<<

Charged Particle and Photon Interactions with Matter Recent Advances, Applications, and Interfaces

Charged Particle and Photon Interactions with Matter Recent Advances, Applications, and Interfaces

Edited by Yoshihiko Hatano Yosuke Katsumura A. Mozumder

Boca Raton London New York

CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20140521

International Standard Book Number-13: 978-1-4398-1180-1 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com This book is dedicated to the late Dr. Mitio Inokuti for his sterling contributions to radiation research and atomic collision research.

Contents

Preface...... xi Editors ...... xiii Contributors ...... xv

Chapter 1 Introduction ...... 1 Yoshihiko Hatano, Yosuke Katsumura, and Asokendu Mozumder

Chapter 2 Oscillator Strength Distribution of Molecules in the Gas Phase in the Vacuum Ultraviolet Range and Dynamics of Singly Inner-Valence Excited and Multiply Excited States as Superexcited States ...... 9 Takeshi Odagiri and Noriyuki Kouchi

Chapter 3 Electron Collisions with Molecules in the Gas Phase ...... 27 Hiroshi Tanaka and Yukikazu Itikawa

Chapter 4 Time-Dependent Density-Functional Theory for Oscillator Strength Distribution ...... 65 Kazuhiro Yabana, Yosuke Kawashita, Takashi Nakatsukasa, and Jun-Ichi Iwata

Chapter 5 Generalized Oscillator Strength Distribution of Liquid Water ...... 87 Hisashi Hayashi and Yasuo Udagawa

Chapter 6 New Directions in W-Value Studies ...... 105 Isao H. Suzuki

Chapter 7 Positron Annihilation in Radiation Chemistry ...... 137 Tetsuya Hirade

Chapter 8 Muon Interactions with Matter ...... 169 Khashayar Ghandi and Yasuhiro Miyake

Chapter 9 Electron Localization and Trapping in Hydrocarbon Liquids ...... 209 Gordon L. Hug and Asokendu Mozumder

vii viii Contents

Chapter 10 Reactivity of Radical Cations in Nonpolar Condensed Matter ...... 237 Ortwin Brede and Sergej Naumov

Chapter 11 Radiation Chemistry and Photochemistry of Ionic Liquids...... 265 Kenji Takahashi and James F. Wishart

Chapter 12 Time-Resolved Study on Nonhomogeneous Chemistry Induced by Ionizing Radiation with Low Linear Energy Transfer in Water and Polar Solvents at Room Temperature ...... 289 Vincent De Waele, Isabelle Lampre, and Mehran Mostafavi

Chapter 13 Radiation Chemistry of Liquid Water with Heavy Ions: Steady-State and Pulse Radiolysis Studies ...... 325 Shinichi Yamashita, Mitsumasa Taguchi, Gérard Baldacchino, and Yosuke Katsumura

Chapter 14 Radiation Chemistry of Liquid Water with Heavy Ions: Monte Carlo Simulation Studies ...... 355 Jintana Meesungnoen and Jean-Paul Jay-Gerin

Chapter 15 Radiation Chemistry of High Temperature and Supercritical Water and Alcohols ...... 401 Mingzhang Lin and Yosuke Katsumura

Chapter 16 Radiation Chemistry of Water with Ceramic Oxides ...... 425 Jay A. LaVerne

Chapter 17 Ionization of Solute Molecules at the Liquid Water Surface, Interfaces, and Self-Assembled Systems ...... 445 Akira Harata, Miki Sato, and Toshio Ishioka

Chapter 18 Low-Energy Electron-Stimulated Reactions in Nanoscale Water Films and Water–DNA Interfaces ...... 473 Gregory A. Grieves, Jason L. McLain, and Thomas M. Orlando

Chapter 19 Physicochemical Mechanisms of Radiation-Induced DNA Damage ...... 503 David Becker, Amitava Adhikary, and Michael D. Sevilla

Chapter 20 Spectroscopic Study of Radiation-Induced DNA Lesions and Their Susceptibility to Enzymatic Repair ...... 543 Akinari Yokoya, Kentaro Fujii, Naoya Shikazono, and Masatoshi Ukai Contents ix

Chapter 21 Application of Microbeams to the Study of the Biological Effects of Low Dose Irradiation ...... 575 Kevin M. Prise and Giuseppe Schettino

Chapter 22 Redox Reactions of Antioxidants: Contributions from Radiation Chemistry of Aqueous Solutions ...... 595 K. Indira Priyadarsini

Chapter 23 Computational Human Phantoms and Their Applications to Radiation Dosimetry...... 623 Kimiaki Saito

Chapter 24 Cancer Therapy with Heavy-Ion Beams ...... 647 Koji Noda and Tadashi Kamada

Chapter 25 Nanoscale Charge Dynamics and Nanostructure Formation in Polymers ...... 671 Akinori Saeki, Shu Seki, Kazuo Kobayashi, and Seiichi Tagawa

Chapter 26 Radiation Chemistry of Resist Materials and Processes in Lithography ...... 711 Takahiro Kozawa and Seiichi Tagawa

Chapter 27 Radiation Processing of Polymers and Its Applications ...... 737 Masao Tamada and Yasunari Maekawa

Chapter 28 UV Molecular Spectroscopy from Electron Impact for Applications to Planetary Atmospheres and Astrophysics ...... 761 Joseph M. Ajello, Rao S. Mangina, and Robert R. Meier

Chapter 29 Chemical Evolution on Interstellar Grains at Low Temperatures ...... 805 Kenzo Hiraoka

Chapter 30 Radiation Effects on Semiconductors and Polymers for Space Applications ...... 841 Takeshi Ohshima, Shinobu Onoda, and Yugo Kimoto

Chapter 31 Applications of Rare Gas Liquids to Radiation Detectors ...... 879 Satoshi Suzuki and Akira Hitachi

Chapter 32 Applications of Ionizing Radiation to Environmental Conservation ...... 923 Koichi Hirota

Chapter 33 Applications to Biotechnology: Ion-Beam Breeding of Plants ...... 943 Atsushi Tanaka and Yoshihiro Hase x Contents

Chapter 34 Radiation Chemistry in Nuclear Engineering ...... 959 Junichi Takagi, Bruce J. Mincher, Makoto Yamaguchi, and Yosuke Katsumura Index �������������������������������������������������������������������������������������������������������������������������������������������� 1025 Preface

The editors of Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, eds., A. Mozumder and Y. Hatano, Marcel Dekker, New York (2004), received, soon after its publication, highly supportive comments from international communities of radiation research distributed widely into physics, chemistry, biology, medicine, and technology, and also from other broad areas of science and technology, concerned, in part, with the common phenomena of ionization and excitation of matter. These comments strongly motivated the editors to bring forth a new book that includes more detailed scientiŸc contents, such as recent advances, future perspectives, and information on applications, than those only brie¡y summarized in the Ÿrst book. There have been recently two kinds of applications: one is the rela- tively direct application used mainly by those in radiation research Ÿelds, and the other is the inter- face between radiation research and other Ÿelds. Thus, the subtitle of this book is Recent Advances, Applications, and Interfaces. The Ÿrst book was published in 2004, and each chapter had referred to papers published before 2000. For this book, a further analysis of recent advances in these respective research Ÿelds has been strongly requested. A detailed survey of the applications in these Ÿelds, which were introduced only brie¡y in the Ÿrst book (in supplementary Chapters 20 through 26, as discussed in Chapter 1, Introduction, in this book) has also been strongly suggested, since the applications have progressed much in recent years. Active interfaces with different research Ÿelds have been in evidence. Here, there are two important points of caution in further activating the applications and interfaces in radiation research Ÿelds. One is that the applications and interfaces are produced not only in tech- nology but also in basic science. The other is that these applications and interfaces certainly activate the traditionally important core part of radiation research Ÿelds, so that the real activation of the core part is essential for the newer applications and interface production in future. With this scope and focus, we began our editorial work for this book. To select the chapters and their authorship, we planned an international symposium on the topics we had in mind. Thus, the symposium on Charged Particle and Photon Interactions with Matter was held as the 7th International Symposium on Advanced Science Research (ASR2007) at the Advanced Science Research Center of the Japan Atomic Energy Agency, Tokai, Japan, November 6–9, 2007, hosted by Y. Katsumura. We wish to record our appreciation to the Japan Atomic Energy Agency and to the Japanese Society for the Promotion of Science for their generous Ÿnancial and organiza- tional support (see the special issue for this symposium published in Radiat. Phys. Chem., 77, 1119–1339, 2008). Our plans, together with a list of the candidates for the chapter titles and their authors, were reviewed by scientists and by the editors at Taylor & Francis. These were then modiŸed in accor- dance with their comments and suggestions. In the preparatory stage of our editorial work, we decided that the chapters should be written with the following necessary conditions. We asked the contributors not to overlap with any scien- tiŸc contents addressed in the previous book. We also requested them to be careful for referring to chapters in the earlier book and to other chapters in that book by other authors. We also asked them to avoid using jargon or special technical terms in their own research Ÿelds, since, as clearly shown in the table of contents in this book, the topics and research Ÿelds are dis- tributed across a wide variety of scientiŸc and technological Ÿelds. If any specialized terminology is used at all, it should be brie¡y explained in plain terms.

xi xii Preface

In Chapter 1, we have incorporated the introduction from the 2004 book and the scientiŸc back- ground that brought it to publication. We also discuss the relation between the scientiŸc contents of the Ÿrst book and the present one, as well as the internal relation among the chapters in this book. We, the editors, acknowledge the cooperative work of senior chemistry editor, Barbara Glunn, editorial assistant, Jennifer Derima, and project coordinator, David Fausel, during the initial stages of production. We would also like to thank project editor, Richard Tressider, and project manager, Dr. Sedumadhavan Vinithan, for reviewing the proofs comprehensively just before printing. We are greatly indebted to all the contributors for their scientiŸcally excellent contributions to this book and for their cooperation during the editorial work. Finally, we hope that this book, as well as the Ÿrst one, will contribute much to the advancement of the research Ÿelds that address charged particle and photon interactions with matter, and also, more generally, to great progress in science and technology.

Yoshihiko Hatano Japan Atomic Energy Agency Tokai, Japan

Yosuke Katsumura The University of Tokyo Tokyo, Japan

Asokendu Mozumder University of Notre Dame Notre Dame, Indiana Editors

Yoshihiko Hatano, director general, Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, and professor emeritus, Tokyo Institute of Technology, Japan, received his PhD in chemistry from Tokyo Institute of Technology in 1968. Since then he has worked in different capacities in the Department of Chemistry at Tokyo Institute of Technology, as follows: associate professor, 1970–1984; professor, 1984–2000; and dean of the Faculty of Science, 1997–1999. After retiring from Tokyo Institute of Technology in 2000, he worked as a professor in the Department of Molecular and Material Sciences at Kyushu University, Kasuga, Japan, from 2000 to 2003 and as distinguished professor at the Synchrotron Radiation Research Center at Saga University, Saga, Japan, from 2004 to 2009. Since 2005, he has served as the director general of the Advanced Science Research Center, JAEA until his retirement from it at the end of March 2010. Dr. Hatano has been a visiting scientist/professor at many institutions, including the University of Notre Dame, Indiana; the University of Kaiserslautern, Germany; the University of California, Berkeley; the University of Science and Technology of China, Hefei; International Atomic Energy Agency (IAEA); and High Energy Accelerator Research Organization (KEK) at Photon Factory. He has also served in other scientiŸc capacities: chairperson of the Japanese Society of Radiation Chemistry and the Society for Atomic Collision Research; advisory editor of Chemical Physics Letters; coeditor of Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, Marcel Dekker, New York (2004); councilor of the International Association for Radiation Research, the Chemical Society of Japan, and the Japanese Society of Synchrotron Radiation Research; and chair/cochair of the International Symposium on Chemical Applications of Synchrotron Radiation, the International Symposium on Electron-Molecule Collisions and Swarms, the International Conference on Photonic, Electronic, and Atomic Collisions; and the International Symposium on Advanced Science Research. His research interests include (1) primary and fundamental processes in charged particle and photon interactions with matter, (2) spectroscopy and dynamics of molecular superexcited states in the dissociative excitation of molecules in photonic or electronic collisions with molecules, (3) electron attachment and recombination, and (4) collisional de-excitation of excited rare gas atoms. He is the author or coauthor of more than 280 refereed journal articles, scientiŸc papers, and books.

Yosuke Katsumura, professor, received his PhD from the Department of Nuclear Engineering and Management, School of Engineering, the University of Tokyo, Tokyo, in 1981. He is also a group leader of Basic Radiation Research, Advanced Science Research Center, Japan Atomic Energy Agency. He has previously worked as a research associate, Nuclear Engineering Research Laboratory, 1972–1984; as an associate professor, Department of Nuclear Engineering, 1984– 1994; as a professor, Department of Quantum Engineering and Systems Sciences, 1994–1996; Nuclear Engineering Research Laboratory, 1996–2004; Department of Nuclear Engineering and Management, the University of Tokyo, 2005–present. Dr. Katsumura has been a visiting professor/fellow at many universities and institutions worldwide, including the Swiss Federal Institute of Technology (ETH, Zürich), Switzerland; the University of Science and Technology of China; the University of Sherbrooke, Canada; and the University of Paris- Sud, Orsay, France. He was the president of the Japan Society of Radiation Chemistry in 2007 and 2008, and is the division head of the Water Chemistry Division, Atomic Energy Society of Japan, since 2009. He received an award from the Japan Society of Radiation Chemistry in 2005. He has published more than 220 articles in peer-reviewed journals and books. He has also organized several international symposia of radiation chemistry and edited special issues of Radiation Physics and Chemistry.

xiii xiv Editors

Dr. Katsumura has been working on subjects related to nuclear engineering such as radioly- sis of high-temperature water, radiation effects in spent fuel reprocessing, and radiation effects in ­high-level waste repository. His recent interests include radiolysis of supercritical water, ultrafast pulse radiolysis, and heavy ion beam radiolysis of water.

Asokendu Mozumder, research professor emeritus, Radiation Laboratory and Department of Chemistry, University of Notre Dame, received his PhD in theoretical physics from the Indian Institute of Technology (IIT), Kharagpur, India, in 1961. Since then he has worked as a lecturer in physics at IIT, 1961–1962; as a postdoctoral research associate at the Radiation Laboratory, University of Notre Dame, 1962–1965; as a scientist, 1965–1969; as an associate faculty fellow and research associate professor, Radiation Laboratory and Department of Chemistry, University of Notre Dame, 1969–1986; and as a research professor, 1986–1996, when he retired from active employment. He has been a visiting professor/fellow at many universities and institutions worldwide, including the Bhabha Atomic Research Centre, Trombay, India; Kyoto University, Japan; Waseda University, Tokyo, Japan; Japan Atomic Energy Agency; University of Paris-Sud; and Oxford University, the United Kingdom (Harwell Fellow at Wolfson College and the Department of Physical Chemistry). He has been chairperson/principal speaker at several international conferences, including Gordon conferences in radiation chemistry; Tihany symposium on radiation chemistry; and the recently held ASR 2007 conference on charged particle and photon interactions with matter, Tokai, Japan. He is a coeditor of Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, Marcel Dekker, New York (2004). His research interests include (1) theoretical aspects of radiation chemistry, (2) early stages of radiolysis, (3) theories of electron localization and trapping, and (4) free-ion yield and mobility in liquid hydrocarbons. He is the author or coauthor of nearly 125 articles in refereed journals; a comprehensive book, Fundamentals of Radiation Chemistry (Academic Press, 1999); an article in Encyclopedia Britannica; and several chapters in other books. Contributors

Amitava Adhikary Khashayar Ghandi Department of Chemistry Department of Chemistry Oakland University Mount Allison University Rochester, Michigan Sackville, New Brunswick, Canada

Joseph M. Ajello Gregory A. Grieves Jet Propulsion Laboratory School of Chemistry and Biochemistry California Institute of Technology Georgia Institute of Technology Pasadena, California Atlanta, Georgia

Gérard Baldacchino Akira Harata Institut Rayonnement Matière Saclay o E S Commissariat à I’ Énergie Atomique et aux Faculty f ngineering ciences U Énergies Alternatives Kyushu niversity J Saclay, France Kasuga, apan and Yoshihiro Hase Laboratoire Claude Fréjacques Quantum Beam Science Directorate Centre National de la Recherche ScientiŸque Japan Atomic Energy Agency Gif-sur-Yvette, France Takasaki, Japan

David Becker Yoshihiko Hatano Department of Chemistry Advanced Science Research Center Oakland University Japan Atomic Energy Agency Rochester, Michigan Tokai, Japan

Ortwin Brede Hisashi Hayashi Faculty of Chemistry and Mineralogy of Ch an Bi Sc University of Leipzig Department emical d ological iences Ja W U Leipzig, Germany pan oman’s niversity Tokyo, Japan Vincent De Waele Laboratoire de Chimie Physique Tetsuya Hirade Centre National de la Recherche ScientiŸque Nuclear Science and Engineering Directorate Université Paris-Sud Japan Atomic Energy Agency Orsay, France Tokai, Japan and Kentaro Fujii Advanced Science Research Center Institute of Applied Beam Science Japan Atomic Energy Agency Ibaraki University Tokai, Japan Mito, Japan

xv xvi Contributors

Kenzo Hiraoka Yosuke Katsumura Clean Energy Research Center Department of Nuclear Engineering University of Yamanashi and Management Kofu, Japan The University of Tokyo Tokyo, Japan Koichi Hirota and Quantum Beam Science Directorate Japan Atomic Energy Agency Advanced Science Research Center Takasaki, Japan Nuclear Science Research Institute Japan Atomic Energy Agency Akira Hitachi Tokai, Japan Molecular Biophysics Kochi Medical School Nankoku, Japan Yosuke Kawashita Graduate School of Pure and Gordon L. Hug Applied Sciences Radiation Laboratory University of Tsukuba University of Notre Dame Tsukuba, Japan Notre Dame, Indiana and Yugo Kimoto R a D Faculty of Chemistry Aerospace esearch nd evelopment Di Adam Mickiewicz University rectorate A E A Poznan, Poland Japan erospace xploration gency Tsukuba, Japan Toshio Ishioka Faculty of Engineering Sciences Kazuo Kobayashi Kyushu University The Institute of ScientiŸc and Industrial Kasuga, Japan Research Osaka University Yukikazu Itikawa Osaka, Japan Department of Basic Space Science Institute of Space and Astronautical Science Sagamihara, Japan Noriyuki Kouchi Department of Chemistry Jun-Ichi Iwata Tokyo Institute of Technology Center for Computational Sciences Tokyo, Japan and Institute of Physics University of Tsukuba Tsukuba, Japan Takahiro Kozawa The Institute of ScientiŸc and Industrial Jean-Paul Jay-Gerin Research Département de Médecine Nucléaire Osaka University et de Radiobiologie Osaka, Japan Université de Sherbrooke Sherbrooke, Québec, Canada Isabelle Lampre Tadashi Kamada Laboratoire de Chimie Physique Research Center for Charged Particle Therapy Centre National de la Recherche ScientiŸque National Institute of Radiological Sciences Université Paris-Sud Chiba, Japan Orsay, France Contributors xvii

Jay A. LaVerne Mehran Mostafavi Radiation Laboratory Laboratoire de Chimie Physique and Centre National de la Recherche ScientiŸque Department of Physics Université Paris-Sud University of Notre Dame Orsay, France Notre Dame, Indiana Asokendu Mozumder Mingzhang Lin Radiation Laboratory Advanced Science Research Center University of Notre Dame Japan Atomic Energy Agency Notre Dame, Indiana Tokai, Japan Takashi Nakatsukasa Yasunari Maekawa RIKEN Nishina Center Quantum Beam Science Directorate Wako, Japan Japan Atomic Energy Agency Takasaki, Japan Sergej Naumov Department of Chemistry Rao S. Mangina Leibniz Institute of Surface ModiŸcation Jet Propulsion Laboratory Leipzig, Germany California Institute of Technology Pasadena, California Koji Noda Ce fo Ch Jason L. McLain Research nter r arged Particle Therapy School of Chemistry and Biochemistry I o R S Georgia Institute of Technology National nstitute f adiological ciences J Atlanta, Georgia Chiba, apan

Jintana Meesungnoen Takeshi Odagiri Département de Médecine Nucléaire Department of Chemistry et de Radiobiologie Tokyo Institute of Technology Université de Sherbrooke Tokyo, Japan Sherbrooke, Québec, Canada Takeshi Ohshima Robert R. Meier Quantum Beam Science Directorate Department of Physics and Astronomy Japan Atomic Energy Agency George Mason University Takasaki, Japan Fairfax, Virginia Shinobu Onoda Bruce J. Mincher Quantum Beam Science Directorate Aqueous Separations and Radiochemistry Japan Atomic Energy Agency Department Takasaki, Japan Idaho National Laboratory Idaho Falls, Idaho Thomas M. Orlando School of Chemistry and Biochemistry Yasuhiro Miyake and Japan Proton Accelerator Complex School of Physics High Energy Accelerator Research Organization Georgia Institute of Technology Tokai, Japan Atlanta, Georgia xviii Contributors

Kevin M. Prise Isao H. Suzuki Centre for Cancer Research and Photon Factory Cell Biology High Energy Accelerator Research Organization Queen’s University Belfast Tsukuba, Japan Belfast, United Kingdom and

K. Indira Priyadarsini National Metrology Institute of Japan Radiation and Photochemistry Division National Institute of Advanced Industrial Bhabha Atomic Research Centre Science and Technology Mumbai, India Tsukuba, Japan

Satoshi Suzuki Akinori Saeki Advanced Research Institute for Science The Institute of ScientiŸc and Industrial and Engineering Research Waseda University Osaka University Tokyo, Japan Osaka, Japan Seiichi Tagawa Kimiaki Saito The Institute of ScientiŸc and Industrial Quantum Beam Science Directorate Research Japan Atomic Energy Agency Osaka University Tokai, Japan Osaka, Japan

Miki Sato Mitsumasa Taguchi Faculty of Engineering Sciences Quantum Beam Science Directorate Kyushu University Japan Atomic Energy Agency Kasuga, Japan Takasaki, Japan

Giuseppe Schettino Junichi Takagi Centre for Cancer Research and Chemical System Design and Engineering Cell Biology Department Queen’s University Belfast Toshiba Corporation Belfast, United Kingdom Yokohama, Japan Kenji Takahashi Shu Seki Department of Chemistry and Chemical o A C Division f pplied hemistry Engineering U Osaka niversity Kanazawa University J Osaka, apan Kanazawa, Japan

Michael D. Sevilla Masao Tamada Department of Chemistry Quantum Beam Science Directorate Oakland University Japan Atomic Energy Agency Rochester, Michigan Takasaki, Japan

Naoya Shikazono Atsushi Tanaka Advanced Science Research Center Quantum Beam Science Directorate Japan Atomic Energy Agency Japan Atomic Energy Agency Tokai, Japan Takasaki, Japan Contributors xix

Hiroshi Tanaka Kazuhiro Yabana Department of Physics Center for Computational Sciences Sophia University and Institute of Physics Tokyo, Japan University of Tsukuba Tsukuba, Japan Yasuo Udagawa Institute of Multidisciplinary Research Makoto Yamaguchi for Advanced Materials Geological Isolation Research Tohoku University and Development Directorate Sendai, Japan Japan Atomic Energy Agency Tokai, Japan Masatoshi Ukai Department of Applied Physics Shinichi Yamashita Tokyo University of Agriculture Advanced Science Research Center and Technology Japan Atomic Energy Agency Tokyo, Japan Tokai, Japan

James F. Wishart Akinari Yokoya Chemistry Department Advanced Science Research Center Brookhaven National Laboratory Japan Atomic Energy Agency Upton, New York Tokai, Japan

1 Introduction Yoshihiko Hatano Japan Atomic Energy Agency Tokai, Japan Yosuke Katsumura The University of Tokyo Tokyo, Japan and Japan Atomic Energy Agency Tokai, Japan Asokendu Mozumder University of Notre Dame Notre Dame, Indiana

CONTENTS 1.1 Theoretical Studies as New Approaches to Primary Processes That Motivate New Experiments ...... 3 1.2 Advances in the Theoretical and Experimental Studies of the Physicochemical, Chemical, and Biological Stages ...... 6 References ...... 7

In Chapter 1 of Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications (Mozumder and Hatano, 2004), early investigations were brie¡y described with respect to photochemistry and radiation chemistry. The Bethe theory was also discussed brie¡y in terms of the quantitative similarity of the excitation and ionization processes of a molecule by photon and charged particle impacts, with emphasis on the importance of optical oscil- lator strength. It was further pointed out that the applications in the Ÿeld of charged particle and photon interactions with matter have a relatively short history, except for some medical applications. However, their importance has gradually increased in science and technology since the 1960s. The chapter brie¡y discussed the timescale of charged particle and photon interactions with matter, for example, in liquid water. Fundamental processes in the physical, physicochemical, and chemical stages of these interactions were delineated. The 2004 book was organized into 26 chapters, and a list of chapters along with their contribu- tors follows:

1. Introduction (A. Mozumder and Y. Hatano) 2. Interaction of Fast Charged Particles with Matter (A. Mozumder) 3. Ionization and Secondary Electron Production by Fast Charged Particles (L. H. Toburen)

1 2 Charged Particle and Photon Interactions with Matter

4. Modeling of Physicochemical and Chemical Processes in the Interactions of Fast Charged Particles with Matter (S. M. Pimblott and A. Mozumder) 5. Interaction of Photons with Molecules: Photoabsorption, Photoionization, and Photodissocia­ tion Cross Sections (N. Kouchi and Y. Hatano) 6. Reactions of Low-Energy Electrons, Ions, Excited Atoms and Molecules, and Free Radicals in the Gas Phase as Studied by Pulse Radiolysis Methods (M. Ukai and Y. Hatano) 7. Studies of Solvation Using Electrons and Anions in Alcohol Solutions (C. D. Jonah) 8. Electrons in Nonpolar Liquids (R. A. Holroyd) 9. Interactions of Low-Energy Electrons with Atomic and Molecular Solids (A. D. Bass and L. Sanche) 10. Electron−Ion Recombination in Condensed Matter: Geminate and Bulk Recombination Processes (M. Wojcik, M. Tachiya, S. Tagawa, and Y. Hatano) 11. Radical Ions in Liquids (I. A. Shkrob and M. C. Sauer, Jr.) 12. The Radiation Chemistry of Liquid Water: Principles and Applications (G. V. Buxton) 13. Photochemistry and Radiation Chemistry of Liquid Alkanes: Formation and Decay of Low-Energy Excited States (L. Wojnarovits) 14. Radiation Chemical Effects of Heavy Ions (J. A. LaVerne) 15. DNA Damage Dictates the Biological Consequences of Ionizing Irradiation: The Chemical Pathways (W. A. Bernhard and D. M. Close) 16. Photon-Induced Biological Consequences (K. Kobayashi) 17. Track Structure Studies of Biological Systems (H. Nikjoo and S. Uehara) 18. Microdosimetry and Its Medical Applications (M. Zaider and J. F. Dicello) 19. Charged Particle and Photon-Induced Reactions in Polymers (S. Tagawa, S. Seki, and T. Kozawa) 20. Charged Particle and Photon Interactions in Metal Clusters and Photographic System Studies (J. Belloni and M. Mostafavi) 21. Applications of Radiation Chemical Reactions to the Molecular Design of Functional Organic Materials (T. Ichikawa) 22. Applications to Reaction Mechanism Studies of Organic Systems (T. Majima) 23. Applications of Radiation Chemistry to Nuclear Technology (Y. Katsumura) 24. Electron Beam Applications to Flue Gas Treatment (H. Namba) 25. Ion-Beam Therapy: Rationale, Achievements, and Expectations (A. Wambersie, J. Gueulette, D. T. L. Jones, and R. Gahbauer) 26. Food Irradiation (J. Farkas) 27. New Applications of Ion Beams to Material, Space, and Biological Science and Engineering (M. Fukuda, H. Itoh, T. Ohshima, M. Saidoh, and A. Tanaka)

The 2004 book was motivated by two projects. One was a long-term IAEA international project, from 1985 to 1995, that surveyed the accomplishments in basic radiation research over the past 100 years following the discovery of ionizing radiation by Curie and Roentgen in the late nineteenth century (Inokuti, 1995). The other was a textbook of radiation chemistry pub- lished in 1999 (Mozumder, 1999). Since the activities of the former project, summarized in an IAEA report, were unfortunately not well known among the international science and technol- ogy communities, the participants of the IAEA project agreed that the scientiŸc results of the activities should be published elsewhere, in a book with wider circulation. Furthermore, the IAEA project focused mainly on primary interactions, that is, the physical stage of the fun- damental processes of radiation chemistry. Therefore, Mozumder and Hatano collaborated to edit a new book that would include the physicochemical and chemical stages, in addition to the physical stage, of the fundamental processes of radiation chemistry, and, consequently, those of radiation biology. Introduction 3

TABLE 1.1 Fundamental Processes of Radiation Chemistry AB AB+ + e− Direct ionization AB** Superexcitation (direct excitation) AB* Excitation (direct excitation)

AB** → AB+ + e− Autoionization → A + B Dissociation AB+ → A+ + B Ion dissociation AB+ + AB or S → Products Ion–molecule reaction AB+ + e− → AB* Electron–ion recombination AB+ + S−→ Products Ion–ion recombination e− + S → S− Electron attachment − − e + nAB → e s Solvation AB* → A + B Dissociation → AB Internal conversion and intersystem crossing → BA Isomerization → AB + hν Fluorescence AB* + S → AB + S* Energy transfer

AB* + AB → (AB)2* Excimer formation

2A → A2 Radical recombination → C + D Disproportionation

A + AB → A2B Addition

→ A2 + B Abstraction

Source: Mozumder, A. and Hatano, Y. (eds.), Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, Marcel Dekker, New York, 2004.

The fundamental processes of radiation chemistry are shown in Table 1.1 (Mozumder and Hatano, 2004), in which the Ÿrst three constitute the physical stage or the primary process of the charged particle and photon interactions with matter (Hatano, 2003). Here “primary” means the earliest stage that is conceivable either theoretically or experimentally. Sometimes “initial” is used for measured yields at the shortest time that is possible in a given experimental setup. The primary stage is followed by the physicochemical and chemical stages. These are followed by the biological stages. See also Chapter 1 of the 2004 book. The 2004 book succeeded in surveying critically and in detail the comprehensive features of the physical, physicochemical, chemical, and biological stages. Further, the applications of charged particle and photon interactions with matter were treated brie¡y. Most of the papers referred in the 2004 book were published before 2000.

1.1 THEORETIcAL STUDIES AS NEW APPROAcHES TO PRIMARY PROcESSES THAT MOTIVATE NEW EXPERIMENTS From the late nineteenth century to the Ÿrst half of the twentieth century, studies of the interac- tion of ionizing radiation with matter were mainly phenomenological in character. A new theoreti- cal approach, particularly for the primary process, that is, the physical stage, was initiated during 1955–1965 by Platzman, Fano, and Inokuti. They considered the interaction to be the collision of 4 Charged Particle and Photon Interactions with Matter high-energy particles with matter, that is, basically molecules. The important Ÿndings of their stud- ies are summarized as follows (Platzman, 1962a,b; Hatano, 1999, 2003; Mozumder and Hatano, 2004, Chapters 1 and 5; and Chapter 2):

1. Ionizing radiation is generally classiŸed according to high-energy (a) photons; (b) electrons; (c) heavy charged particles; and (d) other particles such as neutrons, positrons, muons, etc. Although the initial interaction of each of these particles with a molecule depends largely on the kind and energy of the particle, common features among the initial interactions and further the following electron−molecule collisions should be the formation of electrons in a wide energy range. These are called “secondary electrons.” The secondary electrons are classiŸed according to their energy in the middle- and high-energy ranges, and those in the subexcitation energy region. It was concluded that the essential features of the inter- action of ionizing radiation with molecules in the primary process is electron−molecule collisions in a wide range of collision energies, which are followed by cascades of multiple electron−molecule collisions in matter (Spencer and Fano, 1954; Mozumder and Hatano, 2004, Chapters 3, 6, and 9; and Chapter 3). 2. Secondary electron collisions with molecules in the middle- and high-energy ranges may be treated approximately by the Bethe theory (Inokuti, 1971), resulting in the important conclusion that the generalized oscillator strength and, further, the optical oscillator strength are of great importance in interpreting the primary result of the interaction of ionizing radiation with matter. Thus, G-values have been estimated theoretically from the optical oscillator strength by “the optical approximation” (Platzman, 1962a,b). That is, the energy deposition spectra in the interaction of ionizing radiation with molecules can be estimated from the optical oscillator strength (Hatano, 2003, 2009; Mozumder and Hatano, 2004, Chapter 5; and Chapter 2). 3. Since the optical oscillator strength, which is of the great importance in basic sciences, had not yet been calculated either theoretically or experimentally, Platzman and Fano realized and pointed out for the Ÿrst time in the late 1950s that synchrotron radiation should be a powerful photon source in a wide span of photon energies from UV-visible to hard x-rays (Hatano, 1995). 4. After a scientiŸcally careful and intuitive analysis of the primary interaction of ionizing radiation with molecules, as obtained from the Bethe theory and optical approximation, Platzman realized that for most molecules there is a big difference between the ionization threshold energy and the energy region where the major part of the oscillator strength dis- tribution is located, as deduced from optical data and sum rules. He presented his idea of “superexcited states,” which are neutral excited states located in the energy region above the ionization threshold (Platzman, 1962a,b; Hatano, 2003; Mozumder and Hatano, 2004, Chapter 5; and Chapter 2).

