsoip, atkins}@glue.umd.edu Abstract This paper describes an adaptive trajectory planner capable of computing new flight paths that take into Current Flight Management Systems (FMS) can account flight plan goals as well as system failures that autonomously fly an aircraft from takeoff through landing but may not provide robust operation to anomalous events. affect aircraft performance. We propose feedback of We present an adaptive trajectory planner capable of changing flight dynamics from the lower level control dynamically adjusting its world model and re-computing systems to the high level path-planning module. This feasible flight trajectories in response to changes in aircraft information can be crucial when there are variations in the performance characteristics. To demonstrate our approach, flight envelope of the aircraft that invalidate the presumed we consider the class of situations in which an emergency model. Based on dynamic parameter feedback, our path landing at a nearby airport is desired (or required) for planner adapts its performance model. Then, it either safety considerations. Our system incorporates a verifies that current trajectories are still safe or else constraint-based search engine to select and prioritize generates a new trajectory that allows continued emergency landing sites, then it synthesizes a waypoint- autonomous operation during post-failure flight. This based trajectory to the best airport based on post-anomaly flight dynamics. -
Effective Flight Plans Can Help Airlines Economize
While flight plan calculations are necessary for safety and regulatory compliance, they also provide airlines with an opportunity for cost optimization. Effective Flight Plans Can Help Airlines Economize By Steve Altus, Ph.D., Senior Scientist, Airline Operations Product Development, Jeppesen Every commercial airline flight begins with a flight plan. Over time, small adjustments to each flight plan can add up to substantial savings across a fleet. Optimal overall performance is influenced by many factors, including dynamic route optimization, accurate flight plans, optimal use of redispatch, and dynamic airborne replanning. While all airlines use computerized flight planning systems, investing in a higher-end system — and in the effort to use it to its full capability — has significant impact on both profitability and the environment. An operational flight plan is required to This article provides a brief overview of and lost revenue from payload that can’t ensure an airplane meets all of the flight planning and discusses ways that flight be carried. These variations are subject to operational regulations for a specific flight, planning systems can be used to reduce airplane performance, weather, allowed to give the flight crew information to help operational costs and help the environment. route and altitude structure, schedule them conduct the flight safely, and to constraints, and operational constraints. coordinate with air traffic control (ATC). FLIGHT PLanninG FUndaMentaLS Computerized systems for calculating OptiMIZinG FLIGHT PLans flight plans have been widely used for A flight plan includes the route the crew will decades, but not all systems are the fly and specifies altitudes and speeds.I t also While flight plan calculations are necessary same. -
ATP IFR Flight Planning Training Supplement
IFR Flight Planning Training Supplement ATPFlightSchool.com Revised 2018-12-03 Revised 2018-12-03 Copyright © 2018 Airline Transport Professionals. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical or otherwise, without the prior written permission of Airline Transport Professionals. To view recent changes to this supplement, visit: atpflightschool.com/changes/supp-ifr Contents Introduction .................................... 1 Pre- Planning Preparation .............. 2 Overview ..................................................... 2 Weather ....................................................... 3 NOTAMs ...................................................... 5 Preferred Routes ....................................... 5 Departure Segment Planning........ 6 Departure Airport Information ................... 6 Takeoff Minimums ...................................... 6 Departure Procedure ................................. 6 Top of Climb Calculations ........................... 7 Arrival Segment Planning .............. 8 Arrival Procedure ....................................... 8 Descent Planning ....................................... 9 Arrival Airport Information .......................10 Choosing an Alternate ..............................10 Enroute Segment Planning .......... 11 Federal Airway Routing .............................11 Direct Routing Between Navaids or Fixes 12 IFR Altitudes .............................................12 Cruise Performance