The theoretical studies, summarized above in (1) through (4), have motivated much new experimen- tal research since the late 1960s as described below (Hatano, 1999; Mozumder and Hatano, 2004, Chapter 5; and Chapter 2):

1. Experimental evidence was Ÿrst obtained, independent of these theoretical studies, for the reaction of hot hydrogen atoms formed from the dissociation of highly excited states, pro- duced by direct excitation during the radiolysis of liquid oleŸns (Hatano and Shida, 1967). The experimental results were analyzed in terms of the theoretical studies to compare the experimental G-values with the theoretical ones for the superexcited states estimated by the optical approximation, giving the Ÿrst experimental evidence for the important role of superexcited states in radiolysis (Hatano et al., 1968). Introduction 5

2. To obtain experimentally the electronic states of superexcited molecules and their dis- sociation dynamics to form hot hydrogen atoms, which could be electronically and/or translationally excited, Doppler spectroscopy combined with an electron−molecule colli- sion apparatus was developed (Ito et al., 1976, 1977; Hatano, 1983; Kouchi et al., 1997). In this experiment using molecular hydrogen, the doubly excited and singly excited (with vibrational/rotational excitation) high Rydberg states converging individually to each of the ionized states were observed as superexcited states for the Ÿrst time. For other mol-

ecules such as HF, H2O, NH3, and CH4, the doubly and inner-core excited states were also observed. 3. To obtain more detailed information with state selectivity and higher-energy resolution, synchrotron radiation (SR) has been used as an excitation source for this kind of investiga- tion (Hatano, 1999). The measurements in these SR experiments are classiŸed into two types: One is the absolute measurements of photoabsorption cross sections (optical oscil- lator strengths), photoionization cross sections, photodissociation cross sections, and pho- toionization quantum yields. The other is the measurement, with high-energy resolution, of state-speciŸed dissociation fragments formed from state-speciŸed superexcited states. It was concluded that the electronic states and the dissociation dynamics of molecular superexcited states were experimentally evidenced for the Ÿrst time in these investigations (Hatano, 1999). Accordingly, an important role of the superexcited states in the primary process of the interaction of ionizing radiation with matter has been well substantiated (Hatano, 2003). The results obtained are summarized as follows. Further, these investiga- tions have made great progress recently, which are described in Chapter 2. a. Superexcited states are (i) vibrationally/rotationally excited high Rydberg states, (ii) doubly excited states, or (iii) inner-core excited states, giving conclusive experimental evidence for Platzman’s idea. b. They dissociate into neutral fragments, with excess electronic or translational energies, in competition with autoionization. c. Their dissociation dynamics, as well as the dissociation products, are quite different from those for the lower excited states below ionization thresholds. d. Molecules are not easily ionized, which is an unexpected phenomenon. e. New information obtained has motivated fresh investigations of quantum theo- ries applied to the spectroscopy and dynamics of such highly excited molecules (see Chapter 2), as well as explaining the oscillator strengths (see Chapter 4). f. The new information obtained has also substantiated, to a great extent, the superexcited states considered as a collision complex in some important processes such as Penning ionization, electron−ion recombination, and electron attachment to molecules. g. The new information has greatly motivated the reanalysis of various other kinds of phenomena, besides radiolysis, for the ionization and excitation of molecules, such as reactive plasmas, plasmas in the upper atmosphere and space, and so on. h. The new information was previously almost limited to molecules in the gas phase. The oscillator strengths in the condensed phase were discussed brie¡y (Hatano and Inokuti, 1995) and have recently been measured using a newly developed method (see Chapter 5). 4. Measurements of optical oscillator strengths (photoabsorption cross sections and photo- ionization cross sections) as deduced from electron−molecule collision experiments have been made in which the optimum conditions were selected using the Bethe theory. This method has been called the “poor man’s synchrotron experiments” or “imaginary-­photon experiments” as opposed to “real-photon experiments” using synchrotron radiation, which requires the construction of big-scale facilities. These two types of experiments were compared in detail in Chapter 5 of the 2004 book. The data obtained by these meth- ods have been critically evaluated and compiled elsewhere as recommended ones (Kameta et al., 2003). 6 Charged Particle and Photon Interactions with Matter

An important part of the new theories of the primary processes was obtained from W-value stud- ies (Platzman, 1961). New directions in these studies have been made possible by using synchrotron radiation and are reviewed in Chapter 6. Remarkable progress has recently been made of the interaction of positrons and muons with ­matter, which are surveyed in Chapters 7 and 8, respectively. With regard to the information summarized above, future perspectives and future research pro- grams that need more work on the theoretical and experimental aspects of the primary processes have recently been discussed elsewhere (Hatano, 2009).

1.2 ADVANcES IN THE THEORETIcAL AND EXPERIMENTAL STUDIES Of THE PHYSIcOcHEMIcAL, CHEMIcAL, AND BIOLOGIcAL STAGES Virtually all important studies published in or before 2000 of the physical, physicochemical, chemi- cal, and biological stages of the charged particle and photon interactions with matter were surveyed critically and in detail, both theoretically and experimentally, in the 2004 book. Some of these are detailed in the next paragraph. The theoretical studies were surveyed in Chapters 2, 4, 10, and 17. Reactions of electrons, ions, excited atoms and molecules, and also of free radicals in the gas phase, as studied by pulse radioly- sis methods, were surveyed in Chapter 6, while those in the condensed phase in Chapters 7, 8, 10, and 11. The radiation chemistry of liquid water, liquid alkanes, polymers, and metal clusters/photo- graphic systems was surveyed in Chapters 12, 13, 19, and 20, respectively. Radiation chemistry at high-LET was reviewed in Chapter 14. Biological consequences were followed up in Chapters 15 and 16. Applications in medical microdosimetry, molecular designing, organic chemistry, nuclear technology, ¡ue gas treatment, ion-beam therapy, food irradiation, and other new material, space, and biological science and engineering were surveyed in Chapters 18, 21 through 27, respectively. New advances in the studies of these stages, which were not covered in the 2004 book, have been remarkable since 2000. This has been pointed out in the preface. Furthermore, great progress has recently been made in the applications and interface formation. The outline of recent advances in the studies of primary processes (the physical stage) is described brie¡y in Section 1.2 (also refer Chapters 2 through 8). Those of the physicochemical, chemical, and biological stages, as well as of the applications and the interface formation, are brie¡y described below. New theoretical studies of the physicochemical and chemical stages are introduced in Chapters 9 and 14, respectively; these studies describe the behavior of electrons in liquid hydro- carbons and for the high-LET radiolysis of liquid water. In Chapter 9, the authors make the Ÿrst application of the Anderson localization concept for electron mobility in liquid hydrocarbons. New experimental research in the physicochemical and chemical stages are described in Chapters 10 through 13, 15 through 18 for each of the speciŸc characteristics of matter to be studied or under their speciŸc experimental conditions. New experimental studies of the biological stage are intro- duced in Chapters 19 through 22. The applications in health physics and cancer therapy are found in Chapters 23 and 24, respectively. Applications to polymers are discussed in Chapters 25 through 27. The applications and the interface formation in space science and technology are introduced in Chapters 28 through 30. Applications for the research and development of radiation detec- tors, environmental conservation, plant breeding, and nuclear engineering are further available in Chapters 31 through 34, respectively. With regard to the information summarized above, future perspectives and research programs that need more theoretical and experimental work on the physicochemical and chemical stages of the fundamental processes have recently been discussed elsewhere (Hatano, 2009). Introduction 7

REfERENcES Hatano, Y. 1983. Electron impact dissociation of simple molecules. Comments Atom. Mol. Phys. 13: 259–273. Hatano, Y. 1995. Applications of synchrotron radiation to radiation research. In Radiation Research (Congress Lecture, the 10th International Congress of Radiation Research, Wurzburg, Germany), U. Hagen, D. Harder, H. Jung, and C. Streffer (eds.), Vol. II, pp. 86–92. Wurzburg, Germany: Universitatsdrukerei, H. Strutz AG. Hatano, Y. 1999. Interaction of vacuum ultraviolet photons with molecules. Formation and dissociation dynam- ics of molecular superexcited states. Phys. Rep. 313: 109–169. Hatano, Y. 2003. Spectroscopy and dynamics of molecular superexcited states. Aspects of primary processes of radiation chemistry. Radiat. Phys. Chem. 67: 187–198. Hatano, Y. 2009. Future perspectives of radiation chemistry. Radiat. Phys. Chem. 78: 1021–1025. Hatano, Y. and Inokuti, M. 1995. Photoabsorption, photoionization, and photodissociation cross sections. In Atomic and Molecular Data for Radiotherapy and Radiation Research, IAEA-TECDOC-799, M. Inokuti (ed.), Chapter 5. Vienna, Austria: IAEA. Hatano, Y. and Shida, S. 1967. Hydrogen formation in the radiolyses of liquid butene-1 and trans-butene-2. J. Chem. Phys. 46: 4784–4788. Hatano, Y., Shida, S., and Inokuti, M. 1968. Hydrogen formation and superexcited states in the radiolysis of liquid oleŸns. J. Chem. Phys. 48: 940–941. Inokuti, M. 1971. Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited. Rev. Mod. Phys. 43: 297–347. Inokuti, M. (ed.). 1995. Atomic and Molecular Data for Radiotherapy and Radiation Research, IAEA- TECDOC-799. Vienna, Austria: IAEA. Ito, K., Oda, N., Hatano, Y., and Tsuboi, T. 1976. Doppler proŸle measurements of Balmer-α radiation by elec- tron impact on H2. Chem. Phys. 17: 35–43. Ito, K., Oda, N., Hatano, Y., and Tsuboi, T. 1977. The electron energy dependence of the Doppler proŸles of

Balmer-α emission from H2, D2, CH4 and other simple hydrocarbons by electron impact. Chem. Phys. 21: 203–210. Kameta, K., Kouchi, N., and Hatano, Y. 2003. Cross sections for photoabsorption, photoionization, and pho- todissociation of molecules. In Landolt-Boernstein, Y. Itikawa (ed.), New Series, Vol. I/17C. Berlin, Germany: Springer. Kouchi, N., Ukai, M., and Hatano, Y. 1997. Dissociation dynamics of superexcited molecular hydrogen. J. Phys. B: Atom. Mol. Opt. Phys. 30: 2319–2344. Mozumder, A. 1999. Fundamentals of Radiation Chemistry. San Diego, CA: Academic Press. Mozumder, A. and Hatano, Y. (eds.). 2004. Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. New York: Marcel Dekker. Platzman, R. L. 1961. Total ionization in gases by high energy particles: An appraisal of our understanding. Int. J. Appl. Radiat. Isot. 10: 116–127. Platzman, R. L. 1962a. Superexcited states of molecules, and the primary action of ionizing radiation. Vortex 23: 372–385. Platzman, R. L. 1962b. Superexcited states of molecules. Radiat. Res. 17: 419–425. Spencer, L. V. and Fano, U. 1954. Energy spectrum resulting from electron slowing down. Phys. Rev. 93: 1172–1181.

References

1 Chapter 1. Introduction

Hatano, Y. 1983. Electron impact dissociation of simple molecules. Comments Atom. Mol. Phys. 13: 259–273.

Hatano, Y. 1995. Applications of synchrotron radiation to radiation research. In Radiation Research (Congress Lecture, the 10th International Congress of Radiation Research, Wurzburg, Germany), U. Hagen, D. Harder, H. Jung, and C. Streffer (eds.), Vol. II, pp. 86–92. Wurzburg, Germany: Universitatsdrukerei, H. Strutz AG.

Hatano, Y. 1999. Interaction of vacuum ultraviolet photons with molecules. Formation and dissociation dynamics of molecular supere xcited states. Phys. Rep . 313: 109–169.

Hatano, Y. 2003. Spectroscopy and dynamics of molecular superexcited states. Aspects of primary processes of radiation chemistry . Radiat. Phys. Chem . 67: 187–198.

Hatano, Y. 2009. Future perspecti ves of radiation chemistry . Radiat. Phys. Chem . 78: 1021–1025.

Hatano, Y. and Inokuti, M. 1995. Photoabsorption, photoionization, and photodissociation cross sections. In Atomic and Molecular Data for Radiotherapy and Radiation Research, IAEA-TECDOC-799, M. Inokuti (ed.), Chapter 5. Vienna, Austria: IAEA.

Hatano, Y. and Shida, S. 1967. Hydrogen formation in the radiolyses of liquid butene-1 and trans-butene-2. J. Chem. Phys . 46: 4784–4788.

Hatano, Y., Shida, S., and Inokuti, M. 1968. Hydrogen formation and superexcited states in the radiolysis of liquid ole�ns. J . Chem. Phys. 48: 940–941.

Inokuti, M. 1971. Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited. Re v. Mod. Phys. 43: 297–347.

Inokuti, M. (ed.). 1995. Atomic and Molecular Data for Radiotherapy and Radiation Research, IAEATECDOC-799. Vienna, Austria: IAEA.

Ito, K., Oda, N., Hatano, Y., and Tsuboi, T. 1976. Doppler pro�le measurements of Balmerα radiation by electron impact on H 2 . Chem. Phys. 17: 35–43.

Ito, K., Oda, N., Hatano, Y., and Tsuboi, T. 1977. The electron energy dependence of the Doppler pro�les of Balmer-α emission from H 2 , D 2 , CH 4 and other simple hydrocarbons by electron impact. Chem. Phys. 21: 203–210.

Kameta, K., Kouchi, N., and Hatano, Y. 2003. Cross sections for photoabsorption, photoionization, and photodissociation of molecules. In Landolt-Boernstein, Y. Itikawa (ed.), New Series, Vol. I/17C. Berlin, Germany: Springer .

Kouchi, N., Ukai, M., and Hatano, Y. 1997. Dissociation dynamics of superexcited molecular hydrogen. J. Phys. B: Atom. Mol. Opt. Phys. 30: 2319–2344.

Mozumder , A. 1999. Fundamentals of Radiation Chemistry . San Die go, CA: Academic Press.

Mozumder , A. and Hatano, Y. (eds.). 2004. Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. Ne w York: Marcel Dekk er.

Platzman, R. L. 1961. Total ionization in gases by high energy particles: An appraisal of our understanding. Int. J. Appl. Radiat. Isot. 10: 116–127.

Platzman, R. L. 1962a. Superexcited states of molecules, and the primary action of ionizing radiation. Vortex 23: 372–385.

Platzman, R. L. 1962b . Supere xcited states of molecules. Radiat. Res . 17: 419–425.

Spencer , L. V. and Fano, U. 1954. Energy spectrum resulting from electron slowing down. Phys. Rev. 93: 1172–1181. 2 Chapter 2. Oscillator Strength Distribution of Molecules in the Gas Phase in the Vacuum Ultraviolet Range and Dynamics of Singly Inner-Valence Excited and Multiply Excited States as Superexcited States

Bieri, G. and Åsbrink, L. 1980. 30.4 nm He(II) photoelectron spectra of organic molecules: Part I. Hydrocarbons. J. Electron Spectrosc. Relat. Phenom. 20: 149–167.

Bransden, B. H. and Joachain, C. J. 2003. Physics of Atoms and Molecules. Edinburgh, U.K.: Pearson Education Limited.

Cederbaum, L. S., Domcke, W., Schirmer, J., von Niessen, W., Diercksen, G. H. F., and Kraemer, W. P. 1978. Correlation ef fects in the ionization of h ydrocarbons. J . Chem. Phys. 69: 1591–1603.

Dutuit, O., Aït-Kaci, M., Lemaire, J., and Richard-Viard, M. 1990. Dissociative photoionization of methane and its deuterated compounds in the A state re gion. Phys. Scr . T31: 223–226.

Ehresmann, A., Machida, S., Ukai, M., Kameta, K., Kitajima, M., Kouchi, N., Hatano, Y., Ito, K., and Hayaishi, T. 1997. CO Rydberg series converging to the CO + D and C states observed by VUV-¡uorescence spectroscopy. J . Phys. B 30: 1907–1926.

F ano, U. 1961. Effects of con�guration interaction on intensities and phase shifts. Phys. Rev. 124: 1866–1878.

Fernández, J. and Martín, F . 2001. Autoionizing 1 Σ u + and 1 Π u states of H 2 above the third and fourth ionization threshold. J . Phys. B 34: 4141–4153.

Fukuza wa, H., Odagiri, T., Nakazato, T., Murata, M., Miyagi, H., and Kouchi, N. 2005. Doubly excited states of methane produced by photon and electron interactions. J . Phys. B 38: 565–578.

Furuya, K., Kimura, K., Sakai, Y., Takayanagi, T., and Yonekura, N. 1994. Dissociation dynamics of CH 4 + core ion in the 2 A 1 state. J. Chem. Phys. 101: 2720–2728.

Göthe, M. C, Wannberg, B., Karlsson, L., Sv ensson, S., Baltzer , P ., Chau, F . T., and Adam, M.-Y . 1991. X-ray , ultraviolet, and synchrotron radiation excited inner-valence photoelectron spectra of CH 4 . J. Chem. Phys. 94: 2536–2542.

Hatano, Y. 1999. Interaction of vacuum ultraviolet photons with molecules. Formation and dissociation dynamics of molecular supere xcited states. Phys. Rep . 313: 109–169.

Herzberg, G. 1991. Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Malabar , FL: Krie ger Publishing Compan y.

Ito, K., Morioka, Y., Ukai, M., Kouchi, N., Hatano, Y., and Hayaishi, T. 1995. A high-¡ux 3-M normal incidence monochromator at beamline 20A of the photon f actory. Re v. Sci. Instrum. 66: 2119–2121.

Kameta, K., Kouchi, N., Ukai, M., and Hatano, Y. 2002. Photoabsorption, photoionization, and neutral-dissociation cross sections of simple hydrocarbons in the vacuum ultraviolet range. J. Electron Spectrosc. Relat. Phenom. 123: 225–238.

Kato, M., Kameta, K., Odagiri, T., Kouchi, N., and Hatano, Y. 2002. Single-hole one-electron superexcited states and doubly excited states of methane in the vacuum ultraviolet range as studied by dispersed ¡uorescence spectroscop y. J . Phys. B 35: 4383–4400.

Kato, M., Odagiri, T., Kameta, K., Kouchi, N., and Hatano, Y. 2003. Doubly excited states of ammonia in the vacuum ultra violet range. J . Phys. B 36: 3541–3554.

Kato, M., Odagiri, T., Kodama, K., Murata, M., Kameta, K., and Kouchi, N. 2004. Doubly excited states of water in the inner v alence range. J . Phys. B 37: 3127–3148.

K ouchi, N. 2005. Measurements of the ¡uorescence cross sections in the photoexcitation of CH 4 , NH 3 and H 2 O in the vacuum ultraviolet range. In Atomic and Molecular Data and Their Applications: Joint Meeting of 14th International Toki Conference on Plasma Physics and Controlled Nuclear Fusion (ITC14); and 4th International Conference on Atomic and Molecular Data and Their Applications (ICAMDATA2004), 5–8 October 2004, Toki, Japan. AIP Conference Proceedings, T. Kato, H. Funaba, and D. Kato (eds.), Vol. 771, pp. 199–208.

K ouchi, N. and Hatano, Y. 2004. Interaction of photons with molecules: Photoabsorption, photoionization, and photodissociation cross sections. In Charg ed Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 105–120. Ne w York: Marcel Dekk er.

Lefebvre-Brion, H. and Field, R. W. 2004. The Spectr a and Dynamics of Diatomic Molecules. Amsterdam, the : Else vier.

Mitsuke, K., Suzuki, S., Imamura, T., and Koyano, I. 1991. Negative-ion mass spectrometric study of ion-pair formation in the vacuum ultraviolet. IV. CH 4 → H − + CH 3 + and CD 4 → D − + CD 3 + . J. Chem. Phys. 94: 6003–6006.

Mitsuke, K., Hattori, H., and Yoshida, H. 1993. Ion-pair formation from saturated hydrocarbons through photoe xcitation of an inner -valence electron. J . Chem. Phys. 99: 6642–6652.

N akamura, H. 19 91. Wh at ar e th e ba sic me chanisms of el ectronic tr ansitions in mo lecular dy namic pr ocesses? Int. Rev . Phys. Chem. 10: 123–188.

Platzman, R. L. 1962a. Superexcited states of molecules, and the primary action of ionizing radiation. Vorte x 23: 372–389.

Platzman, R. L. 1962b . Supere xcited states of molecules. Radiat. Res . 17: 419–425.

Samson, J. A. R. 1980. T echniques of Vacuum Ultraviolet Spectroscopy. Lincoln, NE: Pied Publications.

Samson, J. A. R., Haddad, G. N., and Gardner, J. L. 1977. Total and partial photoionization cross sections of N 2 from threshold to 100 Å. J . Phys. B 10: 1749–1759.

Sánchez, I. and Martín, F. 1997. The doubly excited states of the H 2 molecule. J. Chem. Phys. 106: 7720–7730.

Sánchez, I. and Martín, F. 1999. Doubly excited autoionizing states of H 2 above the second ionization threshold: The Q 2 resonance series. J. Chem. Phys. 110: 6702–6713.

Schinke, R. 1993. Cambridge Monographs on Atomic, Molecular and Chemical Physics 1. Photodissociation Dynamics. Cambridge, U.K.: Cambridge Uni versity Press.

Sorensen, S. L., Karawajczk, A., Strömholm, C., and Kirm, M. 1995. Dissociative photoexcitation of CH 4 and CD 4 . Chem. Phys. Lett. 232: 554–560.

Ukai, M. and Hatano, Y. 2004. Reactions of low-energy electrons, ions, excited atoms and molecules, and free radicals in the gas phase as studied by pulse radiolysis methods. In Charged Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 121–157. Ne w York: Marcel Dekk er.

Woodruff, P. R. and Marr, G. V. 1977. The photoelectron spectrum of N 2 , and partial cross sections as a function of photon ener gy from 16 to 40 eV. Pr oc. R. Soc. Lond. A 358: 87–103. 3 Chapter 3. Electron Collisions with Molecules in the Gas Phase

Antoni, Th., Jung, K., Ehrhardt, H., and Chang, E. S. 1986. Rotational branch analysis of the excitation of the fundamental vibrational modes of CO 2 by slow electron collisions, J. Phys. B: At. Mol. Phys. 19: 1377–1396.

Barr, A., Bonaldi, L., Carugno, G., Charpak, G., Iannuzzi, D., Nicoletto, M., Pepato, A., and Ventura, S. 2002. A high-speed, pressurised multi-wire gamma camera for dynamic imaging in nuclear medicine. Nucl. Instrum. Methods A 477: 499–504.

Ba wagan, A. O., Brion, C. E., Davidson, E. R., and Feller, D. 1987. Electron momentum spectroscopy of the valence orbitals of H 2 O and D 2 O: Quantitative comparisons using Hartree-Fock limit and correlated wavefunctions. Chem. Phys . 113: 19–42.

Bolorizadeh, M. A. and Rudd, M. E. 1986. Angular and energy dependence of cross sections for ejection of electrons from w ater v apor. I. 50–2000-eV electron impact. Phys. Re v. A 33: 882–887.

Boudaif fa, B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L. 2000. Resonant formation of DNA strand breaks by lo w-energy (3 to 20 eV) electrons. Science 287: 1658–1660.

B runger, M. J., Thorn, P. A., Campbell, L., Diakomichalis, N., Kato, H., Kawahara, H., Hoshino, M., Tanaka, H., and Kim, Y.-K. 2008. Excitation of the lowest lying 3 B 1 , 1 B 1 , 3 A 2 , 1 A 2 , 3 A 1 and 1 A 1 electronic states in water by 15 eV electrons. Int. J . Mass Spectrom. 271: 80–84.

Buckman, S. J., Elford, M. T., and Newman, D. S. 1987. Electron scattering from vibrationally excited CO 2 . J. Phys. B: At. Mol. Phys. 20: 5175–5182.

Bundschu, C. T., Gibson, J. C., Gulley, R. J., Brunger, M. J., Buckman, S. J., Sanna, N., and Gianturco, F. A. 1997. Lo w-energy electron scattering from methane. J . Phys. B: At. Mol. Opt. Phys. 30: 2239–2260.

Celotta, R. J. and Huebner, R. H. 1979. Electron impact spectroscopy: An ov erview of the low-ener gy aspects. In Electron Spectroscopy: Theory, Techniques and Applications, C. R. Brundle and A. D. Baker (eds.), pp. 41–125. Ne w York: Academic Press.

Cho, H., Park, Y. S., Tanaka, H., and Buckman, S. J. 2004. Measurements of elastic electron scattering by water vapour e xtended to backw ard angles. J . Phys. B: At. Mol. Opt. Phys. 37: 625–634.

C ho, H., Park, Y. S., Castro, E. A.-Y., de Souza, G. L. C., Iga, I., Machado, L. E., Brescansin, L. M., and Lee, M.-T. 2008. A comparative experimental–theoretical study on elastic electron scattering by me thane. J. Phys. B: At. Mol. Opt. Phys. 41 : 45 203-1–45203-7.

Christophorou, L. G. and Olthoff, J. K. 2001. Electron interactions with excited atoms and molecules. Adv. At. Mol. Opt. Phys. 44: 155–293.

Christophorou, L. G., McCorkle, D. L., and Christodoulides, A. A. 1984. Electron attachment processes. In Electron-Molecule Interactions and Their Applications, L. G. Christophorou (ed.), Vol. 1, pp. 477–617. New York: Academic Press.

Colyer , C. J., Vizcaino, V., Sullivan, J. P., Brunger, M. J., and Buckman, S. J. 2007. Absolute elastic crosssections for lo w-energy electron scattering from tetrah ydrofuran. Ne w J. Phys. 9: 41–51.

Ču rík, R., Ziesel, J. P., Jones, N. C., Field, T. A., and Field, D. 2006. Rotational excitation of H 2 O by cold electrons. Phys. Rev. Lett. 97: 123202-1–123202-4.

Čurík, R., Čársky, P., and Allan, M. 2008. Vibrational excitation of methane by slow electrons revisited: Theoretical and e xperimental study . J . Phys. B: At. Mol. Opt. Phys. 41: 115203-1–115203-7.

D illon, M. A., Tanaka, H., and Spence, D. 1989. The electronic spectrum of adenine by electron impact methods. Radiat. Res. 117: 1–7.

Faure, A., Gor�nkiel, J. D., and Tennyson, J. 2004. Electron-impact rotational excitation of water. Mon. Not. R. Astron. Soc. 347: 323–333.

Ferch, J., Masche, C., Raith, W., and Wiemann, L. 1989. Electron scattering from vibrationally excited CO 2 in the ener gy range of the 2 Π u shape resonance. Phys. Rev. A 40: 5407–5410. Field, D., Lunt, S. L., and Ziesel, J.-P. 2001. The quantum world of cold electron collisions. Acc. Chem. Res. 34: 291–298.

Ha�ed, H., Eschenbrenner, A., Champion, C., Ruiz-López, M. F., Dal Cappello, C., Charpentier, I., and Hervieux, P.-A. 2007. Electron momentum spectroscopy of the valence orbitals of the water molecule in gas and liquid phase: A comparati ve study . Chem. Phys. Lett . 439: 55–59.

Harb, T., Kedzierski, W., and McConke y, J. W. 2001. Production of ground state OH following electron impact on H 2 O. J. Chem. Phys. 115: 5507–5512.

Hoshino, M., Kato, H., Makochekanwa, C., Buckman, S. J., Brunger, M. J., Cho, H., Kimura, M., Kato, D., Murakami, I., Kato, T., and Tanaka, H. 2008. Elastic differential cross sections for electron collisions with polyatomic molecules, Research Report NIFS-DATA Series. NIFS-DATA-101 (National Institute for Fusion Science, Toki, Japan), pp. 1–60.

Huels, M. A., Hahndorf, I., Illenberger, E., and Sanche, L. 1998. Resonant dissociation of DNA bases by subionization electrons. J . Chem. Phys. 108: 1309–1312.

Hunter , S. R. and Christophorou, L. G. 1984. Electron motion in lowand high-pressure gases. In ElectronMolecule Interactions and Their Applications, L. G. Christophorou (ed.), Vol. 2, pp. 89–219. New York: Academic Press.

H uo, W. M. and Gianturco, F. A. (eds.). 1995. Computational Methods for Electron-Molecule Collisions. Ne w Yo rk: Pl enum Pr ess.

Hwang, W., Kim, Y.-K., and Rudd, M. E. 1996. New model for electron-impact ionization cross sections of molecules. J . Chem. Phys. 104: 2956–2966.

Inokuti, M. 1971. Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Re v. Mod. Phys. 43: 297–347.

Itika wa, Y. 2002. Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data 31: 749–767.

Itikaw a, Y. (ed.). 2003. Photon and Electron Interactions with Atoms, Molecules and Ions, Landolt-Börnstein, Vol. I/17, Sub volume C. Berlin, German y: Springer . Itikawa, Y. 2006. Cross sections for electron collisions with nitrogen molecules. J. Phys. Chem. Ref. Data 35: 31–53.

Itikawa, Y. 2007. Molecular Processes in Plasmas: Collisions of Charged Particles with Molecules. Berlin, Germany: Springer .

Itikawa, Y. 2009. Cross sections for electron collisions with oxygen molecules. J. Phys. Chem. Ref. Data 38: 1–20.

Itikawa, Y. and Mason, N. J. 2005. Cross sections for electron collisions with water molecules. J. Phys. Chem. Ref. Data 34: 1–22.

Johnstone, W. M., Mason, N. J., and Newell, W. R. 1993. Electron scattering from vibrationally excited carbon dioxide. J . Phys. B: At. Mol. Opt. Phys. 26: L147–L152.

Johnstone, W. M., Brunger, M. J., and Newell, W. R. 1999. Differential electron scattering from the (010) excited vibrational mode of CO 2 . J. Phys. B: At. Mol. Opt. Phys. 32: 5779–5788.

Jung, K., Antoni, T., Muller, R., Kochem, K. H., and Ehrhardt, H. 1982. Rotational excitation of N 2 , CO and H 2 O by low-energy electron collisions. J. Phys. B: At. Mol. Phys. 15: 3535–3555.

Jureta, J. J. 2005. The threshold electron impact spectrum of H 2 O. Eur. Phys. J. D 32: 319–328.

Karwasz, G. P., Brusa, R. S., and Zecca, A. 2003. Photon and Electron Interactions with Atoms, Molecules and Ions, Landolt-Börnstein, Y. Itikawa (ed.), Vol. I/17, Subvolume C, Chapter 6.1. Berlin, Germany: Springer.

Kato, H., Makochekanwa, C., Hoshino, M., Kitajima, M., Tanaka, H., Thorn, P. A., Campbell, L., Brunger, M. J., Teubner, P. J. O., and Cho, H. 2005. Generalized oscillator strengths for electron scattering from H 2 O. In 24th International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC, July 20, 2005, Rosario, Argentina) Book of Abstracts, Vol. 1, p. 281, and P. Limão-Vieira: private communication.

Kato, H., Kawahara, H., Hoshino, M., Tanaka, H., Brunger, M. J., and Kim, Y.-K. 2007. Cross sections for electron impact excitation of the vibrationally resolved A 1 Π electronic state of carbon monoxide. J. Chem. Phys. 126: 064307-1–064307-13.

Kato, H., Kawahara, H., Hoshino, M., Tanaka, H., Campbell, L., and Brunger, M. J. 2008a. Electron-impact excitation of the B 1 Σ u + and C 1 Π u electronic states of H 2 . Phys. Rev. A 77: 062708-1–062708-7.

Kato, H., Kawahara, H., Hoshino, M., Tanaka, H., Campbell, L., and Brunger, M. J. 2008b. Vibrational excitation functions for inelastic and superelastic electron scattering from the ground-electronic state in hot CO 2 . Chem. Phys. Lett. 465: 31–35.

Kawahara, H., Kato, H., Hoshino, M., Tanaka, H., Campbell, L., and Brunger, M. J. 2008. Integral cross sections for electron impact excitation of the 1 Σ u + and 1 Π u electronic states in CO 2 . J. Phys. B: At. Mol. Opt. Phys. 41: 085203-1–085203-6.

Khak oo, M. A., Silva, H., Muse, J., Lopes, M. C. A., Winstead, C., and McKoy, V. 2008. Electron scattering from H 2 O: Elastic scattering. Phys. Rev. A 78: 052710-1–052710-10.

Kim, Y.-K. 2001. Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms. Phys. Rev. A 64: 032713-1–032713-10.

Kim, Y.-K. 2007. Scaled Born cross sections for excitations of H 2 by electron impact. J. Chem. Phys. 126: 064305-1–064305-8.

Kim, Y.-K. and Rudd, M. E. 1994. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 50: 3954–3967.

Kim, Y.-K., Hwang, W., Weinberger, N. M., Ali, M. A., and Rudd, M. E. 1997. Electron-impact ionization cross sections of atmospheric molecules. J . Chem. Phys. 106: 1026–1033.

Kimura, M., Inokuti, M., and Dillon, M. A. 1993. Electron degradation in molecular substances. Adv. Chem. Phys. 84: 192–291.

K urachi, M. and Nakamura, Y. 1990. Electron collision cross sections for SiH 4 , CH 4 , and CF 4 molecules. In Proceedings of the 13th Symposium on Ion Sources and Ion-Assisted Technology (ISAT’90), Tokyo, Japan, pp. 205–208. Mak ochekanwa, C., Oguri, K., Suzuki, R., Ishihara, T., Hoshino, M., Kimura, M., and Tanaka, H. 2006. Experimental observation of neutral radical formation from CH 4 by electron impact in the threshold region. Phys. Re v. A 74: 042704-1–042704-4.

Märk, T. D. 1984. Ionization of molecules by electron impact. In Electron-Molecule Interactions and Their Applications, L.G. Christophorou (ed.), Vol. 1, pp. 251–334. Ne w York: Academic Press.

McConk ey, J. W., Malone, C. P., Johnson, P. V., Winstead, C., McKoy, V., and Kanik, I. 2008. Electron impact dissociation of oxygen-containing molecules—A critical re view. Phys. Rep . 466: 1–103.

Mota, R., Para�ta, R., Giuliani, A., Hubin–Franskin, M. J., Lourenço, J. M. C., Garcia, G., Hoffmann, S. V., Mason, N. J., Ribeiro, P. A., Raposo, M., and Limão-Vieira, P. 2005. Water VUV electronic state spectroscopy by synchrotron radiation. Chem. Phys. Lett . 416: 152–159.

Muñoz, A., Oller, J. C., , F., Gor�nkiel, J. D., Limão-Vieira, P., and Garcia, G. 2007. Electron-scattering cross sections and stopping po wers in H 2 O. Phys. Rev. A 76: 052707-1–052707-7.

Muñoz, A., Oller, J. C., Blanco, F., Gor�nkiel, J. D., Limão-Vieira, P., Maria-Vidal, A., Borge, M. J. G., Tengblad, O., Huerga, C., Te˘llez, M., and Garcia, G. 2008. Energy deposition model based on electron scattering cross section data from w ater molecules. J . Phys.: Conf. Ser. 133: 012002-1–012002-13.

Nikjoo, H., Uehara, S., Em�etzoglou, D., and Cucinotta, F. A. 2006. Track-structure codes in radiation research. Rad. Meas. 41: 1052–1074.

NIST : More information is a vailable from http://ph ysic.nist.gov/PhysRefData/Ionization/intro.html

Ohsawa, D., Kawauchi, H., Hirabayashi, M., Okada, Y., Honma, T., Higashi, A., Amano, S., Hashimoto, Y., Soga, F., and Sato, Y. 2005. An apparatus for measuring the energy and angular distribution of secondary electrons emitted from w ater v apor by f ast hea vy-ion impact. Nucl. Instrum. Methods B 227: 431–449.

Pushkin, K. N., Hasebe, N., Tezuka, C., Kobayashi, S., Mimura, M., Hosojima, T., Doke, T., Miyajima, M., Miyachi, T., Shibamura, E., Dmitrenko, V. V., and Ulin, S. E. 2006. A scintillation response and an ionization yield in pure x enon and mixtures of it with methane. Instrum. Exp. Tech. 49: 489–493.

Ra wat, P., Prabhudesai, V. S., Aravind, A., Rahman, M. A., and Krishnakumar, E. 2007. Absolute cross sections for dissociati ve electron attachment to H 2 O and D 2 O. J. Phys. B: At. Mol. Opt. Phys. 40: 4625–4636.

Read, F. H. and Channing, J. M. 1996. Production and optical properties of an unscreened but localized magnetic �eld. Re v. Sci. Instrum. 67: 2372–2377.

Register, D. F., Nishimura, H., and Trajmar, S. 1980. Elastic scattering and vibrational excitation of CO 2 by 4, 10, 20, and 50 eV electrons, J . Phys. B: At. Mol. Phys. 13: 1651–1662.

R uf, M.-W., Braun, M., Marienfeld, S., Fabrikant, I. I., and Hotop, H. 2007. High resolution studies of dissociative electron attachment to molecules: Dependence on electron and vibrational energy. J. Phys.: Conf. Ser. 88: 012013-1–012013-10.

Sanche, L. 2005. Lo w ener gy electron-dri ven damage in biomolecules. Eur . Phys. J. D 35: 367–390.

Schneider , B. I. 1994. The role of theory in the evaluation and interpretation of cross-section data. Adv. At. Mol. Opt. Phys. 33: 183–214.

Sh yn, T. W. 1991. Vibrational excitation cross sections of methane by electron impact. J. Phys. B: At. Mol. Opt. Phys. 24: 5169–5174.

Sobel, A. 1998. Television’s bright ne w technology . Sci. Am. (May): 48–55.

T akahashi, M., Watanabe, N., Khajuria, Y., Udagawa, Y., and Eland, J. H. D. 2005. Observation of a molecular frame (e, 2e) cross section: An (e, 2e+M) triple coincidence study on H 2 . Phys. Rev. Lett. 94: 213202-1–213202-4.

Tanaka, H., Kubo, M., Onodera, N., and Suzuki, A. 1983. Vibrational excitation of CH 4 by electron impact: 3–20 eV . J . Phys. B: At. Mol. Phys. 16: 2861–2870.

T horn, P. A., Brunger, M. J., Teubner, P. J. O., Diakomichalis, N., Maddern, T., Bolorizadeh, M. A., Newell, W. R., Kato, H., Hoshino, M., Tanaka, H., Cho, H., and Kim, Y.-K. 2007a. Cross sections and oscillator strengths for electron-impact excitation of the à 1B1 electronic state of water. J. Chem. Phys. 12 6: 06 4306-1–064306-10.

Thorn, P. A., Brunger, M. J., Kato, H., Hoshino, M., and Tanaka, H. 2007b. Cross sections for the electron impact excitation of the ã 3 B 1 , b˜ 3 A 1 and B˜ 1 A 1 dissociative electronic states of water. J. Phys. B: At. Mol. Opt. Phys. 40: 697–708.

T oburen, L. H. 2004. Ionization and secondary electron production by fast charged particles. In Charged Particle and Photon Interactions with Matter-Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozumder and Y. Hatano (eds.), pp. 31–74. Ne w York: Marcel Dekk er.

Uehara, S. and Nikjoo, H. 1996. Energy spectra of secondary electrons in water vapour. Radiat. Environ. Biophys. 35: 153–157.

V izcaino, V., Roberts, J., Sullivan, J. P., Brunger, M. J., Buckman, S. J., Winstead, C., and McKoy, V. 2008. Elastic electron scattering from 3-hydroxytetrahydrofuran: Experimental and theoretical studies. New J. Phys. 10: 053002-1–053002-10.

Y oon, J.-S., Song, M.-Y., Han, J.-M., Hwang, S. H., Chang, W.-S., Lee, B.-J., and Itikawa, Y. 2008. Cross sections for electron collisions with h ydrogen molecules. J . Phys. Chem. Ref. Data 37: 913–931. 4 Chapter 4. Time-Dependent Density-Functional Theory for Oscillator Strength Distribution

Bertsch, G. F., Iwata, J.-I., Rubio, A., and Yabana, K. 2000. Real-space, real-time method for the dielectric function. Phys. Re v. B 62: 7998–8002.

Brédas, J. L., Adant, C., Tackx, P., Persoons, A., and Pierce, B. M. 1994. 3rd-order nonlinear-optical response in or ganic materials—Theoretical and e xperimental aspects. Chem. Re v. 94: 243–278.

Brion, C. E., Tan, K. H., van der Wiel, M. J., and van der Leeuw, Ph. E. 1979. Dipole oscillator strengths for the photoabsorption, photoionization and fragmentation of molecular oxygen. J. Electron Spectrosc. Relat. Phenom. 17: 101–119.

Cacelli, I., Carrav etta, V., Rizzo, A., and Moccia, R. 1991. The calculation of photoionisation cross section of simple polyatomic molecules by L 2 methods. Phys. Rep. 205: 283–351.

Casida, M. E., Jamorski, C., Casida, K. C., and Salahub, D. R. 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J . Chem. Phys. 108: 4439–4449.

C han, W. F., Cooper, G., Sodhi, R. N. S., and Brion, C. E. 1993a. Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11–200 eV). Chem. Phys. 170: 81–97.

Chan, W. F., Cooper, G., and Brion, C. E. 1993b. The electronic spectrum of water in the discrete and continuum re gions. Ab solute op tical os cillator st rengths fo r ph otoabsorption (6 –200 eV ). Ch em. Phys. 17 8: 38 7–400.

Chan, W. F., Cooper, G., and Brion, C. E. 1993c. The electronic spectrum of carbon dioxide. Discrete and continuum photoabsorption oscillator strengths (6–203 eV). Chem. Phys . 178: 401–413.

Chelik owsky, J. R., Troullier , N., Wu, K., and Saad, Y . 1994. Higher-order �nite-difference pseudopotential method: An application to diatomic molecules. Phys. Re v. B 50: 11355–11364.

Cooper , G., Olney , T. N., and Brion, C. E. 1995a. Absolute UV and soft x-ray photoabsorption of ethylene by high resolution dipole (e,e) spectroscop y. Chem. Phys . 194: 175–184.

C ooper, G., Grodon, R., Burton, R., and Brion, C. E. 1995b. Absolute UV and soft x-ray photoabsorption of acetylene by high resolution dipole (e,e) spectroscopy. J. Electron Spectrosc. Relat. Phenom. 73: 139–148. de Souza, G. G. B., Boechat-Roberty, H. M., Rocco, M. L. M., and Lucas, C. A. 2002. Generalized oscillator strength for the 1B2u←1Ag transition and the observation of forbidden processes at the C 1s spectrum of the naphthalene molecule. J . Electron Spectrosc. Relat. Phenom. 123: 315–321.

Dreuw , A. and Head-Gordon, M. 2005. Single-reference ab initio methods for the calculation of excited states of lar ge molecules. Chem. Re v. 105: 4009–4037.

D upin, H., Baraille, I., Larrieu, C., Rerat, M., and Dargelos, A. 2002. Theoretical determination of the ionization cross-section of water. J. Mol. Struct. (Theochem) 577: 17–33.

Ekardt, W. 1984. Dynamical polarizability of small metal particles: Self consistent spherical jellium background model. Phys. Rev. Lett. 52: 1925–1928.

Feng, R., Cooper, G., and Brion, C. E. 2002. Dipole (e,e) spectroscopic studies of benzene: Quantitative photoabsorption in the UV, VUV and soft x-ray regions. J. Electron Spectrosc. Relat. Phenom. 123: 199–209.

Furche, F. and Ahlrichs, R. 2002. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 11 7: 74 33–7447.

Gokhberg, K., Vysotskiy, V., Cederbaum, L. S., Storchi, L., Tarantelli, F., and Averbukh, V. 2009. Molecular photoionization cross section by Stieltjes-Chebyshev moment theory applied to Lanczos pseudospectra. J. Chem. Phys. 130: 064104–064108.

Holland, D. M. P., Shaw, D. A., Hayes, M. A., Shpinkova, L. G., Rennie, E. E., Karisson, L., Baltzer, P., and Wannberg, B. 1997. A photoabsorption, photodissociation and photoelectron spectroscopy study of C 2 H 4 and C 2 D 4 . Chem. Phys. 219: 91–116.

Iwata, J.-I., Yabana, K., and Bertsch, G. F. 2001. Real-space computation of dynamic hyperpolarizabilities. J. Chem. Phys. 115: 8773–8783.

Ka¡e, B. P., Katayanagi, H., Prodhan, Md. S. I., Yagi, H., Huang, C. Q., and Mitsuke, K. 2008. Absolute total photoionization cross section of C 60 in the range of 25–120 eV: Revisited. J. Phys. Soc. Jpn. 77: 014302.

Kawashita, Y., Yabana, K., Noda, M., Nobusada, K., and Nakatsukasa, T . 2009. Oscillator strength distribution of C 60 in the time-dependent density functional theory. J. Mol. Struct.: THOECHEM 914 (1–3): 130–135.

Kleinman, L. and Bylander, D. 1982. Ef�cacious form for model pseudopotentials. Phys. Rev. Lett. 48: 1425–1428.

Levine, Z. H. and Soven, P. 1984. Time-dependent local-density theory of dielectric effects in small molecules. Phys. Rev. A 29: 625 –635.

Lin, P. and Lucchese, R. R. 2002. Theoretical studies of cross section and photoelectron angular distribution in the v alence photoionization of molecular oxygen. J . Chem. Phys. 116: 8863–8875.

Montuoro, R. and Moccia, R. 2003. Photoionization cross sections calculation with mixed L 2 basis set: STOs plus B-Splines. Results for N 2 and C 2 H 2 by KM-RPA method. Chem. Phys. 293: 281–308.

Nakatsukasa, T. and Yabana, K. 2001. Photoabsorption spectra in the continuum of molecules and atomic clusters. J . Chem. Phys. 114: 2550 –2561.

Nakatsukasa, T. and Yabana, K. 2004. Oscillator strength distribution in C 3 H 6 isomers studied with the timedependent density functional method in the continuum. Chem. Phys. Lett ., 374: 613–619.

Olalla, E. and Martin, I. 2004. Theoretical study of the valence and K-shell spectra of atmospherically relevant CO 2 . Int. J. Quantum Chem. 99: 502–510.

Onida, G., Reining, L., and Rubio, A. 2002. Electronic excitations: Density-functional versus many-body Green’s-function approaches. Re v. Mod. Phys. 74: 601–659.

Senatore, G. and Subbaswamy , K. R. 1987. Nonlinear response of closed-shell atoms in the density-functional formalism. Phys. Re v. A 35: 2440 –2447.

Stener, M. and Declev a, P. 2000. Time-dependent density functional calculations of molecular photoionization cross sections: N 2 and PH 3 . J. Chem. Phys. 112: 10871–10879.

Troullier, N. and Martins, J. L. 1991. Ef�cient pseudopotentials for plane-wa ve calculations Phys. Re v. B 43: 1993–2006.

Ukai, M., Kameta, K., Chiba, R., Nagao, K., Kouchi, N., Shinsaka, K., Hatano, Y., Umemoto, H., and Ito, Y. 1991. Ionizing and nonionizing decays of superexcited acetylene molecules in the extreme-ultra violet region. J . Chem. Phys. 95: 4142–4153.

V an Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1998a. Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory . J . Chem. Phys. 109: 10644–10656.

V an Gisbergen, S. J. A., Snijders, J. G., and Baerends, E. J. 1998b. Accurate density functional calculations on frequency-dependent h yperpolarizabilities of small molecules. J . Chem. Phys. 109: 10657–10668.

V an Gi sbergen, S. J. A. , Sn ijders, J. G. , an d Ba erends, E. J. 19 99. Er ratum: “C alculating fr equency-dependent hyperpolarizabilities using time-dependent density functional theory” [J. Chem. Phys. 109, 10644 (1998)]. J. Chem. Phys. 11 1: 66 52.

Van Leeuwen, R. and Baerends, E. J. 1994. Exchange-correlation potential with correct asymptotic behavior. Phys. Rev. A 49: 2421–2431.

Y abana, K. and Bertsch, G. F. 1996. Time-dependent local-density approximation in real time. Phys. Rev. B 54: 4484–4487.

Y abana, K. and Bertsch, G. F. 1999. Time-dependent local-density approximation in real time: Application to conjugated molecules. Int. J . Quantum Chem. 75: 55–66.

Y abana, K., Nakatsukasa, T., Iwata, J.-I., and Bertsch, G. F. 2006. Real-time, real-space implementation of the linear response time-dependent density-functional theory . Phys. Stat. Sol. (b) 243: 1121–1138.

Y agi, H., Nakajima, K., Kosw attage, K. R., Nakaga wa, K., Huang, C., Prodhan, Md. S. I., Ka¡e, B. P., Katayanagi, H., and Mitsuke, K. 2009. Photoabsorption cross section of C 60 thin �lms from the visible to vacuum ultra violet. Carbon 47: 1152–1157.

Zangwill, A. and Soven, P. 1980. Density-functional approach to local-�eld effects in �nite systems: Photoabsorption in the rare g ases. Phys. Re v. A 21: 1561–1572. 5 Chapter 5. Generalized Oscillator Strength Distribution of Liquid Water

Bergmann, U., Glatzel, P., and Cramer, S. P. 2002. Bulk-sensitive XAS characterization of light elements: From x-ray Raman scattering to x-ray Raman spectroscop y. Micr ochem. J. 71: 221–230.

Bethe, H. A. and Jackiw , R. 1968. Intermediate Quantum Mec hanics, 2nd edn. Ne w York: Benjamin.

Bonham, R. A. 2000. Corrections to the x-ray incoherent scattering factor to obtain the total inelastic x-ray scattering. J . Mol. Struct. (Theochem) 527: 103–111.

Bonham, R. A. and Fink, M. 1974. High Ener gy Electron Scattering. Ne w York: v an Nostrand Reinhold.

Bo wron, D. T., Krisch, M. H., Barnes, A. C., Finney, J. L., Kaprolat, A., and Lorenzen, M. 2000. X-ray-Raman scattering from the oxygen K edge in liquid and solid H 2 O. Phys. Rev. B 62: R9223–R9227.

Chan, W. F., Cooper, G., and Brion, C. E. 1993. The electronic spectrum of water in the discrete and continuum regions. Absolute optical oscillator strengths for photoabsorption (6–200 eV). Chem. Phys. 178: 387–400.

Daniels, J. 1971. Bestimmung der optischen konstanten von eis aus energie-verlustmenssungen von schnellen elektronen. Opt. Commun . 3: 240–243.

Dingfelder , M. and Inokuti, M. 1999. The Bethe surf ace of liquid w ater. Radiat. En viron. Biophys. 38: 93–96.

E gerton, R. F. 19 96. El ectron Energy-Loss Spectroscopy in the Electron Microscope, 2n d ed n. Ne w Yo rk: Pl enum Pr ess.

Em�etzoglou, D. and Nikijoo, H. 2005. The effect of model approximations on single-collision distributions of low-ener gy electrons in liquid w ater. Radiat. Res . 163: 98–111.

Em�etzoglou, D., Cucinotta, F. A., and Nikjoo, H. 2005. A complete dielectric response model for liquid water: A solution of the Bethe Ridge problem. Radiat. Res . 164: 202–211.

Em�etzoglou, D., Nikjoo, H., Petsalakis, I. D., and Pathak, A. 2006a. A consistent dielectric response model for water ice o ver the whole ener gy-momentum plane. Nucl. Instrum. Methods B 256: 141–147.

E m�etzoglou, D., Nikjoo, H., and Pathak, A. 2006b. A comparative study of dielectric response function models for liquid water. Radiat. Prot. Dosim. 122: 61–65.

Em�etzoglou, D., Pathak, A., and Moscovitch, M. 2008a. Modeling the energy and momentum dependent loss function of the v alence shells of liquid w ater. Nucl. Instrum. Methods B 230: 77–84.

Em�etzoglou, D., Abril, I., Garcia-Molina, R., Petsalakis, I. D., Nikjoo, H., Kyriakou, I., and Pathak, A. 2008b. Semi-empirical dielectric descriptions of the Bethe surface of the valence bands of condensed water. Nucl. Instrum. Methods B 266: 1154–1161.

Fister , T. T., Seidler, G. T., Wharton, L., Battle, A. R., Ellis, T. B., Cross, J. O., Macrander, A. T., Elam, W. T., Tyson, T. A., and Qian, Q. 2006. Multielement spectrometer for ef�cient measurement of the momentum transfer dependence of inelastic x-ray scattering. Re v. Sci. Instrum. 77: 063901-1–063901-7.

Hayashi, H., Watanabe, N., Udaga wa, Y., and Kao, C.-C. 1998. Optical spectra of liquid water in vacuum UV region by means of inelastic x-ray scattering spectroscop y. J . Chem. Phys.108: 823–825.

Hayashi, H., Watanabe, N., Udaga wa, Y., and Kao, C.-C. 2000. The complete optical spectrum of liquid water measured by inelastic x-ray scattering. Pr oc. Natl. Acad. Sci. 97: 6264–6266.

H ayashi, H., Kawata, M., Takeda, R., Udagawa, Y., Watanabe, Y., Takano, T., Nanao, S., and Kawamura, N. 2004. A multi-crystal spectrometer with a two-dimensional position-sensitive detector and contour maps of resonant Kβ em ission in Mn co mpounds. J. Electron Spectrosc. Relat. Phenom. 13 6: 19 1–197.

Hayashi, H., Azumi, T., Sato, A., and Udagawa, Y. 2008. A cartography of Kβ resonant inelastic x-ray scattering for lifetime-broadening-suppressed spin-selected XANES of α-Fe 2 O 3 . J. Electron Spectrosc. Relat. Phenom. 168: 34–39.

Heller , Jr., J. M., Hamm, R. N., Birkhoff, R. D., and Painter, L. R. 1974. Collective oscillation in liquid water. J. Chem. Phys. 60: 3483–3486.

Hudson, A. C., Stolte, W. C., Lindle, D. W., and Guiemin, R. 2007. Design and performance of a curved-crystal x-ray emission spectrometer . Re v. Sci. Instrum. 78: 053101-1–053101-5.

H uotari, S., Albergamo, F., Vanko, G., Verbeni, R., and Monaco, G. 2006. Resonant inelastic hard x-ray scattering with diced analyzer crystals and position-sensitive detectors. Rev. Sci. Instrum. 77: 053102-1–053102-6.

Inokuti, M. 1971. Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Re v. Mod. Phys. 43: 297–347.

Inokuti, M. 1983. Radiation physics as a basis of radiation chemistry and biology. In Applied Atomic Collision Physics, Vol. 4, Condensed Matter , S. Datz (ed.), pp. 179–236. Ne w York: Academic Press, Inc.

Inokuti, M. 1986. VUV absorption and its relation to the effects of ionizing corpuscular radiation. Photochem. Photobiol. 44: 279–285.

Inokuti, M. 1991. How is radiation energy absorption different between condensed phase and the gas phase. Radiat. Eff. Defects Solids 117: 163–167.

Kaplan, I. G. 1995. The track structure in condensed matter . Nucl. Instrum. Methods B 105: 8–13.

K err, G. D., Cox, Jr., J. T., Painter, L. R., and Birkhoff, R. D. 1971. A re¡ectometer for studying liquids in the vacuum ultra violet. Re v. Sci. Instrum. 42: 1418–1422.

K err, G. D., Hamm, R. N., Williams, M. W., Birkhoff, R. D., and Painter , L. R. 1972. Optical and dielectric properties of w ater in the v acuum ultra violet. Phys. Re v. A 5: 2523–2527.

K obayashi, K. 1983. Optical spectra and electronic structure of ice. J . Phys. Chem. 87: 4317–4321.

K utcher, G. L. an d Gr een, A. E. S. 19 76. Mo del fo r en ergy de position in li quid wat er. Ra diat. Res. 67 : 40 8–425.

La Verne, J. A. and Mozumder, A. 1993. Concerning plasmon excitation in liquid water . Radiat. Res . 133: 282–288.

Lassettre, E. N. and Skerbele, A. 1974. Generalized oscillator strengths for 7.4 eV excitation of H 2 O at 300, 400, and 500 eV kinetic ener gy. Singlet-triplet ener gy dif ferences. J . Chem. Phys. 60: 2464–2469.

Lassettre, E. N. and White, E. R. 1974. Generalized oscillator strengths through the water vapor spectrum to 75eV e xcitation ener gy; electron kinetic ener gy 500 eV. J . Chem. Phys. 60: 2460–2463.

Myneni, S., Luo, Y., Naslund, L. A., Cavalleri, M., Ojamae, L., Ogasawara, H., Pelmenschikov, A., Wernet, P., Vaterlein, P., Heske, C., Hussain, Z., Pettersson, L. G. M., and Nilsson, A. 2002. Spectroscopic probing of local h ydrogen-bonding structures in liquid w ater. J . Phys. Condens. Matter 14: L213–L319.

N ikjoo, H. and Uehara, S. 2003. Track structure studies of biological systems. In Charged Particle and Photon Interactions with Matter, A. Mozunderand and Y. Hatano (eds.), pp. 491–531. New York: Marcel Dekker.

P ainter, L. R., Birkhoff, R. D., and Arakawa, E. T. 1969. Optical measurements of liquid water in the vacuum ultraviolet. J . Chem. Phys. 51: 243–251.

P aretzke, H. G. 1987. Radiation track structure theory. In Kinetics of Nonhomogeneous Processes, G. R. Freeman (ed.), pp. 89–170. Ne w York: John Wile y & Sons.

Pines, D. 1964. Elementary Excitations in Solids . Ne w York: Benjamin.

Ritchie, R. H. 1982. Energy losses by swift charged particles in the bulk and at the surface of condensed matter. Nucl. Instrum. Methods 198: 81–91.

Ritchie, R. H. and Howie, A. 1977. Electron-excitation and optical-potential in electron-microscopy. Philos. Mag. 36: 463–481.

Sakurai, J. J. 1994. Modern Quantum Mec hanics, Rev. Edn. Reading, MA: Addison-Wesley.

Seki, M., Kobayashi, K., and Nakahara, J. 1981. Optical spectra of hexagonal ice. J. Phys. Soc. Jpn. 50: 2643–2648.

Smith, J. D., Cappa, C. D., Wilson, K. R., Messer, B. M., Cohen, R. C., and Saykally, R. J. 2004. Energetics of hydrogen bond netw ork rearrangements in liquid w ater. Science 306: 851–853.

T akahashi, M., Watanabe, N., Wada, Y., Tsuchizawa, S., Hirosue, T., Hayashi, H., and Udagawa, Y. 2000. Bethe surfaces and x-ray incoherent scattering factor for H 2 O studied by electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 112: 107–114.

Tohji, K. and Udagawa, Y. 1989. X-ray Raman scattering as a substitute for soft-x-ray extended x-ray-absorption �ne structure. Phys. Rev. B 39: 7590–7594.

Wang, J., Tripathi, A. N., and Smith, Jr., V. H. 1994. Chemical binding and electron correlation effects in x-ray and high ener gy electron scattering. J . Chem. Phys. 101: 4842–4854.

W atanabe, N., Hayashi, H., and Udagawa, Y. 1997. Bethe surface of liquid water determined by inelastic x-ray scattering spectroscop y and electron correlation ef fects. Bull. Chem. Soc. Jpn . 70: 719–726.

W atanabe, N., Hayashi, H., and Udagawa, Y. 2000. Inelastic x-ray scattering study on molecular liquid. J. Phys. Chem. Solid 61: 407–409.

Welter, E., Machek, P., Drager, G., Bruggmann, U., and Froba, M. 2005. A new x-ray spectrometer with large focusing crystal analyzer . J . Sync h. Radiat. 12: 448–454.

W ernet, P., Nordlund, D., Bergmann, U., Cavalleri, M., Odelius, M., Ogasawara, H., Naslund, L. A., Hirsch, T. K., Ojamae, L., Glatzel, P., Pettersson, L.G.M., and Nilsson, A. 2004. The structure of the �rst coordination shell in liquid w ater. Science 304: 995–999.

W illiams, M. W., Arakawa, E. T., and Inagaki, T. 1991. Optical and dielectric properties of materials relevant to biological research. In Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, S. M. Kochand, and E. Rubenstein (eds.), pp. 95–145. Amsterdam, the Netherlands: Elsevier Science Publisher. 6 Chapter 6. New Directions in W-Value Studies

Backx, C. and van der Wiel, M. J. 1975. Electron-ion coincidence measurements of CH 4 . J. Phys. B 8: 3020–3033.

Borges, F. I. G. M. and Conde, C. A. N. 1996. Experimental W-values in gaseous Xe, Kr and Ar for low energy x-rays. Nucl. Instrum. Method Phys. Res. A 381: 91–96.

Breyer, B. 1973. Pulse height distribution in low energy proportional counter measurements. Nucl. Instrum. Method 112: 91–93.

Bro wn, F. C., Bachrach, R. Z., and Bianconi, A. I. 1978. Fine structure above the carbon K-edge in methane and in the ¡uoromethane. Chem. Phys. Lett . 54: 425–429.

Buiermann, L., Grosswendt, B., Kramer, H.-M., Selbach, H.-J., Gerlach, M., Hoffmann, M., and Krumrey, M. 2006. Measurement of the x-ray mass energy-absorption coef�cient of air using 3 keV to 10 keV synchrotron radiation. Phys. Med. Biol . 51: 5125–5150.

Carlson, T. A., Mullins, D. R., Beall, C. E., Yates, B. W., Taylor, J. W., Lindle, D. W., and Grimm, F. A. 1989. Angular distribution of ejected electrons in resonant Auger processes of Ar, Kr, and Xe. Phys. Rev. A 39: 1170–1185.

Chen, C. T., Ma, Y., and Sette, F. 1989. K-shell photoabsorption of the N 2 molecule. Phys. Rev. A 40: 6737–6740.

Cole, A. 1969. Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiat. Res . 38: 7–33.

Combecher , D. 1980. Measurement of W value of low-energy electrons in several gases. Radiat. Res. 84: 189–218.

Dayashankar. 1977. Mean energy expended per ion pair formed in methane by electrons. J. Mysore Univ. Sect. B 26: 181–185.

Dias, T. H. V. T., dos Santos, J. M. F., Rachinhas, P. J. B. M., Santos, F. P., Conde, C. A. N., and Stauffer , A. D. 1997. Full-energy absorption of x-ray energies near the Xe Land K-photoionization thresholds in xenon gas detectors: Simulation and e xperimental results. J . Appl. Phys. 82: 2742–2753.

Dixon, A. J., Hood, S. T., and Weigold, E. 1978. Correlation effects and electron momentum distributions in the valence orbitals of eth ylene. J . Electron Spectrosc. Relat. Phenom. 14: 267–275.

Eberhardt, W., Haelbach, R. P., Iwan, M., Koch, E. E., and Kunz, G. 1976. Fine structure at the carbon 1s edge in v apors of simple h ydrocarbons. Chem. Phys. Lett . 40: 180–184.

Grosswendt, B. 1984. Statistical ¡uctuations of the ionization yield of low-energy electrons in He, Ne and Ar. J. Phys. B 17: 1391–1404.

Hayaishi, T., Morioka, Y., Kageyama, K., Watanabe, M., Suzuki, I. H., Mikuni, A., Isoyama, G., Asaoka, S., and Nakamura, M. 1984. Multiple photoionization of the rare gases in the XUV region. J. Phys. B 17: 3511–3527.

Henke, B. L., Gullikson, E. M., and Davis, J. C. 1993. x-Ray interactions: Photoabsorption, scattering, transmission, and re¡ection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54: 181–342.

Hitchcock, A. P. and Brion, C. E. 1977. Carbon K-shell excitation of C 2 H 2 , C 2 H 4 , C 2 H 6 and C 6 H 6 by 2.5 keV electron impact. J . Electron Spectrosc. Relat. Phenom. 10: 317–330.

Huber , R., Combecher, D., and Buger, G. 1985. Measurement of av erage energy required to produce an ion pair (W v alue) for lo w-energy ion in se veral g ases. Radiat. Res . 101: 237–251.

ICR U. 1979. Av erage energy required to produce an ion pair. ICRU Report 31. International Commission on Radiation Units and Measurements, Washington, D.C.

Inokuti, M. 1975. Ionization yields in g ases under electron irradiation. Radiat. Res . 64: 6–22.

Inokuti, M., Douthat, D. A., and Rau, A. R. P. 1980. Statistical ¡uctuations in the ionization yield and their relation to the electron de gradation spectrum. Phys. Re v. A 22: 445–453.

Jahoda, K. and McCammon, D. 1988. Proportional counters as low energy photon detectors. Nucl. Instrum. Method Phys. Res. A 272: 800–813.

Kato, M., Morishita, Y., Oura, M., Yamaoka, H., Tamenori, Y., Okada, K., Matsudo, T., Gejo, T., Suzuki, I. H., and Saito, N. 2007. Absolute photoionization cross sections with ultra-high energy resolution for Ar, Kr, Xe and N 2 in the inner-shell ionization regions. J. Electron Spectrosc. Relat. Phenom. 160: 39–48.

Kato, M., Suzuki, I. H., Nohtomi, A., Morishita, Y., Kurosawa, T., and Saito, N. 2010. Photon W-value of dry air determined using a cryogenic radiometer combined with a multi-electrode ion chamber for soft X-rays. Radiat. Phys. Chem . 79: 397–404.

Ke y, R. B., van der Leeuw, Ph. E., and van der Wiel, M. J. 1977. Ionic fragmentation and post-collision interaction in the Auger decay of carbon-K ionized CO. J . Phys. B 10: 2521–2529.

Kimura, K., Katsumata, S., Achiba, Y., Yamazaki, T., and Iwata, S. 1981. Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules. Japan Scienti�c Societies Press, Tokyo, Japan.

Kimura, M., Kowari, K., Inokuti, M., Krajcar-Bronic, I., Srdoc, D., and Obelic, B., 1991. Theoretical study of W v alues in h ydrocarbon g ases. Radiat. Res . 125: 237–242.

King, G. C., Tronc, M., Read, F. H., and Bradford, R. C. 1977. An investigation of the structure near the L 2,3 edges of argon, the M 4,5 edges of krypton and the N 4,5 edges of xenon using electron impact with high resolution. J . Phys. B 10: 2479–2495.

K owalski, T. Z., Smith, A., and Peacock, A. 1985. Fano factor implications from gas scintillation proportional counter measurements. Nucl. Instrum. Method Phys. Res. A 279: 567–572.

Kowari, K., Kimura, M., and Inokuti, M. 1989. Electron degradation and yields of initial products: V. Degradation spectra, the ionization yield, and the Fano factor for argon under electron irradiation. Phys. Rev. A 39: 5545–5553.

Krajcar-Bronic, I. 1998. W values and Fano factors for electrons in rare gases and rare gas mixtures. Hoshasen (Ionizing Radiation) (Tokyo) 24: 101–125. Krajcar -Bronic, I. and Srdoc, D. 1994. A comparison of calculated and measured W values in tissue-equivalent gas mixtures. Radiat. Res . 137: 18–24.

Krajcar -Bronic, I., Srdoc, D., and Obelic, B. 1988. The mean energy required to form an ion pair for low-energy photons and electrons in polyatomic g ases. Radiat. Res . 115: 213–222.

Lie gener, G. M. 1985. Calculations of the Auger spectra of eth ylene and acetylene. Chem. Phys . 92: 97–101.

M iller, M. S. and Boring, J. W. 1974. Total inelastic energy loss by heavy ions stopped in a gas. Phys. Rev. A 9: 2421–2433.

Monteiro, C. M. B., Simoes, P. C. P. S., Veloso, J. F. C. A., dos Santos, J. M. F., and Conde, C. A. N. 2003. Energy non-linearity effects in argon gaseous detectors in the region of the Ar K-absorption edge: Experimental results. Nucl. Instrum. Method Phys. Res. A 505: 233–237.

Morishita, Y., Saito, N., and Suzuki, I. H. 2005. Comparison of the absolute soft x-ray intensity between a cryogenic radiometer and an ion chamber . J . Electron Spectrosc. Relat. Phenom. 144/147: 1071–1073.

Okada, K., Kosugi, M., Fujii, A., Nagaoka, S., Ibuki, T., Samori, S., Tamenori, Y., Ohashi, H., Suzuki, I. H., and Oh no, K. 20 05. Va riation in re sonant Au ger yi elds in to th e 1 G 4 nl states of Kr across the L 3 threshold. J. Phys. B 38: 421–431.

P ansky, A., Breskin, A., and Chechik, R. 1996. A new technique for studying the Fano factor and the mean energy per ion pair in counting g ases. J . Appl. Phys. 79: 8892–8898.

P ansky, A., Breskin, A., and Chechik, R. 1997. Fano factor and the mean energy per ion pair in counting gases at lo w x-ray ener gies. J . Appl. Phys. 82: 871–877.

Pireaux, J. J., Svensson, S., Basillier, E., Malmqvist, P.-A., Gelius, U., Caudano, R., and Siegbahn, K. 1976. Core-electron relaxation energies and valence-band formation of linear alkanes studies in the gas phase by means of electron spectroscop y. Phys. Re v. A 14: 2133–2145.

Pushkin, K. and Snowden-If ft, D. 2009. Measurements of W-v alue, mobility and gas gain in electroneg ative gaseous CS 2 and CS 2 gas mixtures. Nucl. Instrum. Method Phys. Res. A 606: 569–577.

Rabus, H., Persch, V., and Ulm, G. 1997. Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as th e hi gh-accuracy pr imary de tector st andard in th e ul traviolet, va cuum-ultraviolet, an d so ft-x-ray sp ectral ra nges. Ap pl. Opt. 36 : 54 21–5440.

Radzig, A. A. and Smirnov , B. M. 1985. Reference Data on Atoms, Molecules, and Ions. Springer-V erlag, Berlin, German y.

Rye, R. R., Madey , T. E., Houston, J. E., and Hollow ay, P. H. 1978. Chemical-state effects in Auger electron spectroscopy. J . Chem. Phys. 69: 1504–1512.

Rye, R. R., Jennison, D. R., and Houston, J. E. 1980. Auger spectra of alkanes. J. Chem. Phys. 73: 4867–4874.

Saito, N. and Suzuki, I. H. 1986. Fine structure near the C K-edge in the photon W-value of methane. Chem. Phys. 108: 327–333.

S aito, N. and Suzuki, I. H. 1992. Multiple photoionization in Ne, Ar, Kr and Xe from 44 eV to 1,300 eV. Int. J. Mass Spectrom. Ion Process. 115: 157–168.

Saito, N. and Suzuki, I. H. 1994. Shake-off processes in photoionization and Auger transition for rare gases irradiated by soft x-rays. Phys. Scr . 49: 80–85.

Saito, N. and Suzuki, I. H. 1997. Double Auger probabilities from Xe 4d j , Kr 3d j , and Ar 2p j hole states. J. Phys. Soc. Jpn. 66: 1979–1985.

Saito, N. and Suzuki, I. H. 1998. Absolute soft x-ray measurements using an ion chamber. J. Synchrotron Radiat. 5: 869–871.

Saito, N. and Suzuki, I. H. 1999. Absolute ¡uence rates of soft x-rays using a double ion chamber. J. Electron Spectrosc. Relat. Phenom. 101/103: 33–37.

Saito, N. and Suzuki, I. H. 2001a. Photon W-v alue for Ar in the sub-keV x-ray region. Radiat. Phys. Chem. 60: 291–296. Saito, N. and Suzuki, I. H. 2001b. Photon W value for krypton in the M-shell transition region. Radiat. Res. 156: 317–323.

Samson, J. A. R. and Haddad, G. N. 1976. Average energy loss per ion pair formation by photon and electron impact on x enon between threshold and 90 eV. Radiat. Res . 66: 1–10.

Santos, F. P., Dias, T. H. V. T., Stauffer, A. D., and Conde, C. A. N. 1991. Variation of energy linearity and w value in gaseous xenon radiation detectors for x-rays in the 0.1 to 25 keV energy range: A Monte Carlo simulation study . Nucl. Instrum. Method Phys. Res. A 307: 347–352.

Schmidt, V. 1997. Electron Spectrometry of Atoms Using Synchrotron Radiation. Cambridge University Press, Cambridge, U.K.

Smith, B. G. R. and Booz, J. 1978. Experimental results on W-values and transition of low energy electrons in gases. In Pr oceedings of the 6th Symposium on Microdosimetry, London, U.K., pp. 759–775.

Srdoc, D. 1973. Dependence of the energy per ion pair on the photon energy below 6 keV in various gases. Nucl. Instrum. Method 108: 327–332.

Srdoc, D. and Obelic, B. 1976. Measurement of W at very low photon energy. In Proceedings of the 5th Symposium on Microdosimetry, Lux embourg, German y, pp. 1007–1021.

Suzuki, I. H. and Saito, N. 1985a. Energy dependence of W-value of methane in the ultra-soft x-ray region. Radiat. Phys. Chem. 26: 305–307.

Suzuki, I. H. and Saito, N. 1985b. Effect of inner-shell excitation on the W-value of propane. Bull. Chem. Soc. Jpn. 58: 3210–3214.

Suzuki, I. H. and Saito, N. 1987. Oscillatory variation near the C K-edge in the photon W-value of ethylene. Bull. Chem. Soc. Jpn. 60: 2989–2992.

Suzuki, I. H. and Saito, N. 1992. γ-V alue of rare gases for soft x-ray absolute measurement (in Japanese). Bull. Electrotec h. Lab. 56: 688–711.

Suzuki, I. H. and Saito, N. 2001. Photon W-v alue for Xe in the soft x-ray region. J. Electron Spectrosc. Relat. Phenom. 119: 147–153.

Suzuki, I. H. and Saito, N. 2002. Photoabsorption cross-section for Kr in the sub-keV energy region. J. Electron Spectrosc. Relat. Phenom. 123: 239–245.

Suzuki, I. H. and Saito, N. 2005. Total photoabsorption cross-section of Ar in the sub-keV energy region. Radiat. Phys. Chem. 73: 1–6.

Suzuki, I. H., Tamenori, Y., Morishita, Y., Okada, K., Oyama, T., Yamamoto, K., Tabayashi, K., Ibuki, T., and Moribayashi, K. 2006. Formation of multi-charged Kr ions through photoionization of 2p electrons studied with a coincidence technique. Radiat. Phys. Chem . 75: 1778–1783.

Sv ensson, S., Eriksson, B., Martensson, N., Wendin, G., and Gelius, U. 1988. Electron shake-up and correlation sa tellites an d co ntinuum sh ake-off di stributions in xray ph otoelectron sp ectra of th e ra re ga s at oms. J. Electron Specrosc. Relat. Phenom. 47: 327–384.

T amenori, Y., Okada, K., Tanimoto, S., Ibuki, T., Nagaoka, S., Fujii, A., Haga, Y., and Suzuki, I. H. 2004. Branching ratios of multiply charged ions formed through photoionization of Kr 3d, 3p and 3s sub-shells using a coincidence technique. J . Phys. B 37: 117–129.

T omimasu, T., Noguchi, T., Sugiyama, S., Yamazaki, T., Mikado, T., and Chiwaki, M. 1983. A 600-MeV ETL electron storage ring. IEEE Trans. Nucl. Sci. NS-30: 3133–3136.

Tsunemi, H., Hayashida, K., Torii, K., Tamura, K., Miyata, E., Murakami, H., and Ueno, S. 1993. Nonlinearity at the K-absorption-edge in the Xe-�lled gas proportional counter. Nucl. Instrum. Method Phys. Res. A 336: 301–303.

Ungier , L. and Thomas, T. D. 1984. Resonance-enhanced shakeup in near-threshold core excitation of CO and N 2 . Phys. Rev. Lett. 53: 435–438.

Ungier, L. and Thomas, T. D. 1985. Near threshold excitation of KVV Auger spectra in carbon monoxide using electron–electron coincidence spectroscop y. J . Chem. Phys. 82: 3146–3151.

W aibel, E. and Grosswendt, B. 1978. Determination of W values and backscatter coef�cients for slow electrons in air . Radiat. Res . 76: 241–249. W aibel, E. and Grosswendt, B. 1983. Spatial energy dissipation pro�les, W values, backscatter coef�cients, and ranges for lo w-energy electrons in methane. Nucl. Instrum. Method 211: 487–498.

W aibel, E. and Grosswendt, B. 1991. Degradation of low-energy electrons in carbon dioxide; Energy loss and ionization. Nucl. Instrum. Method Phys. Res. B 53: 239–250.

W ight, G. R. and Brion, C. E. 1974. K-shell excitation of CH 4 , NH 3 , H 2 O, CH 3 OH, CH 3 OCH 3 and CH 3 NH 2 by 2.5 keV electron impact. J . Electron Spectrosc. 4: 25–42. 7 Chapter 7. Positron Annihilation in Radiation Chemistry

Anderson, C. D. 1933. The positive electron. Phys. Rev. 43: 491–494. http://link.aps.org/abstract/PR/v4355/p491

Brandt, W., Coussot, G., and Paulin, R. 1969. Positron annihilation and electronic lattice structure in insulator crystals. Phys. Re v. Lett. 23: 522–524.

Brauer , C. S., Sedo, G., Grumstrup, E. M., Leopold, K. R., Marshall, M. D., and Leung, H. O. 2004. Effects of partially quenched orbital angular momentum on the microw ave spectrum and magnetic hyper�ne splitting in the OH–w ater comple x. Chem. Phys. Lett . 401(4–6): 420–425.

Brusa, R. S., Duarte Naia, M., Margoni, D., and Zecca, A. 1995. Positron mobility in polyethylene in the 60–400 K temperature range. Appl. Phys. A 60: 447–453.

Cassidy , D. B., Deng, S. H. M., and Mills, A. P. 2007. Evidence for positronium molecule formation at a metal surface. Phys. Re v. A 76: 062511.

Castellaz, P., Major, J., Mujica, C., Schneider, H., Sebger, A., Siegle, A., Stoll, H., and Billard, I. 1996. Chemical reactions of positronium studied by age-momentum correlation (AMOC) using a relativistic positron beam. J . Radioanal. Nucl. Chem., Articles, 210(2): 457–467.

Chalermkarnnon, P., Shishido, I., Yug a, M., Araki, H., and Shirai, Y. 2002. b+-g Coincidence positron lifetime spectrometer with positron energy selection by electromagnetic lens. J. Jpn. Inst. Met. 66(10): 1004–1008.

Consolati, G., Gerola D., and Quasso, F. 1991. An unusual three-quantum yield from positrons annihilated in benzene. J . Phys.: Condens. Matter 3: 7739–7742.

Consolati, G., Gerola, D., and Quasso, F . 1992. A positron annihilation study in some amorphous scintillators. Z. Phys. B: Condens. Matter 88: 131–133.

Coussot, G. 1970. Contribution a l´etudu de la structure electronique des isolants par annihilation du positon. PhD thesis, F aculté des Sciences d’Orsay , Uni versite P aris-Sud, Orsay , France.

Cro well R. A. and Bartels D. M. 1996. H 2 O/D 2 O isotope effect in geminate recombination of the hydrated electron. J . Phys. Chem. 100: 17713–17715.

Dirac, P . A. M. 1930. Annihilation of electrons and protons. Pr oc. Camb. Philos. Soc. 26: 361–375.

Dull, T. L., Frieze, W. E., Gidley, D. W., Sun J. N., and Yee, A. F. 2001. Determination of pore size in mesoporous thin �lms from the annihilation lifetime of positronium. Phys. Chem. B 105: 4657–4662.

Duplatre, G. and Jonah, C. D. 1985. Reactions of electrons in high-concentration water solutions—A comparison between pulse-radiolysis and positron annihilation lifetime spectroscopy data. Radiat. Phys. Chem. 24(5/6): 557–565.

Eldrup, M. 1976. Vacancy migration and v oid formation in g-irradiated ice. J . Chem. Phys. 64: 5283–5290.

Eldrup, M., Lightbody, D., and Sherwood, J. 1980. Studies of phase transformation in molecular crystals using the positron annihilation technique. F araday Discuss. Chem. Soc. 69: 175.

Eldrup, M., Lightbody, D., and Sherwood, J. N. 1981. The temperature dependence of positron lifetimes in solid pi valic acid. Chem. Phys . 63: 51–58.

Fukaya, Y., Kawasuso, A., and Ichimiya, A. 2009. Inelastic scattering processes in re¡ection high-energy positron dif fraction from a Si(111)-7×7 surf ace. Phys. Re v. B 79: 193310.

Gee, N. and Freeman, G. R. 1989. Electron and ion mobility in carbon disul�de liquid from 163 to 501 K. Chem. Phys. 90(10): 5399–5405.

Gilbert, S. J., Kurz, C., Greaves, R. G., and Surko, C. M. 1997. Creation of a monoenergetic pulsed positron beam. Appl. Phys. Lett . 70: 1944–1946.

Gilbert, S. J., Barnes, L. D., Sullivan, J. P., and Surko, C. M. 2002. Vibrational-resonance enhancement of positron annihilation in molecules. Phys. Re v. Lett. 88(4): 043201.

Go worek, T. 2007. Free v olumes in solids under high pressure. Radiat. Phys. Chem . 76: 318–324.

Hirade, T. 1995. Positronium formation in H 2 O, D 2 O and HDO mixture. Mater. Sci. Forum 175–178: 675–678.

Hirade, T. 1996. The study of the electron-positron pair in CS 2 . Bull. Chem. Soc. Jpn. 69(8): 2153–2157.

Hirade, T. 2003. Positronium formation in lo w temperature polymers. Radiat. Phys. Chem . 68: 375–379.

Hirade, T. 2007. Connections between radiation and positronium chemistry . Radiat. Phys. Chem . 76: 84–89.

Hirade, T. 2009a. Age-momentum correlation measurements of positron annihilation in water: Possibility of quantum beats on ortho-positronium reactions. Chem. Phys. Lett . 480: 132–135.

Hirade, T. 2009b . Positronium formation in room temperature ionic liquids. Mater . Sci. Forum 607: 232–234.

Hirade, T. and Mogensen, O. E. 1993a. Dependence of the yield of the short-lived ortho-Ps state on the concentration of CCl 4 in hexane. Chem. Phys. 170: 249–256.

Hirade, T. and Mogensen, O. E. 1993b. Effects of scavengers on short-lived ortho-Ps. J. Phys. IV C4, II, 3: 127–130.

Hirade, T. and Mogensen, O. E. 1994. Secondary reaction of Ps in the positron spur. Hyper±ne Interact. 84: 491–498.

Hirade, T., Wang, C. L., Maurer, F. H. J., Eldrup, M., and Pedersen, N. J. 1998. Visible light effect on positronium formation in PMMA at low temperature. In Abstract book for The 35th Annual Meeting on Radioisotopes in the Physical Science and Industries, June 30–July 1, Tokyo, Japan, p. 89.

Hirade, T., Maurer, F. H. J., and Eldrup, M. 2000. Positronium formation at low temperatures: The role of trapped electrons. Radiat. Phys. Chem . 58: 465–471.

Hirade, T., Suzuki, N., Saito, F., and Hyodo, T. 2007. Reactions of free positrons in low temperature polyethylene-delayed Ps formation and positron localization. Phys. Status Solidi (c) 4, 10: 3714–3717.

Hyodo, T. and Takahashi, Y. 1977. Evidence for positronium-like states in NaF and NaCl. J. Phys. Soc. Jpn. 42: 1065–1066.

Ito, K., Nakanishi, H., and Ujihira, Y. 1999. Extension of the equation for the annihilation lifetime of orthopositronium at a ca vity lar ger than 1 nm in radius. J . Phys. Chem. B 103: 4555–4558.

Jacobsen, F. M., Mogensen, O. E., and Trumpy, G. 1982. Correlation of positronium yield with excess electron mobility in liquid neopentane. Chem. Phys . 69: 71–80.

Jansen, P. and Mogensen, O. E. 1977. Further studies of the spur process of positronium formation in mixtures of or ganic liquids. Chem. Phys . 25: 75–86.

Jean, Y. C. 1993. Positron spectroscopy of solids. In Proceedings of the International School of Physics “” Course CXXV , A. Dupasquier and A. P . Mills Jr . (eds), Varena on Lak e Como, pp. 569–571.

Jonah, C. D. and Chernovitz, A. C. 1990. The mechanism of electron thermalization in H 2 O, D 2 O, and HDO. Can. J. Phys. 68: 935–939.

Kasai, J., Hyodo, T., and Fujiw ara, K. 1988. Positronium in alkali halides. J . Phys. Soc. Jpn. 57: 329–341.

Katoh, R., Yoshida, Y., Katsumura, Y., and Takahashi, K. 2007. Electron photodetachment from iodide in ionic liquids through char ge-transfer-to-solvent (CTTS) band e xcitation. J . Phys. Chem. B 111: 4770–4774.

Ka wasuso, A. and Okada, S. 1998. Re¡ection high energy positron diffraction from a Si (111) surface. Phys. Rev . Lett. 81: 2695–2698.

Kindl, P. and Reiter, G. 1987. Investigations on the low-temperature transitions and time effects of branched polyethylene by the positron lifetime technique. Phys. Status Solidi (a) 104: 707–713.

K obayashi, Y. 1992. Pressure dependence of ortho-positronium lifetimes in molecular liquids. Ber. BunsenGes.:-Phys. Chem. Chem. Phys. 96, 12: 1869–1872.

K omuro, Y., Hirade, T., Suzuki, R., Ohdaira, T., and Muramatsu, M. 2007. Positronium formation in fused quartz: Experimental e vidence of delayed formation. Radiat. Phys. Chem . 76: 330–332. K otera, K., Saito, T ., and Yamanaka, T . 2005. Measurement of positron lifetime to probe the mixed molecular states of liquid w ater. Phys. Lett. A 345: 184–190.

Le vay, B. and Mogensen, O. E. 1977. Correlation between the inhibition of positronium formation by scavenger molecules, and chemical reaction rate of electrons with these molecules in nonpolar liquids, J. Phys. Chem. 81: 373–377.

Le vay B. and Mogensen, O. E. 1980. Positron spur reactions with excess electrons and anions in liquid organic mixtures of electron acceptors. Chem. Phys . 53: 131–139.

Milne, P . A. 2006. Distrib ution of positron annihilation radiation. Ne w Astron. Rev. 50, 7–8: 548–552.

Mogensen, O. E. 1974. Spur reaction model of positronium formation. J . Chem. Phys. 60: 998–1004.

Mogensen, O. E. 1994. Positron states between positronium and “free positron” states in condensed matter. Hyper±ne Interactions, 84, 1: 377–387.

Mogensen, O. E. 1995. P ositron Annihilation in Chemistry. Springer , Berlin, German y.

Mogensen, O. E. and Eldrup, M. 1977. Positronium Bloch function, and trapping of positronium in v acancies, in ice. Risø Report No. 366.

M ogensen, O. E. and Eldrup, M. 1978. Vacancies in pure ice studied by positron annihilation techniques. J. Glaciol. 21, 85: 85–99.

Mogensen, O. E. and Jacobsen, F. M. 1982. Positronium yields in liquids determined by lifetime and angular correlation measurements. Chem. Phys . 73: 223–234.

Mogensen, O. E., Kvajic, G., Eldrup, M., and Milosevic-Kvajic, M. 1971. Angular correlation of annihilation photons in ice single crystals. Phys. Re v. B 4: 71–73.

Ohdaira, T., Suzuki, R., Mikado, T., Ohgaki, H., Chiwaki, M., and Yamazaki, T. 1997. An apparatus for highresolution positron-annihilation induced Auger-electron spectroscopy using a time-of-¡ight technique. Appl. Surf. Sci. 116: 177–180.

Ore, A. 1949. Univ . of Bergen Aarb. Naturvit. Rekke 9.

Oshima, N., Suzuki, R., Ohdaira, T., Kinomura, A., Narumi, T., Uedono, A., and Fujinami, M. 2009. Rapid three-dimensional imaging of defect distributions using a high-intensity positron microbeam. Appl. Phys. Lett. 94: 194104.

P aul, D. A. L. and Saint-Pierre, L. 1963. Rapid annihilations of positrons in polyatomic g ases. Phys. Re v. Lett. 11: 493–496.

Saito, H., Nagashima, Y., Kurihara, T., and Hyodo, T. 2002. A new positron lifetime spectrometer using a fast digital oscilloscope and BaF 2 scintillators. Nucl. Instrum. Methods Phys. Res. A 487: 612–617.

Siegle, A., Stoll, H., Castellaz, P., Major, J., Schneider, H., and Seeger, A. 1997. Two-dimensional analysis of positron age-momentum correlation (AMOC) data. Appl. Surf . Sci. 116: 140–144.

Stepano v, S. V., Byakov, V. M., and Kobayashi, Y. 2005. Positronium formation in molecular media: The effect of the e xternal electric �eld. Phys. Re v. B 72: 054205.

Stepano v, S. V., Byakov, V. M., and Hirade, T. 2007. To the theory of Ps formation. New interpretation of the e lifetime spectrum in w ater. Radiat. Phys. Chem . 76: 90–95.

Stoll, H., Koch, M., Lauff, U., Maier, K., Major, J., Schneider, H., Seeger , A., and Siegle, A. 1995. Annihilation of incompletely thermalized positronium studied by age-momentum correlation. Appl. Surf . Sci. 85: 17–21.

Suzuki, R., Kobayashi, Y., Mikado, T., Ohgaki, H., Chiwaki, M., Yamazaki, T., and Tomimasu, T. 1991. Slow positron pulsing system for variable energy positron lifetime spectroscopy. Jpn. J. Appl. Phys. 30: L532–L534.

Suzuki, R., Ohdaira, T., and Mikado, T. 2000. A positron lifetime spectroscopy apparatus for surface and nearsurface positronium e xperiments. Radiat. Phys. Chem . 58, 5–6: 603–606.

Suzuki, N., Hirade, T., Saito, F., and Hyodo, T. 2003. Positronium formation reaction of trapped electrons and free positrons: Delayed formation studied by AMOC. Radiat. Phys. Chem . 68: 647–649.

T ao, S. J. 1972. Positronium annihilation in molecular substances. J . Chem. Phys. 56: 5499–5510.

V an House, J. and Rich, A. 1988. Arthur, �rst results of a positron microscope. Phys. Re v. Lett. 60: 169–172.

W ang, C. L., Hirade, T., Maurer, F. H. J., Eldrup, M., and Pedersen, N. J. 1998. Free-volume distribution and positronium formation in amorphous polymers: Temperature and positron-irradiation-time dependence. J. Chem. Phys. 108 11: 4654–4661.

Y oung, J. A. and Surko, C. M. 2009. Resonant positron annihilation on molecules. Mater. Sci. Forum 607: 9–16.

Zgardzinska, B., Hirade, T., and Goworek, T. 2007. Positronium formation on trapped electrons in n-heptadecane. Chem. Phys. Lett. 446: 309–312. 8 Chapter 8. Muon Interactions with Matter

Althorpe, S. C., Alonso, F. F., Bean, B. D. et al. 2002. Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction. Nature 416: 67–70.

Arseneau, D. J., Fleming, D. G., Sukhorukov, O. et al. 2009. The muonic He atom and a preliminary study of the 4 Heμ + H 2 reaction. Physica B 404: 946–949.

Bakule, P., Matsuda, Y., Miyake, Y. et al. 2008. Pulsed source of ultra low energy positive muons for nearsurface μSR studies. Nucl. Instrum. Meth. B. 266: 335–346.

Bakule, P., Matsuda, Y., Miyake, Y., and Nagamine, K. 2009a. Prospects for ultra-low-energy muon beam at J-PARC. Nucl. Instrum. Meth. A 600: 35–37.

Bakule, P., Sukhorukov, O., Matsuda, Y. et al. 2009b. Toward the �rst study of chemical reaction dynamics of Mu with vibrational-state-selected reactants in the gas phase. Physica B 404: 1013–1016.

Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O − ) in aqueous solution. J. Phys. Chem. Ref. Data. 17: 513–886.

Chu, S., Mills, A. Jr., Yodh, A. G. et al. 1988. Laser excitation of the 1S 2S transition in muonium. Phys. Rev. Lett. 60: 101–104.

Clifford, A. A., Zhu, S., Smart, N. G. et al. 2001. Modelling of the extraction of uranium with supercritical carbon dioxide. J. Nucl. Sci. Tech. 38: 433–438.

Cormier, P., Arseneau, D. J., Brodovitch, J. C. et al. 2008. Free radical chemistry in supercritical carbon dioxide. J. Phys. Chem. A. 112: 4593–4600.

Cormier, P., Taylor, B. A., and Ghandi, K. 2009. Hyper�ne interactions of a muoniated ethyl radical in supercritical CO 2 . Physica B 404: 930–932.

Dilger, H., Roduner, E., Stolmar, M. et al. 1997. Why ALC μSR is superior for gas-phase radical spectroscopy. Hyper±ne Interact. 106: 137–142.

Eshchenko, D. G., Storchak, V. G., Brewer, J. H. et al. 2000. Muonium formation in condensed neon and argon. Physica B 289: 418–420.

Eshchenko, D. G., Storchak, V. G., Brewer, J. H. et al. 2001. Muonium diffusion in solid CO 2 . J. Low Temp. Phys. 27: 854–857.

Eshchenko, D. G., Storchak, V. G., Brewer J. H. et al. 2002. Excess electron transport and delayed muonium formation in condensed rare gases. Phys. Rev . B 66: 035105–035121.

Eshchenko, D. G., Storchak, V. G., Brewer, J. H. et al. 2003. Excess electron transport in cryoobjects. J. Low Temp. Phys. 29: 185–195.

Fleming, D. G. and Senba, M. 1992. In Perspectives in Meson Science, T. Yamazaki, K. Nakai, and K. Nagamine (eds.), pp. 219–264. Amsterdam, the Netherlands: North Holland Press.

Garner , D. M., Fleming, D. G., Arseneau, D. J. et al. 1990. Muonium addition reactions in the gas phase: Quantum tunnelling in Mu + C 2 H 4 and Mu + C 2 D 4 . J. Chem. Phys. 93: 1732–1740.

Ghandi, K. and Percival, P. W. 2003. Prediction of rate constants for reactions of the hydroxyl radical in water at high temperatures and pressures. J . Phys. Chem. A 107: 3005–3008.

Ghandi, K., Brodovitch, J. C., Addison-Jones, B. et al. 2000. Hyper�ne coupling constants of muonium in sub and supercritical w ater. Physica B 289: 476–481.

Ghandi, K., Brodovitch, J. C., Addison-Jones, B. et al. 2002. Near-diffusion-controlled reactions of muonium in sub- and supercritical w ater. PCCP 4: 586–595.

Ghandi, K., 2002. Muonium chemistry in suband supercritical water. PhD thesis, Simon Fraser University, Burnaby, British Columbia.

Ghandi, K., Addison-Jones, B., Brodovitch, J. C. et al. 2003. Enolization of acetone in superheated water detected via radical formation. J . Am. Chem. Soc. 125: 9594–9595.

Ghandi, K., Arseneau, D. J., Bridges, M. D., and Fleming, D. G. 2004. Muonium formation as a probe of radiation chemistry in sub- and supercritical carbon dioxide. J . Phys. Chem. A 52: 11613–11625.

Ghandi, K., Cottrell, S. P., Fleming, D. G., and Johnson, C. 2006. The �rst report of a muoniated free radical formed from reaction of Mu with Br 2 . Physica B 374: 303–306.

Ghandi, K., Clark, I. P., Lord, J. S., and Cottrell, S. P. 2007. Laser-muon spin spectroscopy in liquids—A technique to study the e xcited state chemistry of transients. PCCP 9: 353–359.

Ghandi, K., Cormier, P., and Alcorn, C. 2010. Effects of density inhomogeneity in near critical ¡uids on Muonium formation. Radiat. Phys . Chem ., submitted.

Gorelkin, V. N., Soloviev, V. R., Konchakov, A. M., and Baturin, A. S. 2000. Muonium and muonium-like systems formation in spur model. Physica B 289: 409–413.

Harding, L. B., Troe, J., and Ushako v, V. G. 2000. Classical trajectory calculations of the high pressure limiting rate constants and of speci�c rate constants for the reaction H + O 2 → HO 2 : Dynamic isotope effects between tritium + O 2 and muonium + O 2 . Phys. Chem. Chem. Phys. 2: 631–642.

Harshmann, D. R., Mills, A. Jr., Beveridge, J. L. et al. 1986a. Generation of slow positive muons from solid rare-gas moderators. Phys. Re v. B 36: 8850–8853.

Harshmann, D. R., Warren, J. B., Bev eridge, J. L. et al. 1986b. Observation of low-ener gy μ + emission from solid surf aces. Phys. Re v. Lett. 56: 2850–2853.

H arvey, A. H., Peskin, A. P., and Klein, S. A. 2001. NIST/ASME Steam Properties Database: version 2.2. NIST Standard Reference Database 10. Gaithersburg, MD: National Institute of Standards and Technology.

Hatano, Y. 2003. Spectroscopy and dynamics of molecular superexcited states. Aspects of primary processes of radiation chemistry . Radiat. Phys. Chem . 67: 187–198.

Herzber g, G. and Mon�ls, A. 1960. The dissociation energies of the H 2 , HD, and D 2 molecules. J. Mol. Spectrosc. 5: 482–498.

Himmer , U. and Roduner, E. 2000. The addition reaction of X to O 2 (X = Mn, H, D): Isotope effects in intra- and intermolecular ener gy transfer . PCCP 2: 339–347.

Inokuti, M. 1971. Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Re v. Mod. Phys. 43: 297–347.

Jackson, T. J., Riseman, T. M., Forgan, E. M. et al. 2000. Depth-resolved pro�le of the magnetic �eld beneath the surf ace of a superconductor with a fe w nm resolution. Phys. Re v. Lett. 84: 4958–4961.

Johnson, C., Cottrell, S. P ., Ghandi, K., and Fleming, D. G. 2005. Muon implantation in inert g ases studied by radio frequenc y spectroscop y. J . Phys. B: At. Mol. Opt. Phys. 38: 119–134.

K empton, J. R., Senba, M., Arseneau, D. J. et al. 1991. Hot muonium and muon spur processes in nitrogen and ethane. J . Chem. Phys. 94: 1046–1059.

Khasano v, R., Eshchenko, D. G., Luetkens, H. et al. 2004. Direct observation of the oxygen isotope effect on the in-plane magnetic �eld penetration depth in optimally doped YBa 2 Cu 3 O 7 -delta. Phys. Rev. Lett. 92: 057602–057604.

Kosarev, E. L. and Krasnoperov, E. P. 1999. Kinetics of muonium formation in liquid helium. JETP Lett. 69: 273–280.

Kruse, A. and Dinjus, E. 2007. Hot compressed water as reaction medium and reactant properties and synthesis reactions. J . Supercrit. Fluids 39: 362–380.

K usalik, P . G. and Svishche v, I. M. 1994. The spatial structure in liquid w ater. Science 265: 1219–1221.

Lauzon, J. M., Arseneau, D. J., Brodovitch, J. C. et al. 2008. The formation of non-persistent free radicals in tetra-alkyl phosphonium ionic liquids. PCCP 10: 5957–5962.

Lemmon, E. W., McLinden, M. O., and Friend, D. J. 1998. NIST Chemistry Webbook, NIST Standard Reference Database. Gaithersb urg, MD: National Institute of Standards and Technology.

Liew, C. C., Inomata, H., and Arai, K. 1998. Flexible molecular models for molecular dynamics study of near and supercritical w ater. Fluid Phase Equilib . 144: 287–298.

Lossack, A. M., Roduner, E., and Bartels, D. M. 2001. Solvation and kinetic isotope effects in H and D abstraction reactions from formate ions by D, H and Mu atoms in aqueous solution. PCCP 3: 2031–2037.

Marques, J. M. C. and Varandas, J. C. 2001. On the high pressure rate constants for the H/Mu+O 2 addition reactions. PCCP 3: 505–507.

Matubayasi, N., Wakai, C., and Nakahara, M. 1997. Structural study of supercritical water.1. Nuclear magnetic resonance spectroscop y. J . Chem. Phys. 107: 9133–9140.

McClellan, H. E. and Oats, W. A. 1973. The solubility of hydrogen in rhodium, ruthenium, iridium and nickel. Acta Metall. 21: 181–185.

McK enzie, I. and Roduner, E. 2009. Using polarized muons as ultrasensitiv e spin labels in free radical chemistry . Naturwissensc haften, 96: 873–887.

Mesmer , R. E., Marshal, W. L., Palmer, D. A. et al. 1988. Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures. J . Solution Chem. 17: 699–718.

Me yer, V., Bagayev, S. N., Baird, P. E. G. et al. 2000. Measurement of the 1s-2s energy interval in muonium. Phys. Rev . Lett. 84: 1136–1139.

Mills, A. Jr., Imazato, J., Saitoh, S. et al. 1986. Generation of thermal muonium in vacuum. Phys. Rev. Lett. 56: 1463–1466.

Mishin, V. I., Fedoseye v, V. N., Kluge, H. J. et al. 1993. Chemically selectiv e laser ion-source for the Cernisolde online mass separator f acility. Nucl. Instrum. Meth. B 73: 550–560.

Miyak e, Y., Marangos, J. P., Shimomura, K. et al. 1995. Laser system for the resonant ionization of hydrogenlik e atoms produced by nuclear -reactions. Nucl. Instrum. Meth. B 95: 265–275.

Miyak e, Y., Shimomura, K., Mills, A. Jr., and Nagamine, K. 1997. Ultra slow muons generated by laser resonant ionization of thermal muonium produced by 500-MeV protons with hot tungsten. Hyper±ne Inter act. 106: 237–244.

Miyak e, Y., Shimomura, K., Mills, A. Jr. et al. 1999. Thermionic emission of hydrogen isotopes (Mu, H, D and T) from W and interpretation of a role of the hot W as an atomic hydrogen source. Surf. Sci. 433–435: 785–789.

Miyake, Y ., Shimomura, K., Matsuda, Y . et al. 2000. Construction of the experimental set-up for ultra slow muon generation by thermal Mu ionization method at RIKEN-RAL. Physica B 289–290: 666–669.

Miyak e, Y., Nakahara, K., Shimomura, K. et al. 2009. Ultra slow muon project at J-PARC, MUSE. AIP Conf . Proc. 1104: 47–52.

M oisseytsev, A. an d Si enicki, J. J. 20 08. Tr ansient ac cident an alysis of a su percritical ca rbon di oxide Br ayton cy cle en ergy co nverter co upled to an au tonomous le ad-cooled fa st re actor. Nu cl. Eng. Des. 23 8: 20 94–2105.

Morenzoni, E., Kottmann, F., Maden, D. et al. 1994. Generation of very slow polarized positiv e muons. Phys. Rev . Lett. 72: 2793–2797.

Morenzoni, E., Luetkens, H., Prokscha, T. et al. 2008. Depth-dependent spin dynamics of canonical spin-glass �lms: A lo w-energy muon-spin-rotation study . Phys. Re v. Lett. 100: 147205–147601.

Mozumder , A. 1999. Fundamentals of Radiation Chemistry . London, U.K.: Academic Press.

Nag amine, K. 1981. Pulsed MU-SR f acility at the KEK booster . Hyper±ne Inter act. 8: 787–795.

Nag amine, K., Miyake, Y., Shimomura, K. et al. 1995. Ultraslow positiv e-muon generation by laser ionization of thermal muonium from hot tungsten at primary proton beam. Phys. Re v. Lett. 74: 4811–4814.

No yori, R. (ed.) 1999. Supercritical ¡uids. Chem. Re v. 99: 353–354.

P an, J. J., Arseneau, D. J., Senba, M., Fleming, D. G., Himmer, U., and Suzuki, Y. 2000. Measurements of Mu + NO termolecular kinetics up to 520 bar: Isotope ef fects and the Troe theory . PCCP 2: 621–629.

P an, J. J., Arseneau, D. J., Senba, M. et al. 2006. Termolecular kinetics for the Mu+CO+M recombination reaction: A unique test of quantum rate theory . J . Chem. Phys. 1: 125. Perci val, P . W. 1990. Current trends in muonium chemistry . Hyper±ne Inter act. 65: 901–911.

Perci val, P. W., Brodovitch, J. C., Ghandi, K. et al. 1999. Muonium in suband supercritical water . PCCP 1: 4999–5004.

Percival, P. W., Ghandi, K., Brodovitch, J. C. et al. 2000. Detection of muoniated organic free radicals in supercritical w ater. PCCP 2: 4717–4720.

Perci val, P. W., Brodovitch, J. C., Arseneau, D. J. et al. 2003. Formation of the muoniated ethyl radical in the gas phase. Physica B 326: 72–75.

Percival, P. W., Brodovitch, J. C., Ghandi, K. et al. 2005. Organic free radicals in superheated water studied by muon spin spectroscop y. J . Am. Chem. Soc. 127: 13714–13719.

Perci val, P. W., Brodovitch, J. C., Ghandi, K. et al. 2007. H atom kinetics in superheated water studied by muon spin spectroscop y. Radiat. Phys. Chem . 76: 1231–1235.

Pifer , A. E., Bowen, T., and Kendall, K. R. 1976. A high stopping density Mu + beam. Nucl. Instrum. Meth. 135: 39–46.

Pimblott, S. M. and LaVerne, J. A. 1997. Stochastic simulation of the electron radiolysis of water and aqueous solutions. J . Phys. Chem. A 101: 5828–5838.

P rokscha, T., Morenzoni, E., Deiters, K. et al. 2008. The new μE4 beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Meth. A 595: 317–331.

Pu, J. and Truhlar, D. G. 2002. Validation of variational transition state theory with multidimensional tunneling contributions against accurate quantum mechanical dynamics for H + CH 4 → H 2 + CH 3 in an extended temperature interv al. J . Chem. Phys. 117: 1479–1481.

Rayner , C. M. 2007. The potential of carbon dioxide in synthetic organic chemistry. Org. Process Res. Dev. 11: 121–132.

Riddick, J. A., Bunger, W. B., and Sakaro, T. K. 1986. Organic Solvents, 4th edn. New York: Wile y InterScience.

Roduner, E. 1988. The P ositive Muon as a Probe in Free Radical Chemistry, Lecture Notes in Chemistry. Vol. 49. Heidelber g, German y: Springer .

Roduner, E. 1993. Polarized positiv e muons probing free-radicals—A variant of magnetic-resonance. Chem. Soc. Rev . 22: 337–346.

Roduner , E., 1999. Muon Science . Berlin, German y: N ATO Advanced Study Institute.

Salmon, G. 2003. The radiation chemistry connection. Physica B 326: 46–50.

Schenck, A. 1985. Muon Spin Rotation Spectr oscopy. London, U.K.: Adam Hilger Press.

Schw arzer, D., Troe, J., and Zerezke, M. 1998. Preferential solvation in the collisional deactiv ation of vibrationally highly excited azulene in supercritical xenon/ethane mixtures. J. Phys. Chem. A 102: 4207–4212.

Senba, M. 1988. Muon spin depolarization in noble gases during slowing down in a longitudinal magnetic �eld. J. Phys. B: At. Mol. Opt. Phys. 21: 5233–5260.

Senba, M., Fleming, D. G., Arseneau, D. J., and Mayne, H. R. 2000. Hot atom reaction yields in Mu* + H 2 and T* + H 2 from quasiclassical trajectory cross sections on the Liu–Siegbahn–Truhlar–Horowitz surface. J. Chem. Phys. 112: 9390–9400.

Senba, M., Arseneau, D. J., Pan, J. J., and Fleming, D. G. 2006. Slowing-do wn times and stopping powers for ∼2-MeV μ + in low-pressure gases. Phys. Rev. A 74: 042708–042725.

Sengers, J. V. and Kamgar-Parsi, B. 1984. Representative equations for the viscosity of water substance. J. Phys. Chem. Ref. Data 13: 185–205.

Siebbeles, L. D. A., Pimblott, S. M., and Cox, S. F. J. 1999. Simulation of muonium formation in liquid hydrocarbons. J . Chem. Phys. 111: 7493–7499.

Siebbeles, L. D. A., Pimblott, S. M., and Cox, S. F. J. 2000. Muonium formation dynamics in radiolytic tracks. Physica B 289: 404–408.

Smigla, V. P . and Belouso v, Y. M. 1994. Muon Method in Science . Ne w York: No va Science. Soper , A. K., Bruni, F., and Ricci, M. A. 1997. Site–site pair correlation functions of water from 25 to 400°C: Revised analysis of ne w and old dif fraction data. J . Chem. Phys. 106: 247–254.

Storchak, V. G., Brewer, J. H., Morris, G. D. et al. 1999. Muonium formation via electron transport in solid nitrogen. Phys. Re v. B 59: 10559–10572.

Suter , A., Morenzoni, E., Khasanov, R. et al. 2004. Direct observation of nonlocal effects in a superconductor. Phys. Rev. Lett. 92: 087001–087004.

Svishche v, I. M., Kusalik, P. G., Wang, G., and Boyd, R. J. 1996. Polarizable point-charge model for water: Results under normal and e xtreme conditions. J . Chem. Phys. 105: 4742–4750.

T amm, P . W. and Schmidt, L. D. 1971. Binding states of h ydrogen as Tungsten. J . Chem. Phys. 54: 4775.

T aylor, B. A., Cormier, P., Lauzon, J. M., and Ghandi, K. 2009. Investigating the solvent and temperature effects on the c yclohexadienyl radical in an ionic liquid. Physica B 404: 936–939.

V illa, J., Corchado, J. C., Gonzalez-Lafont, A., Lluch, J. M., and Truhlar, D. G. 1998. Explanation of deuterium and muonium kinetic isotope effects for hydrogen atom addition to an ole�n. J. Am. Chem. Soc. 120: 12141–12142.

Villa, J., Corchado, J. C., Gonzalez-Lafont, A. G. et al. 1999. Variational transition-state theory with optimized orientation of the dividing surface and semiclassical tunneling calculations for deuterium and muonium kinetic isotope effects in the free radical association reaction H+C 2 H 4 → C 2 H 5 . J. Phys. Chem. A 103: 5061–5074.

Walker, D. C. 1983. Muon and Muonium Chemistry . Cambridge, U.K.: Cambridge Uni versity Press.

Walker, D. C., Karolczak, S., Gillis, H. A., and Porter, G. B. 2003a. Solvent-dependent rate constants of muonium atom reactions. Can. J . Chem. 81: 175–178.

W alker, D. C., Karolczak, S., Porter, G. B., and Gillis, H. A. 2003b. No “delayed” muonium-formation in organic liquids. J . Chem. Phys. 118: 3233–3236.

White, H. J., Sengers, J. V., Neumann, D. B., and Bellows, J. C. 1995. Physical chemistry of aqueous systems: Meeting the needs of industry. In International Conference on the Properties of Water and Steam, IAPWS Release on the Surf ace Tension of Ordinary Water Substance. Ne w York: Be gell House. 9 Chapter 9. Electron Localization and Trapping in Hydrocarbon Liquids

Abou-Chacra, R., Anderson, P. W., and Thouless, D. J. 1973. Self-consistent theory of localization. J. Phys. C 6: 1734–1752.

Allen, A. O. 1976. Drift Mobilities and Conduction Band Energies of Excess Electrons in Dielectric Liquids. Vol. 58, NSRDS-NBS. Gaithersb urg, MD: NBS.

Anderson, P . W. 1958. Absence of dif fusion in certain random lattices. Phys. Re v. 109: 1492–1505.

Ascarelli, G. and Brown, S. C. 1960. Recombination of electrons and donors in n-type germanium. Phys. Rev. 120: 1615–1626.

Baird, J. K. and Rehfeld, R. H. 1987. Thermodynamics of electron-transport in amorphous insulators. J. Chem. Phys. 86: 4090–4095.

Bakale, G. and Schmidt, W. F. 1973. Excess electron-transport in liquid hydrocarbons. Chem. Phys. Lett. 22: 164–166.

Berlin, Y. A. and Schiller, R. 1987. Number of atoms interacting with a quasi-free electron in nonpolar liquids. Radiat. Phys. Chem. 30: 71–73.

Bulka, B., Schreiber, M., and Kramer, B. 1987. Localization, quantum interference, and the metal-insulatortransition. Z. für Phys. B 66: 21–30.

Chandler , D. and Leung, K. 1994. Excess electrons in liquids: Geometrical perspectiv es. Annu. Re v. Phys. Chem. 45: 557–591. [H. L. Strauss, G. T. Babcock, and S. R. Leone (eds.). Palo Alto, CA: Annual Reviews.]

Chang, T.-M., Bauer, J. D., and Skinner, J. L. 1990. Critical exponents for Anderson localization. J. Chem. Phys. 93: 8973–8982.

Chayes, J. T., Chayes, L., Fisher, D. S., and Spencer, T. 1986. Finite-size scaling and correlation lengths for disordered-systems. Phys. Re v. Lett. 57: 2999–3002.

C ohen, M. H. 1973. The electronic structures of disordered materials. In Electrons in Fluids. The Nature of Metal-Ammonia Solutions, J. Jortner and N. R. Kestner (eds.), pp. 257–285. New York: Springer-Verlag.

Cohen, M. H. 1977. Electrons in ¡uids: Role of disorder . Can. J . Chem. 55: 1906–1915.

Cohen, M. H., Fritzsche, H., and Ovshinsky, S. R. 1969. Simple band model for amorphous semiconducting alloys. Phys. Re v. Lett. 22: 1065–1068.

Da vis, H. T. and Brown, R. G. 1975. Low-energy electrons in nonpolar ¡uids. In Advances in Chemical Physics, I. Prigogine and S. A. Rice (eds.), pp. 329–464. Ne w York: Wile y.

Davis, H. T., Schmidt, L. D., and Brown, R. G. 1973. Mobility studies of excess electrons in nonpolar hydrocarbons. In Electrons in Fluids. The Nature of Metal-Ammonia Solutions, J. Jortner and N. R. Kestner (eds.), pp. 393–411. Ne w York: Springer -Verlag.

Dodelet, J.-P. and Freeman, G. R. 1972. Mobilities and ranges of electrons in liquids: Effect of molecular structure in C5-C12 alkanes. Can. J . Chem. 50: 2667–2679.

Dodelet, J.-P. and Freeman, G. R. 1977. Electron mobilities in alkanes through liquid and critical regions. Can. J. Chem. 55: 2264–2277.

Dodelet, J.-P., Shinsaka, K., and Freeman, G. R. 1973. Electron mobilities in liquid ole�ns: Structure effects. J. Chem. Phys. 59: 1293–1297.

D odelet, J. -P., Sh insaka, K. , an d Fr eeman, G. R. 19 75. El ectron-mobility mo dels fo r li quid hy drocarbons. J. Chem. Phys. 63: 2765–2766.

Dodelet, J. -P., Sh insaka, K. , an d Fr eeman, G. R. 19 76. Mo lecular-structure ef fects on el ectron ra nges an d mo bilities in li quid hy drocarbons: Ch ain-branching an d ol e�n co njugation: Mo bility mo del. Ca n. J. Chem. 54 : 74 4–759.

Feher, G. , Fl etcher, R. C. , an d Ge re, E. A. 19 55. Ex change ef fects in sp in re sonance of im purity at oms in si licon. Ph ys. Rev. 10 0: 17 84–1786.

Freeman, G. R. 1963a. Gamma-radiation-induced conductance in liquid hydrocarbons. J. Chem. Phys. 38: 1022–1023.

Freeman, G. R. 1963b. Yield of free ions in gamma-irradiated liquid saturated hydrocarbons. J. Chem. Phys. 39: 988–996.

F reeman, G. R. 1986. Electron-mobility in the liquid isomeric pentanes: Reply. J. Chem. Phys. 84: 47 23–4723.

Freeman, G. R. and Huang, S. S. S. 1979. Localized excess-electron states in simple classical ¡uids: Quasilocalization. Phys. Re v. A 20: 2619–2620.

Frommhold, L. 1968. Resonance scattering and the drift motion of electrons through gases. Phys. Rev. 172: 118–125.

Funabashi, K. 1974. Excess-electron processes in radiation chemistry of disordered materials. In Advances in Radiation Chemistry, M. Burton and J. L. Magee (eds.), pp. 103–180. Ne w York: Wiley.

Funabashi, K. an d Ra o, B. N. 19 76. Fi eld-dependent mo bility in li quid hy drocarbons. J. Chem. Phys. 64 : 1561–1563.

Fuochi, P. G. and Freeman, G. R. 1972. Molecular structure effects of free-ion yields and reaction-kinetics in radiolysis of methyl-substituted propanes and liquid argon: Electron and ion mobilities. J. Chem. Phys. 56: 2333–2341.

Gee, N. and Freeman, G. R. 1983. Electron thermalization ranges and free-ion yields in dielectric ¡uids: Effects of density and molecular shape. Phys. Re v. A 28: 3568–3574.

Gee, N. and Freeman, G. R. 1987. Electron mobilities, free ion yields, and electron thermalization distances in liquid long-chain h ydrocarbons. J . Chem. Phys. 86: 5716–5721.

Gee, N., Senanayake, P. C., and Freeman, G. R. 1988. Electron-mobility, free ion yields, and electron thermalization distances in n -alkane liquids: Ef fects of chain-length. J . Chem. Phys. 89: 3710–3717.

G elbart, W. M. 19 74. De polarized li ght sc attering by si mple ¡u ids. In Ad vances in Chemical Physics, I. Pr igogine an d S. A. Ri ce (e ds.), pp . 1– 106. Ne w Yo rk: Wi ley.

Gyorgy, I. and Freeman, G. R. 1979. Effects of density and temperature on mobilities of electrons in vapors and liquids of pentane isomers: Molecular -structure ef fects. J . Chem. Phys. 70: 4769–4777.

Holro yd, R. A. 1977. Equilibrium reactions of excess electrons with aromatics in non-polar solvents. Ber. Bunsen-Gesellsc haft Phys. Chem. 81: 298–304.

Holro yd, R. A. and Cipollini, N. E. 1978. Correspondence of conduction-band minima and electron-mobility maxima in dielectric liquids. J . Chem. Phys. 69: 501–503.

H olroyd, R. A. an d Sc hmidt, W. F. 19 89. Tr ansport of el ectrons in no npolar ¡u ids. An nu. Rev. Phys. Chem. 40 : 439–468.

Holroyd, R. A. , Ge er, S. , an d Pt ohos, F. 19 91. Fr ee-ion yi elds fo r se veral si licon-containing, ge rmaniumcontaining, and tin-containing liquids and their mixtures. Phys. Re v. B 43: 9003–9011.

Holstein, T. 1959. Studies of polaron motion. 2. The small polaron. Ann. Phys . 8: 343–389.

Hug, G. L. and Mozumder, A. 2008. Electron localization in liquid hydrocarbons: The Anderson model. Radiat. Phys. Chem. 77: 1169–1175.

Hug, G. L. and Mozumder , A. forthcoming.

Ising, E. 1925. Report on the theory of ferromagnetism. Z. für Phys . 31: 253–258.

Jay-Gerin, J.-P., Goulet, T., and Billard, I. 1993. On the correlation between electron-mobility, free-ion yield, and electron thermalization distance in nonpolar dielectric liquids. Can. J . Chem. 71: 287–293.

Karnick y, J. F. and Pings, C. J. 1976. Recent advances in the study of liquids by x-ray diffraction. In Advances in Chemical Physics, I. Prigogine and S. A. Rice (eds.), pp. 157–202. Ne w York: Wiley.

Kestner, N. R. and Jortner, J. 1973. Conjecture on electron mobility in liquid hydrocarbons. J. Chem. Phys. 59: 26–30.

Kimura, T., Fueki, K., Narayana, P. A., and Ke van, L. 1977. Semicontinuum model with a structured 1st solvation shell for e xcess electrons in liquid and glassy alkanes. Can. J . Chem. 55: 1940–1951.

K uchitsu, K. 1968. Comparison of molecular structures determined by electron diffraction and spectroscopy . Ethane and diborane. J . Chem. Phys. 49: 4456–4462.

Lee, I.-R., Lee, W., and Zewail, A. H. 2008. Dynamics of electrons in ammonia cages: The discovery system of solvation. ChemPhysChem 9: 83–88.

Mikolaj, P. G. and Pings, C. J. 1967. Structure of liquids. III. An x-ray diffraction study of ¡uid argon. J. Chem. Phys. 46: 1401–1411.

Minday , R. M., Schmidt, L. D., and Davis, H. T. 1971. Excess electrons in liquid hydrocarbons. J. Chem. Phys. 54: 3112–3125.

Minday , R. M., Schmidt, L. D., and Davis, H. T. 1972. Mobility of excess electrons in liquid hydrocarbon mixtures. J . Phys. Chem. 76: 442–446.

Mott, N. F . 1967. Electrons in disordered structures. Adv . Phys. 16: 49–144.

Mozumder , A. 1993. Quasi-ballistic model of electron-mobility in liquid hydrocarbons. Chem. Phys. Lett. 207: 245–249.

Mozumder, A. 1995. Electron-mobility in liquid hydrocarbons: Application of the quasi-ballistic model. Chem. Phys. Lett. 233: 167–172.

Mozumder , A. 1999. Fundamentals of Radiation Chemistry . San Die go, CA: Academic Press.

M ozumder, A. 2002. Free-ion yield and electron mobility in liquid hydrocarbons: A consistent correlation. J. Phys. Chem. A 106: 7062–7067.

Mozumder , A. 2006. The quasi-ballistic model of electron mobility in liquid hydrocarbons: Effect of an exter nal electric �eld. Chem. Phys. Lett . 420: 277–280.

Mozumder , A. and Hug, G. L. 2009. Electron mobility in liquid isomeric pentanes: Rationalization based on Anderson localization. Chem. Phys. Lett . 480: 71–74.

Mozumder , A. and Magee, J. L. 1967. Theory of radiation chemistry. VIII. Ionization of nonpolar liquids by radiation in the absence of e xternal electric �eld. J . Chem. Phys. 47: 939–945. Munoz, R. C. 1991. Mobility of excess electrons in dielectric liquids: Experiment and theory. In Excess Electrons in Dielectric Media, C. Ferradini and J.-P. Jay-Gerin (eds.), pp. 161–210, Chapter 6. Boca Raton, FL: CRC Press.

N arten, A. H. 1979. X-ray-diffraction study of liquid neopentane in the temperature range 17 to 150°C. J. Chem. Phys. 70 : 29 9–304.

Nishikawa, M. 19 91. El ectrons in co ndensed me dia. In CR C Handbook of Radiation Chemistry, Y. Ta bata, Y. It o, an d S. Ta gawa (e ds.), pp . 39 5–438, Ch apter VI I. Bo ca Ra ton, FL : CR C Pr ess.

Onsager, L. 1938. Initial recombination of ions. Phys. Re v. 54: 554–557.

Petz, J. I. 1965. X-ray determination of the structure of liquid methane. J . Chem. Phys. 43: 2238–2243.

Phillips, P. 1993. Anderson localization and the exceptions. Annu. Re v. Phys. Chem. 44: 115–144. [H. L. Strauss, G. T. Babcock, and S. R. Leone (eds.). P alo Alto, CA: Annual Re views.]

Pierce, W. C. 1935. Scattering of x-rays by polyatomic liquids. n -heptane. J . Chem. Phys. 3: 252–255.

Rassolo v, V. A. and Mozumder, A. 2001. Monte Carlo simulation of electron thermalization distribution in liquid hydrocarbons: Effects of inverse collisions and of an external electric �eld. J. Phys. Chem. B 105: 1430–1437.

Ro binson, M. G. , Fu ochi, P. G. , an d Fr eeman, G. R. 19 71. Yi elds of fr ee io ns in x ra diolysis of so me si mple saturated and unsaturated hydrocarbon liquids: Effects of molecular structure and temperature. Can. J. Chem. 49 : 36 57–3664.

Root, L. J., Bauer, J. D., and Skinner, J. L. 1988. New approach to localization: Quantum connectivity . Phys. Rev. B 37: 5518–5521.

Schiller , R., Vass, S., and Mandics, J. 1973. Energy of the quasi-free electrons and the probability of electron localization in liquid h ydrocarbons. Int. J . Radiat. Phys. Chem. 5: 491–503.

Schmidt, W. F. 1977. Electron-mobility in nonpolar liquids: Effect of molecular-structure, temperature, and electric-�eld. Can. J . Chem. 55: 2197–2210.

Schmidt, W. F. and Allen, A. O. 1970. Mobility of electrons in dielectric liquids. J. Chem. Phys. 52: 4788–4794.

Shante, V. and Kirkpatrick, S. 1971. An introduction to percolation theory . Adv . Phys. 20: 325–357.

Shinsaka, K., Dodelet, J.-P., and Freeman, G. R. 1975. Electron mobilities and ranges in liquid hydrocarbons: Cyclic and polyc yclic, saturated and unsaturated-compounds. Can. J . Chem. 53: 2714–2728.

Springett, B. E., Jortner, J., and Cohen, M. H. 1968. Stability criterion for the localization of an excess electron in a nonpolar ¡uid. J . Chem. Phys. 48: 2720–2731.

S tephens, J. A. 1986. Comment on electron-mobility in the liquid isomeric pentanes. J. Chem. Phys. 84: 4721–4723.

Stuart, H. A. 1962. Depolarisationsgrade bei der molekularen Lichtstreuung an Flüssigkeiten. In LandoltBörnstein, Vol. II, P art 8, pp. 5-815–5-826. Berlin, German y: Springer -Verlag.

Tewari, P. H. and Freeman, G. R. 1968a. Radiolysis of liquid hydrocarbons: Dependence of free-ion yield on molecular structure. J . Chem. Phys. 49: 954–955.

T ewari, P. H. and Freeman, G. R. 1968b. Dependence of radiation-induced conductance of liquid hydrocarbons on molecular structure. J . Chem. Phys. 49: 4394–4399.

Wada, T., Shinsaka, K., Namba, H., and Hatano, Y. 1977. Electron reactivity in liquid-hydrocarbon mixtures. Can. J. Chem. 55: 2144–2155.

W arren, B. E. 1933. X-ray dif fraction in long chain liquids. Phys. Re v. 44: 969–976.

W atson, K. M. 1957. Multiple scattering by quantum-mechanical systems. Phys. Re v. 105: 1388–1398.

Zernik e, F. and Prins, J. A. 1927. Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekulanordnung. Z. Phys . 41: 184–194. Ziman, J. M. 1979. Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems. Cambridge, U.K.: Cambridge Uni versity Press. 10 Chapter 10. Reactivity of Radical Cations in Nonpolar Condensed Matter

Alkaitis, S. A., Beck, G., and Grätzel, M. 1975. Laser photoionization of phenothiazine in alcoholic and aqueous micellar solution. Electron transfer from triplet states to metal ion acceptors. J. Am. Chem. Soc. 97: 5723–5729.

Allen, A. O. and Holroyd, R. A. 1974. Chemical reaction rates of quasi free electrons in nonpolar liquids. J. Phys. Chem. 78: 796–803.

Arai, S., Kira, A., and Imamura, M. 1976. Mechanism of the formation of cationic species in the radiolysis of butyl chlorides. 1. J . Phys. Chem. 80: 1968–1973.

Baidak, A., Naumov, S., Hermann, R., and Brede, O. 2008a. Ionization of amino-, thioand hydroxylnaphthalenes via free electron transfer . J . Phys. Chem. A 112: 11036–11043.

Baidak, A., Naumov, S., and Brede, O. 2008b. Kinetic and energetic analysis of the free electron transfer. J. Chem. Phys. A 112: 10200–10209.

Bax endale, J. H. and Busi, F. (eds.) 1982. The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. Dordrecht, the Netherlands: D. Reidel Publishing Compan y.

Baxendale, J. H., Bell, C., and Wardman, P. 1973. Observations on solvated electrons in aliphatic hydrocarbons at room temperature by pulse radiolysis. J . Chem. Soc. Faraday Trans. I 69: 776–786.

Beck, G. 1979. Transient conductivity measurements with subnanosecond time resolution. Rev . Sci. Instrum. 50: 1147–1151.

Beck e, A. D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98: 5648–5652.

Becke, A. D. 1996. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for e xact-exchange mixing. J . Chem. Phys. 104: 1040–1046.

Be yer, H. and Walter , W. (eds.) 1991. Lehrbuc h der Organischen Chemie, pp. 486–491. Stuttgart, Germany: S. Hirzel, or an y other te xtbook of Or ganic Chemistry .

Brede, O. and Naumov , S. 2006. Femtodynamics re¡ected in nanoseconds: Bimolecular free electron transfer in non-polar media. J . Phys. Chem. A 110: 11906–11918, feature article.

Brede, O., Helmstreit, W., and Mehnert, R. 1974. Fast formation of aromatic cations in cyclohexane observed by pulse radiolysis. Chem. Phys. Lett . 28: 43–45.

Brede, O., Bös, J., and Mehnert, R. 1980. Pulse radiolytic inv estigation of the radiation-induced cationic primary processes in carbon tetrachloride. Ber . Bunsenges. Phys. Chem. 84: 63–68.

Brede, O., Bös, J., Helmstreit, W., and Mehnert, R. 1982. Primary processes of the radiation-induced polymerization of aromatic ole�ns studied by pulse radiolysis. Radiat. Phys. Chem . 19: 1–15.

Brede, O., Mehnert, R., and Naumann, W. 1987. Kinetics of excitation and charge transfer reactions in nonpolar media. Chem. Phys . 115: 279–296.

Brede, O., Orthner, H., Zubarev , V., and Hermann, R. 1996. Radical cations of sterically hindered phenols as intermediates in radiation-induced electron transfer processes. J . Phys. Chem. 100: 7097–7105.

Brede, O., Beckert, D., Windolph, C., and Göttinger, H. A. 1998. One electron oxidation of sterically hindered amines to nitroxyl radicals: Intermediate amine radical cations, aminyl, α-aminoalk yl and aminylperoxyl radicals. J . Phys. Chem. 102: 1457–1464.

Brede, O., Mahalaxmi, G. R., Naumov , S., Naumann, W., and Hermann, R. 2001a. Localized electron transfer in non-polar solution: reaction of phenols and thiophenols with free solvent radical cations. J. Phys. Chem. A 105: 3757–3764.

Brede, O., Hermann, R., Naumov, S., and Mahal, H. S. 2001b. Discrete ionization of two rotation-conditioned selenophenol conformers by rapid electron transfer to solvent parent radical cations. Chem. Phys. Lett. 350: 165–172.

Brede, O., Hermann, R., Naumann, W., and Naumov, S. 2002a. Monitoring of the hetero-group twisting dynamics in phenol-type molecules via different characteristic free-electron-transfer products. J. Phys. Chem. A 106: 1398–1405.

B rede, O., Kapoor, S., Mukherjee, T., Hermann, R., and Naumov, S. 2002b. Diphenol radical cations and semiquinone radicals as direct products of the free electron transfer from catechol, resorcinol and hydroquinone to parent solvent radical cations. Phys. Chem. Chem. Phys. 4: 5096–5104.

Brede, O., Naumov, S., and Hermann, R. 2003. Monitoring molecule dynamics by free electron transfer. Radiat. Phys. Chem. 67: 225–230.

B rede, O., Hermann, R., Naumov, S., Perdikomatis, G. P., Zarkadis, A. K., and Siskos, M. G. 2004. Free electron tr ansfer mi rrors ro tational co nformers of su bstituted ar omatics: Re action of be nzyltrimethylsilanes wi th n-butyl chloride parent radical cations. Phys. Chem. Chem. Phys. 6: 2267–2275.

Brede, O., Maroz, A., Hermann, R., and Naumov, S. 2005. Ionization of cyclic aromatic amines by free electron transfer: Products are go verned by molecule ¡e xibility. J . Phys. Chem. A 109: 8081–8087.

Dixon, W. T. and Murphy, D. 1978. Determination of acid dissociation constants of some phenol radical cations. J. Chem. Soc. Faraday Trans. II 74: 432–439.

Eberson, L. 1982. Electron-transfer reactions in or ganic chemistry . Adv . Phys. Org. Chem. 18: 79–185.

F aria, J. L. and Steenken, S. 1990. Photoionization (.lambda. = 248 or 308 nm) of triphenylmethyl radical in aqueous solution. F ormation of triphen ylmethyl carbocation. J . Am. Chem. Soc. 112: 1277–1279.

F artahaziz and Rodgers, M. A. J. (eds.) 1987. Radiation Chemistry, Principles and Applications. Weinheim, Germany: VCH Publishers.

F öldiak, G. (ed.) 1981. Radiation Chemistry of Hydr ocarbons. Amsterdam, the Netherlands: Else vier.

Hamill, W. H. 1968. Radical Ions, Kaiser, E. T. and Kevan, L. (eds.), p. 321. New York: Interscience Publishers. Hermann, R., Dey, G. R., Naumov, S., and Brede, O. 2000. Thiol radical cations and thiyl radicals as direct products of the free electron transfer from aromatic thiols to n-butyl chloride radical cations. Phys. Chem. Chem. Phys. 2: 1213–1220.

Hummel, A. and Schmidt, W. F. 1974. Ionization of dielectric liquids by high energy radiation studied by means of electrical conducti vity measurements. Radiat. Res. Re v. 5: 199–300.

Infelta, P. P., de Haas, M. P., and Warman, J. M. 1977. The study of the transient conductivity of pulse irradiated dielectric liquids on a nanosecond timescale using micro waves. Radiat. Phys. Chem . 10: 353–365.

Jano vský, I., Naumov , S., Knolle, W., and Mehnert, R. 1999. Low-temperature EPR study of radical cations of 2,5and 2,3-dihydrofuran and their transformations in a freon matrices. J. Chem. Soc. Perkin Trans. 2: 2447–2453.

Janovsk ý, I., Naumov , S., Knolle, W., and Mehnert, R. 2003. Inv estigation of the molecular structure of radical cation of s-trioxane: Quantum chemical calculations and low-temperature EPR results. Rad. Phys. Chem. 67: 237–241.

J anovský, I., Knolle, W., Naumov, S., and Williams, F. 2004. EPR studies of amine radical cations: I. Thermal and photo-induced rearrangements of n-alkylamine radical cations to their distonic forms in low-temperature fr eon ma trices. Ch em. Eur. J. 10 : 55 24–5534.

Janovský, I., Naumov , S., Knolle, W., and Mehnert, R. 2005. Radiation-induced polymerisation of 2,3dihydrofuran: Free-radical or cationic mechanism? Rad. Phys. Chem . 72(2–3): 125–133.

Karak ostas, N., Naumov , S., Siskos, M. G., Zarkadis, A. K., Hermann, R., and Brede, O. 2005. Free electron transfer from xanthenyland ¡uorenylsilanes (Me-3 or Ph-3) to parent solvent radical cations: Effect of molecule dynamics. J . Phys. Chem. A 109: 11679–11686.

Karak ostas, N., Naumov , S., and Brede, O. 2007. Ionization of aromatic sul�des in non-polar media: Free vs. reaction-controlled electron transfer . J . Phys. Chem. A 111: 71–78.

Klessinger , M. and Michl, J. 1995. Excited States and Photochemistry of Organic Molecules, p. 278, 285, 291. Weinheim, German y: VCH Publishers.

Knight, L. B. 1986. ESR inv estigations of molecular cation radicals in neon matrices at 4 K: Generation, trapping, and ion-neutral reactions. Acc. Chem. Res . 19: 313–321.

Knolle, W., Feldman, V. I., Janovský, I., Naumov, S., Mehnert, R., Langguth, H., Sukhov, F. F., and Orlov, A. Yu. 2002. EPR study of methyl and ethyl acrylate radical cations and their transformations in low-temperature matrices. J . Chem. Soc. Perkin Trans. 2: 687–699.

K nolle, W., Janovský, I., Naumov, S., and Mehnert, R. 1999. Low-temperature EPR study of radical cations of 2, 5 an d 2, 3-dihydrofuran an d th eir tr ansformations in a fr eon ma trices. J. Chem. Soc. Perkin Trans. 2: 2447–2453.

Knolle, W., Janovský, I., Naumov, S., and Williams, F. 2006. EPR studies of amine radical cations. Part 2. Thermal and photo-induced rearrangements of propargylamine and allylamine radical cations in lowtemperature freon matrices. J . Phys. Chem. A 110: 13816–13826.

Le Motais, B. C. and Jonah, C. D. 1989. Picosecond pulse-radiolysis studies of the primary processes in hydrocarbon radiation-chemistry . Radiat. Phys. Chem . 33: 505–517.

Le vich, V. G. and Dogonadze, R. R. 1961. Adiabatic theory of the electron processes in solutions. Coll. Czech. Chem. Commun. 26: 193–214.

Lomoth, R., Naumov, S., and Brede, O. 1999. Genuine pyrimidine radical cations generated by radiationinduced electron transfer to b utyl chloride or acetone parent ions. J . Phys. Chem. A 103: 2641–2648.

Lund, A. and Shiotani, M. (eds.) 1991. Radical Ionic Systems, Properties in Condensed Phases. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Mahalaxmi, G. R., Hermann, R., Naumov , S., and Brede, O. 2000. Free electron transfer from sev eral phenols to radical cations of non-polar solv ents. Phys. Chem. Chem. Phys . 2: 4947–4955.

Mahalaxmi, G. R., Naumov , S., Hermann, R., and Brede, O. 2001. Nucleophilic effects on the deprotonation of phenol radical cations. Chem. Phys. Lett . 337: 335–340.

Marcus, R. A. 1964. Chemical and electrochemical electron-transfer theory. Ann. Re v. Phys. Chem. 15: 155–196.

Marcus, R. A. and Sutin, N. 1964. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811: 265–322.

Maroz, A., Hermann, R., Naumov, S., and Brede, O. 2005. Ionization of aniline and its N-methyl and N-phenyl substituted derivatives by free electron transfer to n-butyl chloride parent radical cation. J. Phys. Chem. A 109: 4690–4696.

M ehnert, R. 1991. Radical cations in pulse radiolysis. In Radical Ionic Systems, Properties in Condensed Phases, Lund, A. and Shiotani, M. (eds.), pp. 231–284. Dordrecht, the Netherlands: Kluwer Academic Publishers.

Mehnert, R., Brede, O., and Bös, J. 1977. Nanosekunden-Pulsradiolyse von Kohlenwasserstoffen by Raumtemperatur. Z. Chem. (Leipzig) 17: 268–270.

Mehnert, R., Bös, J., and Brede, O. 1979a. Nanosecond pulse radiolysis study of radical cations in liquid alkanes. Radioc hem. Radioanal. Lett. 38: 47–52.

Mehnert, R., Brede, O., Bös, J., and Naumann, W. 1979b. Charge transfer from the carbon tetrachloride radical cation to alk yl chlorides, alkanes and aromatics. Ber . Bunsenges. Phys. Chem. 83: 992–996.

Mehnert, R., Brede, O., and Naumann, W. 1982. Charge transfer from solvent radical cations to solutes studied in pulse-irradiated liquid n-b utyl chloride. Ber . Bunsenges. Phys. Chem. 86: 525–529.

Mehnert, R., Brede, O., and Naumann, W. 1984. Spectral properties and kinetics of cationic transients generated in electron pulse irradiated C7- to C16 alkanes. Ber . Bunsenges. Phys. Chem . 88: 71–76.

Mehnert, R., Brede, O., and Naumann, W. 1985. Charge transfer from n-hexadecane radical cation to cycloalkanes and aromatics. Ber . Bunsenges. Phys. Chem. 89: 1031–1035.

Meot-Ner , M., Sieck, L. W., and Ausloos, P. 1981. Ionization of normal alkanes: Enthalpy , entropy , structural and isotope ef fects. J . Am. Chem. Soc. 103: 5342–5348.

Mohan, H., Hermann, R., Naumov, S., Mittal, J. P., and Brede, O. 1998. Two channels of electron transfer observed for the reaction of n-butyl chloride parent cations with naphthols and hydroxybiphenyls. J. Phys. Chem. 102: 5754–5762.

Naumo v, S., Janovsk ý, I., Knolle, W., and Mehnert, R. 2003a. Formation of 3,4-dihydrofuran radical cation through intramolecular H-shift: Quantum chemical calculations and low-temperature EPR study. Rad. Phys. Chem. 67: 243–246.

N aumov, S. , Ja novský, I. , Kn olle, W. , an d Me hnert, R. 20 03b. Ra dical ca tion, di mer ra dical ca tion an d ne utral ra dical of 2, 3-dihydropyran - Po ssible in itiators of it s po lymerisation? Ma cromol. Chem. Phys. 20 4: 20 99–2104.

Naumov, S., Janovsk ý, I., Knolle, W., and Mehnert, R. 2003c. Distonic dimer radical cation of 2,3dihydrofuran: Quantum chemical calculations and low temperature EPR results. Nucl. Instrum. Meth. Phys. Res. B 208: 385–389.

Naumov, S., Janovský, I., Knolle, W., and Mehnert, R. 2003d. Radical cations of tetrahydropyran and 1,4dioxane revisited: Quantum chemical calculations and low-temperature EPR results. Phys. Chem. Chem. Phys . 5: 3133–3139.

Naumo v, S., Janovský, I., Knolle, W., and Mehnert, R. 2004a. Transformations of 5-membered heterocyclic radical cations as studied by low-temperature EPR and quantum chemical methods. Phys. Chem. Chem. Phys. 6: 3933–3937.

Naumo v, S., Janovský, I., Knolle, W., Mehnert, R., and Turin, D. A. 2004b. Low-temperature EPR and quantum chemical study of lactone radical cations and their transformations. Rad. Phys. Chem . 73: 206–212.

Naumo v, S., Janovský, I., Knolle, W., and Mehnert, R. 2004c. On the radiation-induced polymerisation of 2,3-dihydropyran. Macr omol. Chem. Phys. 205: 1530–1535.

Naumo v, S., Janovsk ý, I., Knolle, W., and Mehnert, R. 2005. Role of distonic dimer radical cations in the radiation-induced polymerisation of vin yl ethers. Nucl. Instr . Meth. Phys. Res. B 236: 461–467. R ehm, D. and Weller, A. 1969. Kinetik und Mechanismus der Elektronenübertragung bei der Fluoreszenzlöschung in Acetonitril. Ber. Bunsenges. Phys. Chem. 73: 834–839.

Rosokha, S. and Kochi, J. K. 2008. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter comple x. Acc. Chem. Res . 41: 641–653.

Shida, T. 1988. Electronic Absorption Spectra of Radical Ions. Physical Science Data 34. Amsterdam, the Netherlands: Else vier.

Shida, T., Haselbach, E., and Bally, T. 1984. Organic radical ions in rigid systems. Acc. Chem. Res. 17: 180–186.

Tabata, Y., Ito, Y., and Tagawa, S. (eds.) 1991. Radical ions in condensed media. In CRC Handbook of Radiation Chemistry, p. 439, 409, 591. Boca Raton, FL: CRC Press.

T rifunac, A. D., Norris, J. R., and Lawler, R. G. 1979. Nanosecond time-resolved EPR in pulse radiolysis via the spin echo method. J . Chem. Phys. 71: 4380–4391.

Ulstrup, J. and Jortner, J. 1975. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions. J . Chem. Phys. 63: 4358–4369.

Warman, J. M., Asmus, K.-D., and Schuler, R. H. 1969. Electron scavenging in the radiolysis of cyclohexane solutions of alk yl halides. J . Phys. Chem. 73: 931–936.

W edenejew, W. J., Gurwitsch, L., Kondratjew, W. H., Medwedew, W. A., and Frankiewitsch, E. L. 1971. Energien chemischer Bindungen, Ionisationspotentiale und Elektronenaf±nitäten, Leipzig, Germany: VEB Deutscher Verlag für die Grundstof �ndustrie.

Weller, A. 1982. Exciplex and radical pairs in photochemical electron transfer. Pure Appl. Chem. 54: 1885–1888.

Zador, E., Warman, J. M., and Hummel, A. 1973. Anomalously high rate constants for the reaction of solvent positive ions with solutes in irradiated cyclohexane and methylcyclohexane. Chem. Phys. Lett. 23: 363–388.

Zubarev, V. E. and Brede, O. 1997. Direct detection of the cation radical of 2,6-di-tert-butyl-4-methylphenol generated by electron transfer oxidation with matrix alkylhalogenated cation radicals. Acta Chem. Scand. 51: 224–227. 11 Chapter 11. Radiation Chemistry and Photochemistry of Ionic Liquids

Allen, D., Baston, G., Bradley, A., Gorman, T., Haile, A., Hamblett, I., Hatter, J., Healey, M., Hodgson, B., Lewin, R., Lovell, K., Newton, B., Pitner, W., Rooney, D., Sanders, D., Seddon, K., Sims, H., and Thied, R. 2002. An investigation of the radiochemical stability of ionic liquids. Green Chem. 4: 152–158.

Arzhantsev, S., Jin, H., Baker , G. A., and Maroncelli, M. 2007. Measurements of the complete solvation response in ionic liquids. J . Phys. Chem. B 111: 4978–4989.

Behar , D., Gonzalez, C., and Neta, P. 2001. Reaction kinetics in ionic liquids: Pulse radiolysis studies of 1-butyl-3-meth ylimidazolium salts. J . Phys. Chem. A 105: 7607–7614.

Behar , D., Neta, P., and Schultheisz, C. 2002. Reaction kinetics in ionic liquids as studied by pulse radiolysis: Redox reactions in the solvents methyltrib utylammonium bis(trifuluoromethylsulfon yl)imide and n-butylp yridinium tetra¡uoroborate. J . Phys. Chem. A 106: 3139–3147.

Berthon, L., Nikitenko, S. I., Bisel, I., Berthon, C., Faucon, M., Saucerotte, B., Zorz, N., and Moisy, P. 2006. In¡uence of gamma irradiation on hydrophobic room-temperature ionic liquids [BuMeIm]PF 6 and [BuMeIm](CF 3 SO 2 ) 2 N. Dalton Trans. 2526–2534.

Binnemans, K. 2007. Lanthanides and actinides in ionic liquids. Chem. Re v. 107: 2592–2614.

Bosse, E., Berthon, L., Zorz, N., Monget, J., Berthon, C., Bisel, I., Legand, S., and Moisy, P. 2008. Stability of [MeBu 3 N][Tf 2 N] under gamma irradiation. Dalton Trans. 924–931.

Cai, X., Hara, M., Kawai, K., Tojyo, S., and Majima, T. 2003. Sensitized reactions by benzophenones in the higher e xcited state. Chem. Phys. Lett . 371: 68–73.

Cai, X., Sakamoto, M., Fujitsuka, M., and Majima, T. 2005. Higher triplet excited states of benzophenones and bimolecular triplet energy transfer measured by using nanosecond-picosecond two-color/tw o-laser ¡ash photolysis. Chem. Eur . J. 11: 6471–6477.

Castriota, M., Caruso, T., Agostino, R. G., Cazzanelli, E., Henderson, W. A., and Passerini, S. 2005. Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(tri¡uoromethanesulfonyl)imide and its mixture with LiN(SO 2 CF 3 ) 2 . J. Phys. Chem. A. 109: 92–96.

Chandrasekhar, N., Schalk, O., and Unterreiner, A. N. 2008. Femtosecond UV excitation in imidazolium-based ionic liquids. J . Phys. Chem. B. 112: 15718–15724.

Chaumont, A. and Wipf f, G. 2004. Solvation of uranyl(II) and europium(III) cations and their chloro complex es in a room-temperature ionic liquid. A theoretical study of the effect of solvent “humidity”. Inorg . Chem. 43: 5891–5901.

Cocalia, V. A., Gutowski, K. E., and Rogers, R. D. 2006. The coordination chemistry of actinides in ionic liquids: A re view of e xperiment and simulation. Coor d. Chem. Rev. 250: 755–764.

Debye, P . 1942. Reaction rates in ionic solutions. T rans. Electrochem. Soc. 82: 265–272.

Del Popolo, M. G. and Voth, G. A. 2004. On the structure and dynamics of ionic liquids. J. Phys. Chem. B 108: 1744–1752.

Dietz, M. L. 2006. Ionic liquids as e xtraction solv ents: Where do we stand? Sep. Sci. Technol. 41: 2047–2063.

E arle, M. J. and Seddon, K. S. 2000. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72: 1391–1398.

Ediger, M. D. 2000. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51: 99–128.

Funston, A. M. and Wishart, J. F. 2005. Dynamics of fast reactions in ionic liquids. In Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities, Properties and Structure, R. D. Rogers and K. R. Seddon, (eds.), pp. 102–116. Washington, DC: American Chemical Society .

Funston, A. M., Fadeeva, T. A., Wishart, J. F., and Castner, E. W. Jr. 2007. Fluorescence probing of temperaturedependent dynamics and friction in ionic liquid local en vironments. J . Phys. Chem. B 111: 4963–4977.

Giraud, G., Gordon, C. M., Dunkin, I. R., and Wynne, K. 2003. The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study. J. Chem. Phys. 119: 464–477.

Glezen, M. M., Chernovitz, A. C., and Jonah, C. D. 1992. Pulse radiolysis of dextran-water solutions. J. Phys. Chem. 96: 5180–5183.

Grodk owski, J. and Neta, P. 2002a. Reaction kinetics in the ionic liquid methyltributylammonium bis(tri¡uoromethylsufonyl)imide. Pulse radiolysis study of CF 3 radical reactions. J. Phys. Chem. A 106: 5468–5473.

Grodkowski, J. and Neta, P. 2002b. Reaction kinetics in the ionic liquid methyltributylammonium bis(tri¡uoromethylsulfonyl)imide. Pulse radiolysis study of 4-mercaptobenzoic acid. J. Phys. Chem. A 106: 9030–9035.

G rodkowski, J. and Neta, P. 2002c. Formation and reaction of Br 2 − radicals in the ionic liquid methyltributylammonium bis(tri¡uoromethylsulfonyl)imide and in other solvents. J. Phys. Chem. A 106: 11130–11134.

Grodkowski, J., Neta, P., and Wishart, J. F. 2003. Pulse radiolysis study of the reactions of hydrogen atoms in the ionic liquid methyltributylammonium bis(tri¡uoromethyl)sulfonyl]imide. J. Phys. Chem. A 107: 9794–9799.

Hamasaki, A., Yago, T., Takamasu, T., Kido, G., and Wakasa, M. 2008. Anomalous magnetic �eld effects on photochemical reactions in ionic liquid under ultrahigh �elds of up to 28 T. J. Phys. Chem. B 112: 3375–3379.

Han, X. and Armstrong, D. W. 2007. Ionic liquids in separations. Acc. Chem. Res . 40: 1079–1086.

Hayashi, S., Ozawa, R., and Hamaguchi, H. 2003. Raman spectra, crystal polymorphism, and structure of a prototype ionic-liquid [bmim]Cl. Chem. Lett . 32: 498–499.

Hayashi, K., Nemoto, Y., Akuto, K., and Sakurai, Y. 2005. Alkylated imidazolium salt electrolyte for lithium cells. J . Power Source 146: 689–692.

Holbre y, J. D., Reichert, W. M., and Rogers, R. D. 2004. Crystal structures of imidazolium bis(tri¡uoromethanesulfonyl)imide ionic liquid salts: The �rst organic salt with a cis-TFSI anion conformation. Dalton Trans. 15: 2267–2271.

Hu, Z. and Margulis, C. J. 2006. A study of the time-resolved ¡uorescence spectrum and red edge effect of ANF in a room-temperature ionic liquid. J . Phys. Chem. B 110: 11025–11028.

Ito, N., Arzhantsev , S., Heitz, M., and Maroncelli, M. 2004. Solvation dynamics and rotation of coumarin 153 in alk ylphosphonium ionic liquids. J . Phys. Chem. B 108: 5771–5777.

Jacquemin, J., Husson, P., Padua, A. A. H., and Majer, V. 2006. Density and viscosity of sev eral pure and water saturated ionic liquids. Gr een Chem. 8: 172–180.

Jensen, M. P., Neuefeind, J., Beitz, J. V., Skanthakumar, S., and Soderholm, L. 2003. Mechanisms of metal ion transfer into room-temperature ionic liquids: The role of anion exchange. J. Am. Chem. Soc. 125: 15466–15473.

Ji n, H. , Li , X. , an d Ma roncelli, M. 20 07. He terogeneous so lute dy namics in ro om te mperature io nic li quids. J. Phys. Chem. B 11 1: 13 473–13478.

Jonah, C. D., Miller, J. R., and Matheson, M. S. 1977. The reaction of the precursor of the hydrated electron with electron sca vengers. J . Phys. Chem. 81: 1618–1622.

Jonah, C. D., Bartels, D. M., and Chernovitz, A. C. 1989. Primary processes in the radiation chemistry of water . Int. J. Radiat. Appl. Inst. Part C. Radiat. Phys. Chem. 34: 145–156.

K ambhampati, P. , So n, D. H. , Ke e, T. W. , an d Ba rbara, P. F. 20 01. De localizing el ectrons in wat er wi th li ght. J. Phys. Chem. A 105: 8269–8272.

Katoh, R., Yoshida, Y., Katsumura, Y., and Takahashi, K. 2007. Electron photodetachment from iodide in ionic liquids through char ge-transfer-to-solvent band e xcitation. J . Phys. Chem. B 111: 4770–4774.

Ka wano, R. and Watanabe, M. 2003. Equilibrium potentials and charge transport of and I-/I3redox couple in ionic liquid. Chem. Commun . 330–331.

Ka wano, R. and Watanabe, M. 2005. Anomaly of charge transport of an iodide/tri-iodide redox couple in an ionic liquid and its importance in dye-sensitized solar cells. Chem. Commun . 2107–2109.

Lam, K. Y. and Hunt, J. W. 1975. Picosecond pulse radiolysis VI. Fast electrons in concentrated solutions of scavengers in w ater and alcohols. Int. J . Radiat. Phys. Chem. 7: 317–338.

Le Rouzo, G., Lamouroux, C., Dauvois, V., Dannoux, A., Legand, S., Durand, D., Moisy P., and Moutiers, G. 2009. Anion effect on radiochemical stability of room-temperature ionic liquids under gamma irradiation. Dalton Trans. DOI: 10.1039/b903005k.

Le wis, M. A. and Jonah, C. D. 1986. Evidence for two electron states in solvation and scavenging process in alcohols. J . Phys. Chem. 90: 5367–5372.

Lopes, J. N. C. and Padua, A. A. H. 2006. Nanostructural organization in ionic liquids. J. Phys. Chem. B 110: 3330–3335.

Luo, H., Dai, S., Bonnesen, P. V., Haverlock, T. J., Moyer, B. A., and Buchanan, A. C. III, 2006. A striking effect of ionic-liquid anions in the extraction of Sr 2+ and Cs + by dicyclohexano-18-crown-6. Solvent Extr. Ion Exch. 24: 19–31.

L ynch, D. W. and Robinson, D. A. 1968. Study of the F’ center in several alkali halides. Phys. Rev. 174: 1050–1059.

MacFarlane, D. R., Forsyth, M., Howlett, P. C., Pringle, J. M., Sun, J., Annat, G., Neil, W., and Izgorodina, E. I. 2007. Ionic liquids in electrochemical devices and processes: Managing interfacial electrochemistry. Acc. Chem. Res. 40: 1165–1173.

Mandal, P. K., Sarkar, M., and Samanta, A. 2004. Excitation-wavelength-dependent ¡uorescence behavior of some dipolar molecules in room-temperature ionic liquids. J . Phys. Chem. A 108: 9048–9053.

Marcinek, A., Zielonka, J., Gebicki, J., Gordon, C. M., and Dunkin, I. R. 2001. Ionic liquids: Novel media for characterization of radical ions. J . Phys. Chem. A 105: 9305–9309.

Maroncelli, M. and Fleming, G. R. 1987. Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solv ation. J . Chem. Phys. 86: 6221–6239.

Nag arajan, V. and Fessenden, R. W. 1984. Flash photolysis of transient radicals. Benzophenone ketyl radical. Chem. Phys. Lett. 112: 207–211.

Nikitenk o, S. I., Cannes, C., Le Naour, C., Moisy, P., and Trubert, D. 2005. Spectroscopic and electrochemical studies of U(IV)-hexachloro complex in hydrophobic room-temperature ionic liquids [BuMeIm][Tf 2 N] and [MeBu 3 N][Tf 2 N]. Inorg. Chem. 44: 9497–9505.

Nishiyama, Y., Terazima, M., and Kimura, Y. 2009. Charge effect on the diffusion coef�cient and the bimolecular reaction rate of diiodide anion radical in room temperature ionic liquids. J. Phys. Chem. B 113: 5188–5193.

Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., and Hamaguchi, H. 2003. Rotational isomerism and structure of the 1-b utyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett . 32: 948–949.

P apageorgiou, N., Athanassov, Y., Armand, M., Bonhôte, P., Pettersson, H., Azam, A., and Grätzel, M. 1996. The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc. 143: 3099–3108.

P apazyan, A. and Maroncelli, M. 1995. Rotational dielectric friction and dipole solvation: Tests of theory based on simulations of simple model solutions. J . Chem. Phys. 102: 2888–2919.

Plechk ova, N. V. and Seddon, K. R. 2008. Application of ionic liquids in the chemical industry. Chem. Soc. Rev. 37: 123–150.

Sakamoto, M., Cai, X., Hara, M., Tojyo, S., Fujitsuka, M., and Majima, T. 2004. Transient absorption spectra and lifetime of benzophenone k etyl radicals in the e xcited state. J . Phys. Chem. A 108: 8147–8150.

Shigeto, S. and Hamaguchi, H. 2006. Evidence for mesoscopic local structures in ionic liquids: CARS signal distribution of C n mim[PF6] (n = 4, 6, 8). Chem Phys. Lett. 427: 329–332.

Shirota, H. and Castner, E. W. Jr. 2005. Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. J . Phys. Chem. A 109: 9388–9392.

Shirota, H., Funston, A. M., Wishart, J. F., and Castner, E. W. Jr. 2005. Ultrafast dynamics of pyrrolidinium cation ionic liquids. J . Chem. Phys. 122: 84512(12 pages).

Shirota, H., Wishart, J. F., and Castner, E. W. Jr. 2007. Intermolecular interactions and dynamics of room temperature ionic liquids that have silyland siloxy-substituted imidazolium cations. J. Phys. Chem. B 111: 4819–4829.

Shkrob, I. A., Chemerisov, S. D., and Wishart, J. F. 2007. The initial stages of radiation damage in ionic liquids and ionic liquid-based e xtraction systems. J . Phys. Chem. B 111: 11786–11793.

Shkrob, I. A. and Wishart, J. F. 2009. Charge trapping in imidazolium ionic liquids. J. Phys. Chem. B 113: 5582–5592.

Silva, C., Walhout, P. K., Reid, P. J., and Barbara, P. F. 1998. Detailed investigation of the pump-probe spectroscop y of the equilibrated solv ated electron in alcohol. J . Phys. Chem. A 102: 5701–5707.

Skrzypczak, A. and Neta, P. 2003. Diffusion-controlled electron-transfer reactions in ionic liquids. J. Phys. Chem. A 107: 7800–7803.

Stepinski, D. C., Young, B. A., Jensen, M. P., Rickert, P. G., Dzielawa, J. A., Dilger, A. A., Rausch, D. J., and Dietz, M. L. 2006. Application of ionic liquids in actinide and �ssion product separations: Progress and prospects. In Separations for the Nuclear Fuel Cycle in the 21st Century, G. Lumetta, K. I. Nash, S. B. Clark, and J. I. Friese, (eds.), pp. 233–245. Washington, DC: American Chemical Society .

Takahashi, K., Sakai, S., Tezuka, H., Hiejima, Y., Katsumura, Y., and Watanabe, M. 2007. Reaction between diiodide anion radicals in ionic liquids. J . Phys. Chem. B 111: 4807–4811.

T akahashi, K., Sato, T., Katsumura, Y., Yang, J., Kondoh, T., Yoshida, Y., and Katoh, R. 2008. Reactions of solvated electrons with imidazolium cations in ionic liquids. Rad. Phys. Chem . 77: 1239–1243.

Takahashi, K., Tezuka, H., Saoth, T., Katsumura, Y., Watanabe, M., Crowell, R. A., and Wishart, J. F. 2009a. Kinetic salt effects on an ionic reaction in ionic liquid/methanol mixtures: Viscosity and coulombic screening ef fects. Chem. Lett . 38: 236–237.

T akahashi, K., Suda, K., Seto, T., Katsumura, Y., Katoh, R., Crowell, R. A., and Wishart, J. F. 2009b. Photodetrapping of solv ated electrons in an ionic liquid. Radiat. Phys. Chem . 78: 1129–1132.

T riolo, A., Russina, O., Bleif, H.-J., and Di Cola, E. 2007. Nanoscale segregation in room temperature ionic liquids. J . Phys. Chem. B 111: 4641–4644. v an Rantwijk, F . and Sheldon, R. A. 2007. Biocatalysis in ionic liquids. Chem. Re v. 107: 2757–2785.

W ang, Y. T. and Voth, G. A. 2005. Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127: 12192–12193.

Wang, P., Zakeeruddin, S. M., Moser, J. E., Humphry-Baker, R., and Grätzel, M. 2004. A solvent-free, SeCN /(SeCN) 3 − − based ionic liquid electrolyte for high-ef�ciency dye-sensitized nanocrystalline solar cells. J . Am Chem. Soc. 126: 7164–7165.

W akasa, M. 2007. The magnetic �eld effects on photochemical reactions in ionic liquids. J. Phys. Chem. B 111: 9434–9436.

Weingartner, H. 2008. Understanding ionic liquids at the molecular lev el: Facts, problems, and controv ersies. Ange w. Chem. Int. Ed. 47: 654–670.

W elton, T. 2004. Ionic liquids in catalysis. Coor d. Chem. Rev. 248: 2459–2477.

W ishart, J. F. 2003. Radiation chemistry of ionic liquids: Reactivity of primary species. In Ionic Liquids as Green Solvents: Progress and Prospects, R. D. Rogers and K. R. Seddon, (eds.), pp. 381–396. Washington, DC: American Chemical Society .

Wishart, J. F . 2009. Ener gy applications of ionic liquids. Ener gy Environ. Sci. 2: 956–961.

W ishart, J. F. and Neta, P. 2003. Spectrum and reactivity of the solvated electron in the ionic liquid methyltrib utylammonium bis(tri¡uorometh ylsulfonyl)imide. J . Phys. Chem. B 107: 7261–7267.

W ishart, J. F. and Shkrob, I. A., 2009. The radiation chemistry of ionic liquids and its implications for their use in nuclear fuel processing. In Ionic Liquids: From Knowledge to Application. R. D. Rogers, N. V. Plechko va, and K. R. Seddon, (eds.). ACS Symp. Ser. 1030, American Chemical Society, Washington, DC, pp. 119–134.

W ishart, J. F., Cook, A. R., and Miller, J. R. 2004. The LEAF picosecond pulse radiolysis facility at Brookhav en National Laboratory . Re v. Sci. Instrum. 75: 4359–4366.

W ishart, J. F., Lall-Ramnarine, S. I., Raju, R., Scumpia, A., Bellevue, S., Ragbir, R., and Engel, R. 2005. Effects of functional group substitution on electron spectra and solvation dynamics in a family of ionic liquids. Radiat. Phys. Chem. 72: 99–104.

W ishart, J. F., Funston, A. M., and Szreder, T., 2006. Radiation chemistry of ionic liquids. In Molten Salts XIV , R. A. Mantz, P. C. Trulo ve, H. C. De Long, G. R. Stafford, R. Hagiwara, and D. A. Costa, (eds.), pp. 802–813. Pennington, NJ: The Electrochemical Society .

Wishart, J. F ., Szreder , T., and Funston, A. M., manuscript in preparation.

Y okoyama, K., Silva, C., Son, D. H., Walhout, P. K., and Barbara, P. F. 1998. Detailed investigation of the femtosecond pump-probe spectroscop y of the h ydrated electron. J . Phys. Chem. A 102: 6957–6966.

Zhang, L., Yan, S., Cukier, R. I., and Bu, Y. 2008. Solvation of excess electrons in LiF ionic pair matrix: Evidence for a solvated dielectron from ab initio molecular dynamics simulations and calculations. J. Phys.Chem. B 112: 3767–3772. 12 Chapter 12. Time-Resolved Study on Nonhomogeneous Chemistry Induced by Ionizing Radiation with Low Linear Energy Transfer in Water and Polar Solvents at Room Temperature

Abramczyk, H. 1991. Absorption spectrum of the solvated electron. 1. Theory. J. Phys. Chem. 95: 6149–6155.

Abramczyk, H. and Kroh, J. 1992. Near-IR absorption spectrum of the solvated electron in alcohols and deuterated w ater. Radiat. Phys. Chem . 39: 99–104.

Abramczyk, H. and Kroh, J. 1994. Spectroscopic properties of the solvated electron in water, alcohols, amines, ethers and alkanes. Radiat. Phys. Chem . 43: 291–297.

Allen, O. A. 1948. Radiation chemistry of aqueous solutions. J . Phys. Colloid. Chem. 52: 479–490.

Allen, O. A. 1989. The story of radiation chemistry of water. In Early Developments in Radiation Chemistry, J. Kroh (ed.), Cambridge, U.K.: Ro yal Society of Chemistry .

Aoki, Y., Yang, J. F., Hirose, M., Sakai, F., Tsunemi, A., Yorozu, M., Okada, Y., Endo, A., Wang, X. J., and Ben-Zvi, I. 2000. A new chemical analysis system using a photocathode RF gun. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 455 (1): 99–103.

Assel, M., Laenen, R., and Laubereau, A. 1998. Dynamics of excited solvated electrons in aqueous solution monitored with femtosecond-time and polarization resolution. J . Phys. Chem. A 102: 2256–2262.

Assel, M., Laenen, R., and Laubereau, A. 1999. Retrapping and solvation dynamics after femtosecond UV excitation of the solv ated electron in w ater. J . Chem. Phys. 111 (15): 6869–6874.

Atinault, E., De Waele, V., Schmidhammer, U., Fattahi, M., and Mostafavi, M. 2008. Scavenging of and OH • radicals in concentrated HCl and NaCl aqueous solutions. Chem. Phys. Lett . 460 (4–6): 461–465.

Atinault, E., De Waele, D., Belloni, J., Le Naour, C., Fattahi, M., and Mostafavi, M. 2009a. Radiolytic yield of U IV oxidation into U VI : A new mechanism for U V reactivity in acidic solution. J. Phys. Chem. A 114 (5): 2080–2085.

Atinault, E., De Waele, V., Fattahi, M., Laverne, J. A., Pimblott, S. M., and Mostafavi, M. 2009b. Aqueous solution of UCl 6 2− in O 2 -saturated acidic medium: An ef�cient system to scavenge all primary radicals in spurs produced by irradiation. J . Phys. Chem. A 113: 949–951.

Barr , N. F. and Schuler, R. H. 1959. The dependence of radical and molecular yields on linear energy transfer in the radiation decomposition of 0.8 N sulfuric acid solutions. J . Phys. Chem. 63: 808–812.

Bartels, D. M. and Crowell, R. A. 2000. Photoionization yield vs. energy in H 2 O and D 2 O. J. Phys. Chem. A 104: 3349–3355.

B artels, D. M. , Co ok, A. R. , Mu daliar, M. , an d Jo nah, C. D. 20 00. Sp ur de cay of th e so lvated el ectron in pi cosecond radiolysis measured with time-correlated absorption spectroscopy. J. Phys. Chem. A 104 (8): 1686–1691.

Bartels, D. M., David G., and Jonah, C. D. 2001. Spur decay kinetics of the solvated electron in heavy water radiolysis. J . Phys. Chem. A 105 (34): 8069–8072.

Bax endale, J. H. and Wardman, P. 1971. Direct observation of solvation of the electron in liquid alcohols by pulse radiolysis. Natur e 230: 449–450.

Belloni, J., Monard, H., Gobert, F., Larbre, J.-P., Demarque, A., De Waele, V., Lampre, I., Marignier, J.-L., Mostafavi, M., Bourdon, J.-C., Bernard, M., Borie, H., Garvey, T., Jacquemard, B., Leblond, B., Lepercq, P., Omeich, M., Roch, M., Rodier, J., and Roux, R. 2004. ELYSE—A picosecond electron accelerator for pulse radiolysis research. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 539 (3): 527–539.

Bonin, J., Lampre, I., Pernot, P., and Mostafavi, M. 2007. Solvation dynamics of electron produced by twophoton ionization of liquid polyols. II. Propanediols. J . Phys. Chem. A 111: 4902–4913.

Bonin, J., Lampre, I., Pernot, P., and Mostafavi, M. 2008. Solvation dynamics of electron produced by twophoton ionization of liquid polyols. III. Glycerol. J . Phys. Chem. A 112: 1880–1886.

Bragg, A. E., Verlet, J. R. R., Kammrath, A., Cheshnovsky, O., and Neumark, D. M. 2004. Hydrated electron dynamics: From clusters to b ulk. Science 306: 669–671.

Bronskil, M. J., Taylor, W. B., Wolff, R. K., and Hunt, J. W. 1970. Design and performance of a pulse radiolysis system capable of picosecond time resolution. Re v. Sci. Instrum. 41 (3): 333.

Brozek-Pluska, B., Gliger, D., Hallou, A., Malka, V., and Gauduel, Y. A. 2005. Direct observation of elementary radical events: Lowand high-energy radiation femtochemistry in solutions. Radiat. Phys. Chem. 72 (2–3): 149–157.

Brun, R., Reichert, P., and Kunsch, H. R. 2001. Practical identi�ability analysis of large environmental simulation models. W ater Resour. Res. 37 (4): 1015–1030.

Buxton, G. W. 2004. The radiation chemistry of liquid water: Principles and applications. In Charg ed Particle and Proton Interaction with Matter, A. Mozunder , and Y. Hatano (eds.). Ne w York: Marcel Dekk er.

Chase, W. J. and Hunt, J. W. 1975. Solvation time of the electron in polar liquids. Water and alcohols. J. Phys. Chem. 79 (26): 2835–2845.

Cob ut, V., Frongillo, Y., Patau, J. P., Goulet, T., Fraser, M. J., and Jay-Gerin, J. P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water: I. Physical and physicochemical aspects. Radiat. Phys. Chem . 51 (3): 229–243.

Curie, P. and Debierne, A. 1901. Sur la radio-activité induite et les gaz activ és par le radium. C. R. Acad. Sci. 132: 770–772.

D’Agostini, G. 2003. Bayesian Reasoning in Data Analysis. Ri ver Edge, NJ: World Scienti�c Publishing.

D’A vignon, D. A., Bretthorst, G. L., Holtzer, M. E., and Holtzer, A. 1998. Site-speci�c thermodynamics and kinetics of a coiled-coil transition by spin in version transfer NMR. Biophys. J . 74: 3190–3197.

D’A vignon, D. A., Bretthorst, G. L., Holtzer, M. E., and Holtzer, A. 1999. Thermodynamics and kinetics of a folded-folded´ transition at v aline-9 of a GCN4-lik e leucine zipper . Biophys. J . 76: 2752–2759.

De Waele, V., Sorgues, S., Pernot, P., Marignier, J. L., Monard, H., Larbre, J. P., and Mostafa vi, M. 2006. Geminate recombination measurements of solvated electron in THF using laser-synchronized picosecond electron pulse. Chem. Phys. Lett . 423 (1–3): 30–34.

D e Wa ele, V. , So rgues, S. , Pe rnot, P. , Ma rignier, J. -L., an d Mo stafavi, M. 20 07. Ki netics st udy of th e so lvated el ectron de cay in TH F us ing la ser-synchronised pi cosecond el ectron pu lse. Nu cl. Sci. Tech. 18 (1 ): 10 –15.

De Waele, V., Schmidhammer, U., Marquès, J.-R., Monard, H., Larbre, J.-P., Bourgeois, N., and Mostafavi, M. 2009. Non-inv asive single bunch monitoring for ps pulse radiolysis. Radiat. Phys. Chem. 78: 1099–1101. du Penhoat, M. A. H., Goulet, T., Frongillo,Y., Fraser, M. J., Bernat, P., and Jay-Gerin, J. P. 2000. Radiolysis of liquid water at temperatures up to 300 degrees C: A Monte Carlo simulation study. J. Phys. Chem. A 104 (50): 11757–11770.

Duane, W. and Scheuer, O. 1913. Recherches sur la décomposition de l’eau par les rayons α. Le Radium 10: 33–46.

Ehrler, O. T. and Neumark, D. M. 2009. Dynamics of electron solvation in molecular clusters. Acc. Chem. Res. 42 (6): 769–777.

Emde, M. F., Baltuska, A., Kummrow, A., Pshenichnikov, M. S., and Wiersma, D. A. 1998. Ultrafast librational dynamics of the h ydrated electron. Phys. Re v. Lett. 80 (21): 4645–4648.

Freeman, G. R. 1987. Introduction. In Kinetics of Nonhomogeneous Processes. A Practical Introduction for Chemists, Biologists, Physicists, and Materials Scientists, G. R. Freeman (ed.). New York: Wiley Interscience.

Fricke, H. 1934. The reduction of oxygen to hydrogen peroxide by the irradiation of its aqueous solution with x-rays. J . Chem. Phys. 2 (9): 556–559.

Frongillo, Y., Goulet, T., Fraser, M. J., Cobut, V., Patau, J. P., and Jay-Gerin, J. P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water: II. Nonhomogeneous chemistry. Radiat. Phys. Chem. 51 (3): 245–254.

Gauduel, Y. 1995. Femtosecond optical spectroscopy in liquids: Applications to the study of reaction dynamics. J. Mol. Liq . 63 (1–2): 1–54.

Gauduel, Y., Pommeret, S., Migus, A., and Antonetti, A. 1990. Some evidence of ultrafast H 2 O + -water molecule reaction in femtosecond photoionization of pure liquid water: In¡uence on geminate pair recombination dynamics. Chem. Phys . 149 (1–2): 1–10.

Giesel, F . 1900. Einigesüber radium-barium-salze und derenstrahlen. V erhandl. Deutsch Phys. Ges. 2: 9–10.

Goulet, T. and Jay-Gerin, J.-P. 1989. Thermalization of subexcitation electrons in solid water. Radiat. Res. 118: 46–62.

Goulet, T., Pépin, C., Houde, D., and Jay-Gerin, J.-P. 1999. On the relaxation kinetics following the absorption of light by solvated electrons in polar liquids: Roles of the continuous spectral shifts and of the stepwise transition. Radiat. Phys. Chem . 54 (5): 441–448.

Gross, B. 1957. Irradiation ef fects in borosilicate glass. Phys. Re v. 107 (2): 368–373.

Gross, B. 1958. Irradiation ef fects in ple xiglas. J . Polym. Sci. 27 (115): 135–143.

Hart, E. J. and Boag, J. W. 1962. Absorption spectrum of the hydrated electron in water and in aqueous solutions. J . Am. Chem. Soc. 84: 4090–4095.

Hertwig, A., Hippler, H., and Unterreiner, A.-N. 1999. Transient spectra, formation, and geminate recombination of solvated electrons in pure water UV-photolysis: An alternative view. Phys. Chem. Chem. Phys. 1 (24): 5633–5642.

Hirata, Y. and Mataga, N. 1990. Solvation dynamics of electrons ejected by picosecond dye laser pulse excitation of p-phen ylenediamine in se veral alcoholic solutions. J . Phys. Chem. 94: 8503–8505.

H olpar, P. , Me gyes, T. , an d Ke szei, E. 19 99. El ectron so lvation in me thanol re visited. Ra diat. Phys. Chem. 55 : 57 3–577.

Holtzer, M. E., Bretthorst, G. L., D’Avignon, D. A., Angeletti, R. H., Mints, L., and Holtzer, A. 2001. Temperature dependence of the folding and unfolding kinetics of the GCN4 Leucine Zipper via 13 Cα-NMR. Biophys. J. 80: 939–951.

Huerta Parajon, M., Rajesh, P., Mua, T., Pimblott, S. M., and LaVerne, J. A. 2008. H atom yield in the radiolysis of w ater. Radiat. Phys. Chem . 77: 1203–1207.

Hunt, J. W., Wolff, R. K., Bronskill, M. J., Jonah, C. D., Hart, E. J., and Matheson, M. S. 1973. Radiolytic yields of hydrated electrons at 30 to 1000 picoseconds after energy absorption. J. Phys. Chem. 77 (3): 425–426.

Janik, I., Bartels, D. M., and Jonah, C. D. 2007. Hydroxyl radical self-recombination reaction and absorption spectrum in w ater up to 350°C. J . Phys. Chem. A 111 (10): 1835–1843.

Jay-Gerin, J. P. and Ferradini, C. 2000. A new estimate of the (OH)-O-center dot radical yield at early times in the radiolysis of liquid w ater. Chem. Phys. Lett . 317 (3–5): 388–391.

J onah, C. D. 1975. Wide-time range pulse-radiolysis system of picosecond time resolution. Rev. Sci. Instrum. 46: 42–46.

Jonah, C. D. and Miller, J. R. 1977. Yield and decay of the hydroxyl radical from 200 ps to 2 ns. J. Phys. Chem. 81 (21): 1974–1976.

Jonah, C. D., Hart, E. J., and Matheson, M. S. 1973. Yields and decay of the h ydrated electron at times greater than 200 picoseconds. J . Phys. Chem. 77 (15): 1838–1843.

Jonah, C. D., Matheson, M. S., Miller, J. R., and Hart, E. J. 1976. Yield and decay of hydrated electron from 100 ps to 3 ns. J . Phys. Chem. 80: 1267–1270.

Kadhum, A. A. H. and Salmon, G. A. 1984. Electron scavenging in the [gamma]-radiolysis of tetrahydrofuran. Radiat. Phys. Chem. (1977) 23 (1–2): 67–71.

Kambhampati, P., Son, D. H., Kee, T. W., and Barbara, P. F. 2002. Solvation dynamics of the hydrated electron depends on its initial de gree of electron delocalization. J . Phys. Chem. A 106: 2374–2378.

K ashiwagi, S., Kuroda, R., Oshima, T., Nagasawa, F., Kobuki, T., Ueyama, D., Hama, Y., Washio, M., Ushida, K., Hayano, H., and Urakaw a, J. 2005. Compact soft x-ray source using Thomson scattering. J. Appl. Phys. 98 (12): 123302–123306.

Ka waguchi, M., Ushida, K., Kashiwagi, S., Kuroda, R., Kuribayashi, T., Kobayashi, M., Hama, Y., and Washio, M. 2005. Development of compact picosecond pulse radiolysis system. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 236: 425–431.

K ee, T. W., Son, D. H., Kambhampati, P., and Barbara, P. F. 2001. A uni�ed electron transfer model for the different precursors and e xcited states of the h ydrated electron. J . Phys. Chem. A 105: 8434–8439.

K ernbaum, M. 1909. Action chimique sur l’eau des rayons pénétrants de radium. C. R. Acad. Sci. 148: 705–706.

Keszei, E. and Jay-Gerin, J.-P. 1992. On the role of the parent cation in the dynamics of formation of laserinduced h ydrated electrons. Can. J . Chem. 70: 21–23.

Kloepfer , J. A., Vilchiz, V. H., Lenchenkov, V. A., Germaine, A. C., and Bradforth, S. E. 2000. The ejection distribution of solvated electrons generated by the one-photon photodetachment of aqueous I − and twophoton ionization of the solv ent. J . Chem. Phys. 113 (15): 6288–6307.

K obayashi, H. and Tabata, Y. 1985. A 20 ps time resolved pulse-radiolysis using 2 linacs. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 10–11 (May): 1004–1006.

K ozawa, T., Mizutani, Y., Yokoyama, K., Okuda, S., Yoshida, Y., and Tagawa, S. 1999. Measurement of farinfrared subpicosecond coherent radiation for pulse radiolysis. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 429 (1–3): 471–475.

Kozawa, T., Mizutani, Y., Miki, M., Yamamoto, T., Suemine, S., Yoshida, Y., and Tagawa, S. 2000. Development of subpicosecond pulse radiolysis system. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 440 (1): 251–253. Kraus, C. A. 1908. Solutions of metals in non-metallic solvents; IV. Material effects accompanying the passage of an electrical current through solutions of metals in liquid ammonia. Migration experiments. J. Am. Chem. Soc. 30: 1323–1344.

Lampre, I., Bonin, J., Soroushian, B., Pernot, P., and Mostafavi, M. 2008a. Formation and solvation dynamics of electrons in polyols. J . Mol. Liq. 141: 124–129.

Lampre, I., Pernot, P., Bonin, J., and Mostafavi, M. 2008b. Comparison of solvation dynamics of electrons in four polyols. Radiat. Phys. Chem . 77: 1183–1189.

LaV erne, J. A. and Pimblott, S. M. 1991. Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water: Examination of experiments and models. J. Phys. Chem. 95 (8): 3196–3206.

LaVerne, J. A. and Pimblott, S. M. 2000. New mechanism for H 2 formation in water. J. Phys. Chem. A 104: 9820–9822.

Lee, I.-R., Lee, W., and Zewail, A. H. 2008. Dynamics of electrons in ammonia cages: The discovery system of solvation. ChemPhysChem 9: 83–88.

L ian, R., Crowell, R. A., and Shkrob, I. A. 2005. Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H 2 O and D 2 O. J. Phys. Chem. A 109: 1510–1520.

Lin, M. Z., Mostafavi, M., Muroya, Y., Han, Z. H., Lampre, I., and Katsumura, Y. 2006. Time-dependent radiolytic yields of the solvated electrons in 1,2-ethanediol, 1,2-propanediol, and 1,3-propanediol from picosecond to microsecond. J . Phys. Chem. A 110 (40): 11404–11410.

Lindner , J., Unterreiner, A.-N., and Vöhringer , P. 2006. Femtosecond relaxation dynamics of solvated electrons in liquid ammonia. ChemPhysChem 7: 363–369.

Long, F. H., Lu, H., and Eisenthal, K. B. 1990. Femtosecond studies of the presolvated electron: An excited state of the solv ated electron? Phys. Re v. Lett. 64 (12): 1469–1472.

Madsen, D., Thomsen, C. L., Thogersen, J., and Keiding, S. R. 2000. Temperature dependent relaxation and recombination dynamics of the h ydrated electron. J . Chem. Phys. 113 (3): 1126–1134.

Magee, J. L. and Chatterjee, A. 1987. Track reactions of radiation chemistry. In Kinetics of Nonhomogeneous Processes. A Practical Introduction for Chemists, Biologists, Physicists, and Materials Scientists, G. R. Freeman (ed.). Ne w York: Wiley Interscience.

Marignier , J. L., de Waele, V., Monard, H., Gobert, F., Larbre, J. P, Demarque, A., Mostafavi, M., and Belloni, J. 2006. Time-resolv ed spectroscopy at the picosecond laser-triggered electron accelerator ELYSE. Radiat. Phys. Chem. 75 (9): 1024–1033.

M artini, I. B., Barthel, E. R., and Schwartz, B. J. 2000. Mechanisms of the ultrafast production and recombination of solvated electrons in weakly polar ¡uids: Comparison of multiphoton ionization and detachment via the charge-transfer-to-solvent transition of Na- in THF. J. Chem. Phys. 113 (24): 11 245–11257.

Migus, A., Gauduel, Y., Martin, J. L., and Antonetti, A. 1987. Excess electrons in liquid water: First evidence of a preh ydrated state with femtosecond lifetime. Phys. Re v. Lett. 58 (15): 1559–1562.

M irdamadi-Esfahani, M. , La mpre, I. , Ma rignier, J. -L., de Wa ele, V. , an d Mo stafavi, M. 20 09. Ra diolytic fo rmation of tr ibromine io n Br 3 − in aqueous solutions, a system for steady-state dosimetry. Radiat. Phys. Chem. 78 (2): 106–111.

Mizuno, M. and Tahara, T. 2003. Picosecond time-resolved resonance Raman study of the solvated electron in water . J . Phys. Chem. A 107: 2411–2421.

Mizuno, M., Yamaguchi, S., and Tahara, T. 2005. Relaxation dynamics of the hydrated electron: Femtosecond time-resolved resonance Raman and luminescence study . J . Phys. Chem. A 109: 5257–5265.

Mozumder , A. 2002. Ionization and excitation yields in liquid water due to the primary irradiation: Relationship of radiolysis with f ar UV -photolysis. Phys. Chem. Chem. Phys . 4: 1451–1456.

Mozumder , A. 2005. Electrons in condensed media. Radiat. Phys. Chem . 72: 73–78.

Muro ya, Y., Lin, M., Watanabe, T., Wu, G., Kobayashi, T., Yoshii K., Ueda, K., Uesaka, M., and Katsumura, Y. 2001a. Ultra-fast pulse radiolysis system combined with a laser photocathode RF gun and a femtosecond laser Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 489 (1–3): 554–562.

Muroya, Y., Watanabe, T., Wu, G., Li, X., Kobayashi, T., Sugahara, J., Ueda, T., Yoshii, K., Uesaka, M., and Katsumura, Y. 2001b. Design and development of a sub-picosecond pulse radiolysis system. Radiat. Phys. Chem. 60 (4–5): 307–312.

Muroya, Y., Meesungnoen, J., Jay-Gerin, J. P., Filali-Mouhim, A., Goulet, T., Katsumura, Y., and Mankhetkorn, S. 2002. Radiolysis of liquid water: An attempt to reconcile Monte Carlo calculations with new experimental h ydrated electron yield data at early times. Can. J . Chem. 80: 1367–1374.

Muro ya, Y., Lin, M., Iijima, H., Ueda, T., and Katsumura, Y. 2005a. Current status of the ultra-fast pulse radiolysis system at NERL, the Uni versity of Tokyo. Res. Chem. Intermed . 31 (1–3): 261–272.

M uroya, Y., Lin, M. Z., Wu, G. Z., Iijima, H., Yoshi, K., Ueda, T., Kudo, H., and Katsumura, Y. 2005b. A re-evaluation of the initial yield of the hydrated electron in the picosecond time range. Radiat. Phys. Chem. 72 (2–3): 169–172.

Muroya, Y., Lin, M. Z., Han, Z. H., Kumagai, Y., Sakumi, A., Ueda, T., and Katsumura, Y. 2008. Ultra-fast pulse radiolysis: A review of the recent system progress and its application to study on initial yields and solvation processes of solvated electrons in various kinds of alcohols. Radiat. Phys. Chem. 77 (10–12): 1176–1182.

Nagai, H., Kawaguchi, M., Sakaue, K., Komiya, K., Nomoto, T., Kamiya, Y., Hama, Y., Washio, M., Ushida, K., Kashiwagi, S., and Kuroda, R. 2007. Improv ements in time resolution and signal-to-noise ratio in a compact pico-second pulse radiolysis system. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 265 (1): 82–86.

Nik ogosyan, D. N., Oraevsk y, A. A., and Rupasov , V. I. 1983. Tw o-photon ionization and dissociation of liquid water by po werful laser UV radiation. Chem. Phys . 77 (1): 131–143.

Nordlund, D., Ogasa wara, H., Bluhm, H., Takahashi, O., Odelius, M., Nagasono, M., Pettersson, L. G. M., and Nilsson, A. 2007. Probing the electron delocalization in liquid water and ice at attosecond time scales. Phys. Rev . Lett. 99: 217406.

Okamoto, K., Saeki, A., Koza wa, T., Yoshida, Y., and Tag awa, S. 2003. Subpicosecond pulse radiolysis study of geminate ion recombination in liquid benzene. Chem. Lett . 32 (9): 834–835.

O ulianov, D. A., Crowell, R. A., Gosztola, D. J., Shkrob, I. A., Korovyanko, O. J., and Rey-de-Castro, R. C. 2007. Ultrafast pulse radiolysis using a teraw att laser wak e�eld accelerator. J. Appl. Phys. 101 (5): 053102–053109.

Paik, D. H., Lee, I.-R., Yang, D.-S., Baskin, J. S., and Zew ail, A. H. 2004. Electrons in �nite-sized water cavities: Hydration dynamics observ ed in real time. Science 306: 672–675.

P astina, B., LaVerne, J. A., and Pimblott, S. M. 1999. Dependence of molecular hydrogen formation in water on sca vengers of the precursor to the h ydrated electron. J . Phys. Chem. A 103: 5841–5846.

P épin, C. , Go ulet, T. , Ho ude, D. , an d Ja y-Gerin, J. -P. 19 94. Fe mtosecond ki netic me asurements of ex cess el ectrons in me thanol: Su bstantiation fo r a hy brid so lvation me chanism. J. Phys. Chem. 98 : 70 09–7013.

Pépin, C., Goulet, T., Houde, D., and Jay-Gerin, J.-P. 1997. Observation of a continuous spectral shift in th e so lvation ki netics of el ectrons in ne at li quid de uterated wa ter. J. Phys. Chem. A 10 1 (2 4): 43 51–4360.

Pimblott, S. M. and LaVerne, J. A. 1997. Stochastic simulation of the electron radiolysis of water and aqueous solutions. J . Phys. Chem. A 101 (33): 5828–5838.

Pommeret, S., Gobert, F., Mostafa vi, M., Lampre, I., and Mialocq, J.-C. 2001. Femtochemistry of the hydrated electron at decimolar concentration. J . Phys. Chem. A 105: 11400–11406.

Pshenichnik ov, M. S., Baltuska, A., and Wiersma, D. A. 2004. Hydrated electron population dynamics. Chem. Phys. Lett. 389: 171–175. Reuther , A., Laubereau, A., and Nikogosyan, D. N. 1996. Primary photochemical processes in water. J. Phys. Chem. 100 (42): 16794–16800.

Saeki, A., Kozawa, T., Kashiwagi, S., Okamoto, K., Isoyama, G., Yoshida, Y., and Tagawa, S. 2005. Synchronization of femtosecond UV-IR laser with electron beam for pulse radiolysis studies. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 546 (3): 627–633.

Saeki, A., Kozawa, T., and Tagawa, S. 2006. Picosecond pulse radiolysis using femtosecond white light with a high S/N spectrum acquisition system in one beam shot. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 556 (1): 391–396.

Saeki, A., Kozawa, T., Ohnishi, Y., and Tagawa, S. 2007. Reactivity between biphenyl and precursor of solvated electrons in tetrahydrofuran measured by picosecond pulse radiolysis in near-ultraviolet, visible, and infrared. J . Phys. Chem. A 111 (7): 1229–1235.

Salmon, G. A., Seddon, W. A., and Fletcher, J. W. 1974. Pulse radiolytic formation of solvated electrons, ionpairs, and alkali metal anions in tetrah ydrofuran. Can. J . Chem. 52: 3259–3268.

Sander , M., Brummund, U., Luther , K., and Troe, J. 1992. F ast processes in UV -two-photon e xcitation of pure liquids. Ber . Bunsenges. Phys. Chem. 96 (10): 1486–1490.

Sander, M. U., Luther, K., and Troe, J. 1993. On the photoionization mechanism of liquid water. Ber. Bunsenges. Phys. Chem. 97: 953–961.

Sauer , M. C., Shkrob, I. A., Lian, R., Crowell, R. A., Bartels, D., Chen, X., Suffern, D., and Bradforth, S. E. 2004. Electron photodetachment from aqueous anions. 2. Ionic strength effect on geminate recombination dynamics and quantum yield for h ydrated electron. J . Phys. Chem. A 108 (47): 10414–10425.

Scheidt, T. and Laenen, R. 2003. Ionization of methanol: Monitoring the trapping of electrons on the fs time scale. Chem. Phys. Lett . 371 (3–4): 445–450.

S hi, X., Long, F. H., Lu, H., and Eisenthal, K. B. 1995. Electron solvation in neat alcohols. J. Phys. Chem. 99 (18): 6917–6922.

Shkrob, I. A. 2006. Ammoniated electron as a solvent stabilized multimer radical anion. J. Phys. Chem. A 110: 3967–3976.

Silva, C., Walhout, P. K., Reid, P. J., and Barbara, P. F. 1998a. Detailed investigations of the pump-probe spectroscopy of the equilibrated solv ated electron in alcohols. J . Phys. Chem. A 102: 5701–5707.

Silv a, C., Walhout, P. K., Yok oyama, K., and Barbara, P. F. 1998b. Femtosecond solvation dynamics of the hydrated electron. Phys. Re v. Lett. 80 (5): 1086–1089.

Si via, D. S. 1996. Data Analysis: A Bayesian Tutorial. Oxford, U.K.: Clarendon Press.

Soroushian, B., Lampre, I., Bonin, J., Pernot, P., Pommeret, S., and Mostafa vi, M. 2006. Solvation dynamics of the electron produced by two-photon ionization of liquids polyols. I. Ethylene glycol. J. Phys. Chem. A 110 (5): 1705–1717.

Sumiyoshi, T. and Katayama, M. 1982. The yield of h ydrated electron at 30 ps. Chem. Lett . 12: 1887–1890.

Sumiyoshi, T., Tsugaru, K., Yamada, T., and Katayama, M. 1985. Yields of solvated electrons at 30 picoseconds in w ater and alcohols. Bull. Chem. Soc. Jpn . 58 (11): 3073–3075.

Swiatla-W ojcik, D. and Buxton, G. V. 1995. Modeling of radiation spur processes in water at temperatures up to 300°C. J . Phys. Chem. 99 (29): 11464–11471.

Swiatla-W ojcik, D. and Buxton, G. V. 2000. Diffusion-kinetic modelling of the effect of temperature on the radiation chemistry of hea vy w ater. Phys. Chem. Chem. Phys . 2 (22): 5113–5119.

Symons, M. C. R. 1976. Solutions of metals: Solv ated electrons. Chem. Soc. Re v. 5: 337–358.

T abata, Y., Kobayashi, H., Washio, M., Tag awa, S., and Yoshida, Y. 1985. Pulse-radiolysis with picosecond time resolution. Radiat. Phys. Chem . 26 (5): 473–479.

T auber, M. J. and Mathies, R. A. 2002. Resonance Raman spectra and vibronic analysis of the aqueous solvated electron. Chem. Phys. Lett . 354: 518–526.

T auber, M. J. and Mathies, R. A. 2003. Structure of the aqueous solvated electron from resonance Raman spectroscop y: Lessons from isotopic mixtures. J . Am. Chem. Soc. 125: 1394–1402.

T auber, M. J., Stuart, C. M., and Mathies, R. A. 2004. Resonance Raman spectra of electrons solvated in liquid alcohols. J . Am. Chem. Soc. 126: 3414–3415.

Thaller , A., Laenen, R., and Laubereau, A. 2006. The precursors of the solvated electron in methanol studied by femtosecond pump-repump-probe spectroscop y. J . Chem. Phys. 124: 024515.

Thomas, J. M., Edwards, P. P., and Kuznetso v, V. L. 2008. Sir Humphry Davy: Boundless chemist, physicist, poet and man of action. ChemPhysChem 9:59–66.

T uri, L., Holpar, P., and Keszei, E. 1997. Alternative mechanisms for solvation dynamics of laser-induced electrons in methanol. J . Phys. Chem. A 101: 5469–5476.

Uesaka, M., Tauchi, K., Kozawa, T., Kobayashi, T., Ueda, T., and Miya, K. 1994. Generation of a subpicosecond relati vistic electron single b unch at the S-band linear accelerator . Phys. Re v. E 50 (4): 3068.

Uesaka, M., Sakumi, A., Hosokai, T., Kinoshita, K., Yamaoka, N., Zhidko v, A., Ohkubo, T., Ueda, T., Muroya, Y., Katsumura, Y., Iijima, H., Tomizawa, H., and Kumagai, N. 2005. New accelerators for femtosecond beam pump-and-probe analysis. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 241 (1–4): 880–884.

W alhout, P. K., Alfano, J. C., Kimura, Y., Silva, C., Reid, P. J., and Barbara, P. F. 1995. Direct pump/probe spectroscopy of the near -IR band of the solv ated electron. Chem. Phys. Lett . 232: 135–140.

W eiss, J. 1944. Radiochemistry in aqueous solutions. Natur e 153: 748–750.

W ishart, J. F., Cook, A. R., and Miller, J. R. 2004. The LEAF picosecond pulse radiolysis facility at Brookhaven National Laboratory . Re v. Sci. Instrum. 75 (11): 4359–4366. W ojcik, M., Tachiya, M., Tagawa, S., and Hatano, Y. 2004. Electron-ion recombination in condensed matter: Geminate and bulk recombination processes. In Charg ed Particles and Photon interactions with Matter, A. Mozumder and Y. Hatano (eds.). Ne w York: Marcel Dekk er.

Wolff, R. K., Bronskill, M. J., Aldrich, J. E., and Hunt, J. W. 1973. Picosecond pulse radiolysis. IV. Yield of the solvated electron at 30 picoseconds. J . Phys. Chem. 77 (11): 1350–1355.

Wolff, R. K., Aldrich, J. E., Penner, T. L., and Hunt, J. W. 1975. Picosecond pulse radiolysis. V. Yield of electrons in irradiated aqueous solution with high concentrations of scavenger. J. Phys. Chem. 79 (3): 210–219.

Yang, J. F., Kondoh, T., Kozawa, T., Yoshida, Y., and Tagawa, S. 2006. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique. Radiat. Phys. Chem. 75 (9): 1034–1040.

Y okoyama, K., Silva, C., Son, D. H., Walhout, P. K., and Barbara, P. F. 1998. Detailed investigation of the femtosecond pump-probe spectroscop y of the h ydrated electron. J . Phys. Chem. A 102: 6957–6966. 13 Chapter 13. Radiation Chemistry of Liquid Water with Heavy Ions: Steady-State and Pulse Radiolysis Studies

Anderson, A. R. and Hart, E. J. 1961. Molecular product and free radical yields in decomposition of water by protons, deuterons, and helium ions. Radiat. Res . 13: 689–704.

A ppleby, A. and Christman, E. A. 1974. Radiation chemical studies with 3.9 GeV N 7+ ions. Radiat. Res. 60: 34–41.

Appleby, A. and Schwarz, H. A. 1969. Radical and molecular yields in water irradiated by gamma rays and heavy ions. J . Phys. Chem. 73: 1937–1941.

Appleby , A., Christman, E. A., and Jayko, M. 1985. Radiation-chemistry of high-energy carbon, neon, and argon ions — Hydroxyl radical yields. Radiat. Res . 104: 263–271.

Appleby , A., Christman, E. A., and Jayko, M. 1986. Radiation-chemistry of high-energy carbon, neon, and argon ions — Hydrated electron yields. Radiat. Res . 106: 300–306.

B aldacchino, G. and Katsumura, Y. 2010. Recent process in heavy ion tracks. In Recent Trends in Radiation Chemistry, J. F. Wishart and B. S. M. Rao (eds.), pp. 231–254. Singapore: World Scienti�c Publishing Company.

Baldacchino, G., Bouffard, S., Balanzat, E. et al. 1997. LET effect on the radiolytic yield and the kinetics of the hydrated electron generated by 75 MeV/A C 6+ pulses. J. Chim. Phys. 94: 200–204.

Baldacchino, G., Bouffard, S., Balanzat, E. et al. 1998a. Direct time-resolved measurement of radical species formed in water by heavy ions irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 136: 528–532.

Baldacchino, G., Le Parc, D., Hickel, B. et al. 1998b. Direct observation of HO /O 2 2 − free radicals generated in water by a high-linear ener gy transfer pulsed hea vy-ion beam. Radiat. Res . 139: 128–133.

Baldacchino, G., Trupin, V., Bouffard, S. et al. 1999. LET effects in water radiolysis. Pulse radiolysis experiments with hea vy ions. J . Chim. Phys. 96: 50–60. Baldacchino, G., Trupin-Wasselin, V., Bouffard, S. et al. 2001. Production of superoxide radicals by linearenergy-transfer pulse radiolysis of w ater. Can. J . Physiol. Pharm. 79: 180–183.

Baldacchino, G., Vigneron, G., Renault, J. P. et al. 2003. A nanosecond pulse radiolysis study of the hydrated electron with high energy carbon ions. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 209: 219–223.

Baldacchino, G., Vigneron, G., Renault, J. P. et al. 2004. A nanosecond pulse radiolysis study of the hydrated electron with high ener gy ions with a narro w v elocity distrib ution. Chem. Phys. Lett . 385: 66–71.

Baldacchino, G., De Waele, V., Monard, H. et al. 2006a. Hydrated electron decay measurements with picosecond pulse radiolysis at ele vated temperatures up to 350 de grees C. Chem. Phys. Lett . 424: 77–81.

Baldacchino, G., Vigneron, G., Renault, J. P. et al. 2006b. Hydroxyl radical yields in the tracks of high energy 13 C 6+ and 36 Ar 18+ ions in liquid water. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 245: 288–291.

Baldacchino, G., Maeyama, T., Yamashita, S. et al. 2009. Determination of the time-dependent OH-yield by using ¡uorescent probe. Application to hea vy ion irradiation. Chem. Phys. Lett . 468: 275–279.

Barkas, W. H. 1963. Nuclear Resear ch Emulsions—I. Techniques and Theory. Ne w York: Academic Press.

Ber ger, M. J., Inokuti, M., Anderson, H. H. et al. 1993. Stopping powers and ranges for protons and alpha particles. ICR U Report 49.

Bielski, B. H. J. and Allen, A. O. 1977. Mechanism of disproportionation of superoxide radicals. J. Phys. Chem. 81: 1048–1050.

Burns, W. G., May, R., Buxton, G. V., and Tough, G. S. 1977. Yield and decay of hydrated electron in proton tracks—Pulse-radiolysis study . F araday Discuss. 63: 47–54.

Burns, W. G., May, R., Buxton, G. V., and Wilkinsontough, G. S. 1981. Nanosecond proton pulse-radiolysis of aqueous-solutions. 2. Improved measurements and isotope effects. J. Chem. Soc. Faraday Trans. 77: 1543–1551.

Champion, C., L’Hoir, A., Politis, M. F., Fainstein, P. D., Rivarola, R. D., and Chetioui, A. 2005. A Monte Carlo code for the simulation of hea vy-ion tracks in w ater. Radiat. Res . 163: 222–231.

Chitose, N., LaVerne, J. A., and Katsumura, Y. 1998. Effect of formate concentration on radical formation in the radiolysis of aqueous meth yl viologen solutions. J . Phys. Chem. A 102: 2087–2090.

Chitose, N., Katsumura, Y., Domae, M., Zuo, Z., and Murakami, T. 1999a. Radiolysis of aqueous solutions with pulsed helium ion beams. 2. Yield of SO 4 − formed by scavenging hydrated electron as a function of S O 2 8 2− concentration. Radiat. Phys. Chem . 54: 385–391.

C hitose, N., Katsumura, Y., Domae, M., Zuo, Z. H., Murakami, T., and LaVerne, J. A. 1999b. Radiolysis of aqueous solutions with pulsed helium ion beams. 3. Yields of OH radicals and the sum of e aq – and H atom yields determined in methyl viologen solutions containing formate. J. Phys. Chem. A 103: 4769–4774.

Chitose, N., Katsumura, Y., Domae, M. et al. 2001. Radiolysis of aqueous solutions with pulsed ion beams. 4. Product yields for proton beams in solutions of thiocyanate and methyl viologen/formate. J. Phys. Chem. A 105: 4902–4907.

Christman, E. A., Appleby, A., and Jayko, M. 1981. Radiation-chemistry of high-energy carbon, neon, and argon ions—Inte gral yields from ferrous sulf ate-solutions. Radiat. Res . 85: 443–457.

Cob ut, V., Frongillo, Y., Patau, J. P., Goulet, T., Fraser, M. J., and Jay-Gerin, J. P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water. I. Physical and physicochemical aspects. Radiat. Phys. Chem. 51: 229–243.

Drag anic´, Z. D. and Draganic´, I. G. 1973. Studies on the formation of primary yields of hydroxyl radical and hydrate in the γ -radiolysis of w ater. J . Phys. Chem. 77: 765–772.

Elliot, A. J. 1994. Rate constants and G-values for the simulation of the radiolysis of light water over the range 0–300 de gree Celsius. AECL-11073, COG-94-167.

Frongillo, Y., Fraser, M. J., Cobut, V., Goulet, T., JayGerin, J. P., and Patau, J. P. 1996. Evolution of the species produced by the slowing down of fast protons in liquid water: Simulation based on the independent reaction times approximation. J . Chim. Phys. 93: 93–102.

Frongillo, Y., Goulet, T., Fraser, M. J., Cobut, V., Patau, J. P., and Jay-Gerin, J. P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water . II. Nonhomogeneous chemistry. Radiat. Phys. Chem. 51: 245–254.

Gaigeot, M. P., Vuilleumier , R., Stia, C. et al. 2007. A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid w ater. J . Phys. B: At. Mol. Opt. Phys. 40: 1–12.

Gerv ais, B., Beuve, M., Oliv era, G. H., Galassi, M. E., and Riv arola, R. D. 2005. Production of HO 2 and O 2 − by multiple ionization in w ater radiolysis by swift carbon ions. Chem. Phys. Lett . 410: 330–334.

Gerv ais, B., Beuve, M., Olivera, G. H., and Galassi, M. E. 2006. Numerical simulation of multiple ionization and high LET ef fects in liquid w ater radiolysis. Radiat. Phys. Chem . 75: 493–513.

Jonah, C. D. and Miller, R. 1977. Yield and decay of the OH radical from 200 ps to 3 ns. J. Phys. Chem. 81: 1974–1976.

Kondoh, T., Yang, J., Kan, K. et al. 2008. Extension of the heavy ion beam pulse radiolysis using scintillators. JAERI Rev. 2008-055.

LaV erne, J. A. 1989. The production of OH radicals in the radiolysis of water with 4 He ions. Radiat. Res. 118: 201–210.

LaVerne, J. A. 1996. Dev elopment of radiation chemistry studies of aqueous solutions with heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater . Atoms 107: 302–307.

LaV erne, J. A. 2000. Track ef fects of hea vy ions in liquid w ater. Radiat. Res . 153: 487–496.

LaV erne, J. A. 2004. Radiation chemical effects of heavy ions. In Charg ed Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 403–429. Ne w York: Marcel Dekk er.

LaVerne, J. A. and Pimblott, S. M. 2000. New mechanism for H 2 formation in water. J. Phys. Chem. A 104: 9820–9822.

LaVerne, J. A. and Schuler, R. H. 1985. Production of HO 2 . In the track of high-energy carbon-ions. J. Phys. Chem. 89: 41713173.

LaV erne, J. A. and Schuler, R. H. 1987. Radiation chemical studies with heavy-ions—Oxidation of ferrous ion in the Frick e dosimeter . J . Phys. Chem. 91: 5770–5776.

LaV erne, J. A. and Schuler, R. H. 1994. Track effects in water radiolysis—Yields of the Fricke dosimeter for carbon-ions with ener gies up to 1700 MeV. J . Phys. Chem. 98: 4043–4049.

LaV erne, J. A. and Yoshida, H. 1993. Production of the hydrated electron in the radiolysis of water with heliumions. J . Phys. Chem. 97: 10720–10724.

LaV erne, J. A., Stefanic, I., and Pimblott, S. M. 2005. Hydrated electron yields in the heavy ion radiolysis of water. J . Phys. Chem. A 109: 9393–9401.

Meesungnoen, J. and Jay-Gerin, J. P. 2005a. High-LET radiolysis of liquid water with 1 H + , 4 He 2+ , 12 C 6+ , and 20 Ne 9+ ions: Effects of multiple ionization. J. Phys. Chem. A 109: 6406–6419.

Meesungnoen, J. and Jay-Gerin, J. P. 2005b. Effect of multiple ionization on the yield of H 2 O 2 produced in the radiolysis of aqueous 0.4 M H 2 SO 4 solutions by high-LET 12 C 6+ and 20 Ne 9+ ions. Radiat. Res. 164: 688–694.

Milosavljevic, B. H. and LaVerne, J. A. 2005. Pulse radiolysis of aqueous thiocyanate solution. J. Phys. Chem. A 109: 165–168.

Mozumder , A. 2004. Interaction of fast charged particles with matter. In Charged Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 9–29. Ne w York: Marcel Dekk er.

Muroya, Y., Lin, M. Z., Wu, G. Z. et al. 2005. A re-evaluation of the initial yield of the hydrated electron in the picosecond time range. Radiat. Phys. Chem . 72: 169–172.

Noda, K., Tann, D., Uesugi, T., Shibuya, S., Honma, T., and Hashimoto, Y. 2005. Production of short-pulsed beam for ion-beam pulse radiolysis. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 240: 18–21.

Ohno, S., Furukawa, K., Taguchi, M., Kojima, T., and Watanabe, H. 2001. An ion-track structure model based on experimental measurements and its application to calculate radiolysis yields. Radiat. Phys. Chem. 60: 259–262.

Pastina, B. and LaV erne, J. A. 1999. Hydrogen peroxide production in the radiolysis of w ater with hea vy ions. J. Phys. Chem. A 103: 1592–1597.

Pimblott, S. M. and Laverne, J. A. 1994. Diffusion-kinetic theories for LET effects on the radiolysis of water. J. Phys. Chem. 98: 6136–6133.

Pimblott, S. M. and LaVerne, J. A. 2002. Effects of track structure on the ion radiolysis of the Fricke dosimeter. J. Phys. Chem. A 106: 9420–9427.

Pimblott, S. M. and Mozumder, A. 2004. Modeling of physicochemical and chemical processes in the interact ions of fas t ch arged pa rticles wi th ma tter. In Ch arged Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 75–103. Ne w York: Marcel Dekk er.

Rice, S. A., Playford, V. J., Burns, W. G., and Buxton, G. V. 1982. Nanosecond proton pulse-radiolysis. J. Phys. E Sci. Instrum. 15: 1240–1243.

S auer, M. C. , Sc hmidt, K. H. , Ha rt, E. J. , Na leway, C. A. , an d Jo nah, C. D. 19 77. LE T de pendence of tr ansient yi elds in pu lse-radiolysis of aq ueous sy stems wi th de uterons an d al pha-particles. Ra diat. Res. 70 : 91 –106.

Sauer, M. C., Schmidt, K. H., Jonah, C. D., Nalew ay, C. A., and Hart, E. J. 1978. High-LET pulse-radiolysis— O 2 − and oxygen production in tracks. Radiat. Res. 75: 519–528.

Sauer, M. C., Jonah, C. D., Schmidt, K. H., and Naleway, C. A. 1983. LET dependences of yields in the pulseradiolysis of aqueous systems with 2 H + and 4 He 2+ . Radiat. Res. 93: 40–50.

Schwarz, H. A., Caffrey, J. M., and Scholes, G. 1959. Radiolysis of neutral water by cyclotron produced deuterons and helium ions. J . Am. Chem. Soc. 81: 1801–1809.

Spinks, J. W. T. and Woods, R. J. 1990. An Intr oduction to Radiation Chemistry, 3rd edn. New York/Chichester/ Brisbane/T oronto/Singapore: John Wile y & Sons, Inc.

T aguchi, M. and Kojima, T. 2005. Yield of OH radicals in water under high-density energy deposition by heavyion irradiation. Radiat. Res . 163: 455–461.

T aguchi, M. and Kojima, T. 2007. Yield of OH radicals in water under heavy ion irradiation. dependence on mass, speci�c ener gy, and elapsed time. Nucl. Sci. Tech. 18: 35–38.

T aguchi, M., Aoki, Y., Namba, H., Watanabe, R., Matsumoto, Y., and Hiratsuka, H. 1997. Fast ¡uorescence decay of naphthalene induced by Ar ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 132: 135–131.

T aguchi, M., Kimura, A., Watanabe, R., and Hirota, K. 2009. Estimation of yields of hydroxyl radicals in water under v arious ener gy hea vy ions. Radiat. Res . 171: 254–263.

T aguchi, M., Baldacchino, G., Kurashima, S. et al. 2009. Transient absorption measurement system using pulsed ener getic ion. Radiat. Phys. Chem. 78: 1169–1174.

T oburen, L. H. 2004. Ionization and secondary electron production by fast charged particles. In Charged Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 31–74. New York: Marcel Dekk er.

Wasselin-Trupin, V., Baldacchino, G., Bouffard, S. et al. 2000. A new method for the measurement of low concentrations of OH/O 2 − radical species in water by high-LET pulse radiolysis. A time-resolved chemiluminescence study . J . Phys. Chem. A 104: 8709–8713.

W asselin-Trupin, V., Baldacchino, G., and Hickel, B. 2001. Detection of OH and O 2 − radicals generated by water radiolysis of w ater. Can. J . Physiol. Pharm. 79: 171–175. W asselin-Trupin, V., Baldacchino, G., Bouff ard, S., and Hickel, B. 2002. Hydrogen peroxide yields in water radiolysis by high-ener gy ion beams at constant LET . Radiat. Phys. Chem . 65: 53–61.

W ojcik, M., Tachiya, M., Tagawa, S., and Hatano, Y. 2004. Electron-ion recombination in condensed matter: Geminate and bulk recombination processes. In Charged Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.), pp. 259–300. Ne w York: Marcel Dekk er.

Yamashita, S., Katsumura, Y., Lin, M., Muroya, Y., Maeyama, T., and Murakami, T. 2008a. Water radiolysis with heavy ions of energies up to 28 GeV-2: Extension of primary yield measurements to very high LET values. Radiat. Phys. Chem . 77: 1224–1229.

Yamashita, S., Katsumura, Y., Lin, M. et al. 2008b. Water radiolysis with heavy ions of energies up to 28 GeV. 3. Measurement of G(MV •+ ) in deaerated methyl viologen solutions containing various concentrations of sodium formate and Monte Carlo simulation. Radiat. Res . 170: 521–533.

Y amashita, S., Katsumura, Y., Lin, M., Muroya, Y., Miyazakia, T., and Murakami, T. 2008c. Water radiolysis with heavy ions of energies up to 28 GeV. 1. Measurements of primary g values as track segment yields. Radiat. Phys. Chem. 77: 439–446.

Zie gler, J. F. 1998. RBS/ERD simulation problems: Stopping powers, nuclear reactions and detector resolution. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 137: 131–136. 14 Chapter 14. Radiation Chemistry of Liquid Water with Heavy Ions: Monte Carlo Simulation Studies

Allen, A. O. 1948. Radiation chemistry of aqueous solutions. J. Phys. Colloid Chem. 52: 479–490.

Allen, A. O. 1961. The Radiation Chemistry of Water and Aqueous Solutions. Princeton, NJ: D. Van Nostrand Co.

Alper, T. 1956. The modi�cation of damage caused by primary ionization of biological targets. Radiat. Res. 5: 573–586.

Alper, T. and Bryant, P. E. 1974. Reduction in oxygen enhancement ratio with increase in LET: Tests of two hypotheses. Int. J . Radiat. Biol. 26: 203–218.

Alper , T. and How ard-Flanders, P. 1956. Role of oxygen in modifying the radiosensitivity of E. coli B. Nature (London) 178: 978–979.

Alv arado, F. 2007. Ion induced radiation damage on the molecular lev el. PhD thesis, Univ ersity of Groningen, Groningen, the Netherlands.

Alv arado, F., Hoekstra, R., and Schlathölter, T. 2005. Dissociation of water molecules upon keV H + - and He q+ induced ionization. J . Phys. B: At. Mol. Opt. Phys. 38: 4085–4094.

A michai, O. and Treinin, A. 1969. Chemical reactivity of O( 3 P) atoms in aqueous solution. Chem. Phys. Lett. 3: 611–613.

Anderson, D. W. 1984. Absorption of Ionizing Radiation . Baltimore, MD: Uni versity P ark Press.

Anderson, A. R. and Hart, E. J. 1961. Molecular product and free radical yields in the decomposition of water by protons, deuterons, and helium ions. Radiat. Res . 14: 689–704.

Appleby , A. 1989. Effects of early track structure on the radiation chemistry of water irradiated with heavy ions. Radiat. Phys. Chem . 34: 121–127.

Appleby , A. and Schwarz, H. A. 1969. Radical and molecular yields in water irradiated by γ rays and heavy ions. J . Phys. Chem. 73: 1937–1941. Autsa vapromporn, N., Meesungnoen, J., Plante, I., and Jay-Gerin, J.-P. 2007. Monte Carlo simulation study of the effects of acidity and LET on the primary free-radical and molecular yields of water radiolysis. Application to the Frick e dosimeter . Can. J . Chem. 85: 214–229.

B aldacchino, G., Le Parc, D., Hickel, B., Gardès-Albert, M., Abedinzadeh, Z., Jore, D., Deycard, S., Bouffard, S., Mouton, V., and Balanzat, E. 1998a. Direct observation of HO /O 2 2 − free radicals generated in water by a high-linear ener gy transfer pulsed hea vy-ion beam. Radiat. Res . 149: 128–133.

Baldacchino, G., Bouffard, S., Balanzat, E., Gardès-Albert, M., Abedinzadeh, Z., Jore, D., Deycard, S., and Hickel, B. 1998b. Direct time-resolved measurement of radical species formed in water by heavy ions irradiation. Nucl. Instrum. Methods Phys. Res. B 146: 528–532.

B allarini, F., Biaggi, M., Merzagora, M., Ottolenghi, A., Dingfelder, M., Friedland, W., Jacob, P., and Paretzke, H. G. 2000. Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: A quantitative analysis based on Monte Carlo simulations. Radiat. Environ. Biophys. 39: 179–188.

Barendsen, G. W. 1968. Responses of cultured cells, tumours and normal tissues to radiations of different linear energy transfer . Curr . Top. Radiat. Res. Q. 4: 293–356.

Bass, A. D. and Sanche, L. 2003. Dissociative electron attachment and charge transfer in condensed matter. Radiat. Phys. Chem. 68: 3–13.

Ba verstock, K. F. and Burns, W. G. 1976. Primary production of oxygen from irradiated water as an explanation for decreased radiobiological oxygen enhancement at high LET . Natur e (London) 260: 316–318.

Baverstock, K. F. and Burns, W. G. 1981. Oxygen as a product of water radiolysis in high-LET tracks. II. Radiobiological implications. Radiat. Res . 86: 20–33.

Ba verstock, K. F., Burns, W. G., and May, R. 1978. The oxygen in the track hypothesis: Microdosimetric implications. In Sixth Symposium on Microdosimetry, Vol. 2, Brussels, Belgium, May 22–26, 1978, J. Booz and H. G. Ebert (eds.), pp. 1151–1158. London, U.K.: Harw ood Academic Publishers. Beckman, J. S. and Koppenol, W. H. 1996. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly . Am. J . Physiol.: Cell Physiol. 271: C1424–C1437.

Bednárˇ , J. 1985. Electronic e xcitations in condensed biological matter . Int. J . Radiat. Biol. 48: 147–166.

Bernas, A., Ferradini, C., and Jay-Gerin, J.-P. 1996. Électrons en excès dans les milieux polaires homogènes et hétérogènes. Can. J . Chem. 74: 1–23.

Bernas, A., Ferradini, C., and Jay-Gerin, J.-P. 1997. On the electronic structure of liquid water: Facts and re¡ections. Chem. Phys . 222: 151–160.

Bethe, H. 1930. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Physik (Leipzig) 5: 325–400.

Bethe, H. A. and Ashkin, J. 1953. Passage of radiations through matter. In Experimental Nuclear Physics, Vol. 1, E. Se grè (ed.), pp. 166–357. Ne w York: Wile y.

Bibler, N. E. 1975. Radiolysis of 0.4 M sulfuric acid solutions with �ssion fragments from dissolved californium-252. Estimated yields of radical and molecular products that escape reactions in �ssion fragment tracks. J . Phys. Chem. 79: 1991–1995.

Bichsel, H. and Hiraoka, T. 1992. Energy loss of 70 MeV protons in elements. Nucl. Instrum. Methods Phys. Res. B 66: 345–351.

Biedenkapp, D., Hartshorn, L. G., and Bair, E. J. 1970. The O( 1 D) + H 2 O reaction. Chem. Phys. Lett. 5: 379–380.

Bielski, B. H., Cabelli, D. E., Arudi, R. L., and Ross, A. B. 1985. Reactivity of HO /O 2 2 − radicals in aqueous solution. J . Phys. Chem. Ref. Data 14: 1041–1100.

Bjer gbakke, E. and Hart, E. J. 1971. Oxygen formation in the γ-ray irradiation of Fe 2+ -Cu 2+ solutions. Radiat. Res. 45: 261–273.

Burns, W. G. and Sims, H. E. 1981. Effect of radiation type in water radiolysis. J. Chem. Soc. Faraday Trans. 1 77: 2803–2813.

Burns, W. G., May, R., and Baverstock, K. F. 1981. Oxygen as a product of water radiolysis in high-LET tracks. I. The origin of the h ydroperoxyl radical in w ater radiolysis. Radiat. Res . 86: 1–19.

Burton, M. 1969. Radiation chemistry: A godfatherly look at its history and its relation to liquids. Chem. Eng. News 47: 86–96.

Buxton, G. V. 2004. The radiation chemistry of liquid water: Principles and applications. In Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozumder and Y. Hatano (eds.), pp. 331–363. Ne w York: Marcel Dekk er.

Champion, C. 2003. Multiple ionization of water by heavy ions: A Monte Carlo approach. Nucl. Instrum. Methods Phys. Res. B 205: 671–676.

Champion, C., L’Hoir , A., Politis, M. F., Fainstein, P. D., Riv arola, R. D., and Chetioui, A. 2005. A Monte Carlo code for the simulation of hea vy-ion tracks in w ater. Radiat. Res . 163: 222–231.

Chatterjee, A. and Holley, W. R. 1993. Computer simulation of initial events in the biochemical mechanisms of DNA damage. Adv . Radiat. Biol. 17: 181–226.

Chatterjee, A. and Schaefer, H. J. 1976. Microdosimetric structure of heavy ion tracks in tissue. Radiat. En viron. Biophys. 13: 215–227.

Chattorji, D. 1976. The Theory of Auger Transitions. Ne w York: Academic Press.

Christophorou, L. G., McCorkle, D. L., and Christodoulides, A. A. 1984. Electron attachment processes. In Electron-Molecule Interactions and Their Applications, L. G. Christophorou (ed.), Vol. 1, pp. 477–617. Orlando, FL: Academic Press.

Clif ford, P., Green, N. J. B., Old�eld, M. J., Pilling, M. J., and Pimblott, S. M. 1986. Stochastic models of multispecies kinetics in radiation-induced spurs. J . Chem. Soc. Faraday Trans. 1 82: 2673–2689.

Cob ut, V. 1993. Simulation Monte Carlo du transport d’électrons non relativistes dans l’eau liquide pure et de l’évolution du milieu irradié: rendements des espèces créées de 10 −15 à 10 −7 s. PhD thesis, Université de Sherbrooke, Sherbrook e, Canada.

Cob ut, V., Jay-Gerin, J.-P., Frongillo, Y., and Patau, J. P. 1996. On the dissociative electron attachment as a potential source of molecular h ydrogen in irradiated liquid w ater. Radiat. Phys. Chem . 47: 247–250.

Cob ut, V., Frongillo, Y., Patau, J. P., Goulet, T., Fraser, M.-J., and Jay-Gerin, J.-P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water. I. Physical and physicochemical aspects. Radiat. Phys. Chem. 51: 229–243.

Cocke, C. L. and Olson, R. E. 1991. Recoil ions. Phys. Rep . 205: 153–219.

Curie, P. and Debierne, A. 1901. Sur la radio-activité induite et les gaz activés par la radium. Comptes Rendus Acad. Sci. Paris 132: 768–770.

Curtis, S. B., Schilling, W. A., Tenforde, T. S., Crabtree, K. E., Tenforde, S. D., Howard, J., and Lyman, J. T. 1982. Survival of oxygenated and hypoxic tumor cells in the extended-peak regions of heavy chargedparticle beams. Radiat. Res . 90: 292–309.

Debierne, A. 1914. Recherches sur les gaz produits par les substances radioactives. Décomposition de l’eau. Ann. Phys. (Paris) 2: 97–127.

D ingfelder, M. 2006. Track structure: Time evolution from physics to chemistry. Radiat. Prot. Dosim. 122: 16–21.

Dingfelder, M., Inokuti, M., and Paretzke, H. G. 2000. Inelastic-collision cross sections of liquid water for interactions of ener getic protons. Radiat. Phys. Chem . 59: 255–275.

Donaldson, D. M. and Miller, N. 1956. The action of α-particles on solutions containing ferrous and cupric ions. T rans. Faraday Soc. 52: 652–659.

Drag anic´, I. G. and Drag anic´, Z. D. 1971. The Radiation Chemistry of Water. Ne w York: Academic Press.

Duane, W. and Scheuer, O. 1913. Recherches sur la décomposition de l’eau par les rayons α. Le Radium (Paris) 10: 33–46.

Elliot, A. J., Chenier, M. P., Ouellette, D. C., and Koslo wsky, V. T. 1996. Temperature dependence of g values for aqueous solutions irradiated with 23 MeV 2 H + and 157 MeV 7 Li 3+ ion beams. J. Phys. Chem. 100: 9014–9020.

Evans, R. D. 1955. The Atomic Nucleus. Malabar , FL: Krie ger Publishing Compan y.

Ewing, D. 1998. The oxygen �xation h ypothesis: A ree valuation. Am. J . Clin. Oncol. 21: 355–361.

F araggi, M. and Désalos, J. 1969. Effect of positiv ely charged ions on the “molecular” hydrogen yield in the radiolysis of aqueous solutions. Int. J . Radiat. Phys. Chem. 1: 335–344.

Ferradini, C. 1979. Actions chimiques des radiations ionisantes. J . Phys. Chim. 76: 636–644.

Ferradini, C. and Jay-Gerin, J.-P. 1990. Hypothesis of a possible chemical fate for the incompletely relaxed electron in w ater and alcohols. Chem. Phys. Lett . 167: 371–373.

Ferradini, C. and Jay-Gerin, J.-P. 1998. Does multiple ionization intervene for the production of HO 2 i radicals in high-LET liquid w ater radiolysis? Radiat. Phys. Chem . 51: 263–267.

Ferradini, C. and Jay-Gerin, J.-P. 1999. La radiolyse de l’eau et des solutions aqueuses: historique et actualité. Can. J. Chem. 77: 1542–1575.

Ferradini, C. and Jay-Gerin, J.-P. 2000. The effect of pH on water radiolysis: A still open question. A minireview. Res. Chem. Intermed . 26: 549–565.

Franck, J. and Rabinowitsch, E. 1934. Some remarks about free radicals and the photochemistry of solutions. Tr ans. Faraday Soc. 30: 120–131.

Freeman, G. R. 1987. Ionization and charge separation in irradiated materials. In Kinetics of Nonhomogeneous Processes, G. R. Freeman (ed.), pp. 19–87. Ne w York: Wile y.

Frongillo, Y., Fraser, M.-J., Cobut, V., Goulet, T., Jay-Gerin, J.-P., and Patau, J. P. 1996. Évolution des espèces produites par le ralentissement de protons rapides dans l’eau liquide: Simulation fondée sur l’approximation des temps de réaction indépendants. J . Chim. Phys. 93: 93–102.

Frongillo, Y., Goulet, T., Fraser, M.-J., Jay-Gerin, J.-P., Cobut, V., and Patau, J. P. 1997. The effect of the radiation LET on the production of HO 2 radicals in irradiated liquid water: A Monte Carlo simulation study. In Paper Presented at the 45th Annual Meeting of the Radiation Research Society, Providence, RI (Book of Abstracts, p. 81).

Frongillo, Y., Goulet, T., Fraser, M.-J., Cobut, V., Patau, J. P., and Jay-Gerin, J.-P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water. II. Nonhomogeneous chemistry. Radiat. Phys. Chem. 51: 245–254.

G aigeot, M. P., Vuilleumier, R., Stia, C., Galassi, M. E., Rivarola, R., Gervais, B., and Politis, M. F. 2007. A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid water. J . Phys. B: At. Mol. Opt. Phys. 40: 1–12.

Ganguly , A. K. and Magee, J. L. 1956. Theory of radiation chemistry. III. Radical reaction mechanism in the tracks of ionizing radiations. J . Chem. Phys. 25: 129–134.

Gardès-Albert, M., Jore, D., Abedinzadeh, Z., Rouscilles, A., Deycard, S., and Bouffard, S. 1996. Réduction du tétranitrométhane par les espèces primaires formées lors de la radiolyse de l’eau par des ions lourds Ar 18+ . J. Chim. Phys. 93: 103–110.

Garrett, B. C., Dixon, D. A., Camaioni, D. M., Chipman, D. M., Johnson, M. A., Jonah, C. D., Kimmel, G. A., Miller, J. H., Rescigno, T. N., Rossky, P. J., Xantheas, S. S., Colson, S. D., Laufer, A. H., Ray, D., Barbara, P. F., Bartels, D. M., Becker, K. H., Bowen, K. H., Jr., Bradforth, S. E., Carmichael, I., Coe, J. V., Corrales, L. R., Cowin, J. P., Dupuis, M., Eisenthal, K. B., Franz, J. A., Gutowski, M. S., Jordan, K. D., Kay, B. D., LaVerne, J. A., Lymar, S. V., Madey, T. E., McCurdy, C. W., Meisel, D., Mukamel, S., Nilsson, A. R., Orlando, T. M., Petrik, N. G., Pimblott, S. M., Rustad, J. R., Schenter, G. K., Singer, S. J., Tokmakoff, A., Wang, L.-S., Wittig, C., and Zwier, T. S. 2005. Role of water in electron-initiated processes and radical chemistry: Issues and scienti�c advances. Chem. Rev. 105: 355–389.

Gäumann, T. and Schuler, R. H. 1961. The radiolysis of benzene by densely ionizing radiations. J. Phys. Chem. 65: 703–704. Gemmell, D. S. 1980. Determining the stereochemical structures of molecular ions by “Coulomb-explosion” techniques with f ast (MeV) molecular ion beams. Chem. Re v. 80: 301–311.

Gerv ais, B., Beuve, M., Olivera, G. H., Galassi, M. E., and Rivarola, R. D. 2005. Production of HO 2 and O 2 by multiple ionization in w ater radiolysis by swift carbon ions. Chem. Phys. Lett . 410: 330–334.

Gerv ais, B., Beuve, M., Olivera, G. H., and Galassi, M. E. 2006. Numerical simulation of multiple ionization and high LET ef fects in liquid w ater radiolysis. Radiat. Phys. Chem . 75: 493–513.

Giesel, F . 1902. Ueber Radium und radioacti ve Stof fe. Ber . Deutsch. Chem. Ges. (Berlin) 35: 3608–3611.

Giesel, F. 1903. Ueber den Emanationskörper aus Pechblende und über Radium. Ber. Deutsch. Chem. Ges. (Berlin) 36: 342–347.

Gobet, F., Farizon, B., Farizon, M., Gaillard, M. J., Carré, M., Lezius, M., Scheier, P., and Märk, T. D. 2001. Total, partial, and electron-capture cross sections for ionization of water vapor by 20–150 keV protons. Phys. Rev. Lett. 86: 3751–3754.

Goulet, T. and Jay-Gerin, J.-P. 1988. Thermalization distances and times for subexcitation electrons in solid water . J . Phys. Chem. 92: 6871–6874.

Goulet, T. and Jay-Gerin, J.-P. 1989. Thermalization of subexcitation electrons in solid water. Radiat. Res. 118: 46–62.

Goulet, T. and Jay-Gerin, J.-P. 1992. On the reactions of hydrated electrons with • OH and H 3 O + . Analysis of photoionization e xperiments. J . Chem. Phys. 96: 5076–5087.

Goulet, T., Patau, J. P., and Jay-Gerin, J.-P. 1990. In¡uence of the parent cation on the thermalization of subexcitation electrons in solid w ater. J . Phys. Chem. 94: 7312–7316.

Goulet, T., Fraser, M.-J., Frongillo, Y., and Jay-Gerin, J.-P. 1998. On the validity of the independent reaction times approximation for the description of the nonhomogeneous kinetics of liquid water radiolysis. Radiat. Phys. Chem. 51: 85–91.

G ray, L. H. , Co nger, A. D. , Eb ert, M. , Ho rnsey, S. , an d Sc ott, O. C. A. 19 53. Th e co ncentration of ox ygen di ssolved in ti ssues at th e ti me of ir radiation as a fa ctor in ra diotherapy. Br . J. Radiol. 26 : 63 8–648.

Green, N. J. B., Pilling, M. J., Pimblott, S. M., and Clifford, P. 1990. Stochastic modeling of fast kinetics in a radiation track. J . Phys. Chem. 94: 251–258.

Guzonas, D., Tremaine, P., and Jay-Gerin, J.-P. 2009. Chemistry control challenges in a supercritical water cooled reactor . P owerPlant Chem. 11: 284–291.

Hall, E. J. and Giaccia, A. J. 2006. Radiobiology for the Radiologist, 6th edn. Philadelphia, PA: Lippincott, Williams & Wilkins.

Halliwell, B. and Gutteridge, J. M. C. 1999. Free Radicals in Biology and Medicine, 3rd edn. Oxford, NY: Oxford Uni versity Press.

Hart, E. J. 1955. Radiation chemistry of aqueous ferrous sulfate-cupric sulfate solutions. Effect of γ-rays. Radiat. Res. 2: 33–46.

Hart, E. J. and Platzman, R. L. 1961. Radiation chemistry. In Mechanisms in Radiobiology, Vol. 1, M. Errera and A. F orssberg (eds.), pp. 93–257. Ne w York: Academic Press.

Heller , J. M., Jr., Hamm, R. N., Birkhoff, R. D., and Painter, L. R. 1974. Collective oscillation in liquid water. J. Chem. Phys. 60: 3483–3486.

Herv é du Penhoat, M.-A., Goulet, T., Frongillo, Y., Fraser, M.-J., Bernat, Ph., and Jay-Gerin, J.-P. 2000. Radiolysis of liquid water at temperatures up to 300°C: A Monte Carlo simulation study. J. Phys. Chem. A 104: 11757–11770.

Ho ward-Flanders, P. 1958. Physical and chemical mechanisms in the injury of cells by ionizing radiations. Adv. Biol. Med. Phys. 6: 553–603.

Hunt, J. W. 1976. Early ev ents in radiation chemistry. In Advances in Radiation Chemistry, Vol. 5, M. Burton and J. L. Magee (eds.), pp. 185–315. Ne w York: Wiley. ICRU Report 16. 1970. Linear Ener gy Transfer. Washington, DC: International Commission on Radiation Units and Measurements.

ICR U Report 31. 1979. Average Energy Required to Produce an Ion Pair. Washington, DC: International Commission on Radiation Units and Measurements.

ICRU Report 55. 1996. Secondary Electron Spectra from Charged Particle Interactions. Bethesda, MD: International Commission on Radiation Units and Measurements.

Inokuti, M. 1971. Inelastic collisions of fast charged particles with atoms and molecules: The Bethe theory revisited. Re v. Mod. Phys. 43: 297–347.

Jay-Gerin, J.-P. and Ferradini, C. 2000. Are there protective enzymatic pathways to regulate high local nitric oxide (NO) concentrations in cells under stress conditions. Bioc himie 82: 161–166.

Jay-Gerin, J.-P., Lin, M., Katsumura, Y., He, H., Muroya, Y., and Meesungnoen, J. 2008. Effect of water density on the absorption maximum of hydrated electrons in suband supercritical water up to 400°C. J. Chem. Phys. 129: 114511.

Jonah, C. D. 1995. A short history of the radiation chemistry of w ater. Radiat. Res . 144: 141–147.

Jonah, C. D., Miller, J. R., and Matheson, M. S. 1977. The reaction of the precursor of the hydrated electron with electron sca vengers. J . Phys. Chem. 81: 1618–1622.

Kaplan, I. G. and Miterev, A. M. 1987. Interaction of charged particles with molecular medium and track effects in radiation chemistry . Adv . Chem. Phys. 68: 255–386.

Kara-Michailo va, E. and Lea, D. E. 1940. The interpretation of ionization measurements in gases at high pressures. Pr oc. Cambridge Phil. Soc. 36: 101–126.

Katz, R. 1970. RBE, LET and z /β α . Health Phys. 18: 175.

Katz, R. 1978. Track structure theory in radiobiology and in radiation detection. Nucl. Track Detect. 2: 1–28.

Kernbaum, M. 1910. Sur la décomposition de l’eau par di vers rayonnements. Le Radium (P aris) 7: 242. Kiefer , J. 1990. Biolo gical Radiation Effects. Berlin, German y: Springer -Verlag.

Kimmel, G. A., Orlando, T. M., Vézina, C., and Sanche, L. 1994. Low-ener gy electron-stimulated production of molecular h ydrogen from amorphous w ater ice. J . Chem. Phys. 101: 3282–3286.

Klassen, N. V. 1987. Primary products in radiation chemistry. In Radiation Chemistry: Principles and Applications, F arhataziz and M. A. J. Rodgers (eds.), pp. 29–64. Ne w York: VCH Publishers.

Kraft, G. and Krämer , M. 1993. Linear ener gy transfer and track structure. Adv . Radiat. Biol. 17: 1–52.

Kreipl, M. S., Friedland, W., and Paretzke, H. G. 2009. Timeand space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation. Radiat. En viron. Biophys. 48: 11–20.

Kroh, J. (ed.) 1989. Early Developments in Radiation Chemistry. Cambridge, U.K.: The Royal Society of Chemistry.

Kuppermann, A. 1967. Diffusion model of the radiation chemistry of aqueous solutions. In Radiation Research: Proceedings of the Third International Congress of Radiation Research, Cortina d’Ampezzo, Italy, June 26–July 2, 1966, G. Silini (ed.), pp. 212–234. Amsterdam, The Netherlands: North-Holland.

Latimer , C. J. 1993. The dissociative ionization of simple molecules by fast ions. Adv. At. Molec. Opt. Phys. 30: 105–138.

LaV erne, J. A. 1989. Radical and molecular yields in the radiolysis of water with carbon ions. Radiat. Phys. Chem. 34: 135–143.

LaV erne, J. A. 2000. Track ef fects of hea vy ions in liquid w ater. Radiat. Res . 153: 487–496.

LaV erne, J. A. 2004. Radiation chemical effects of heavy ions. In Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozumder and Y. Hatano (eds.), pp. 403–429. Ne w York: Marcel Dekk er.

LaVerne, J. A. and Mozumder, A. 1993. Concerning plasmon excitation in liquid water. Radiat. Res. 133: 282–288.

LaVerne, J. A. and Pimblott, S. M. 1995. Electron energy-loss distributions in solid, dry DNA. Radiat. Res. 141: 208–215.

LaV erne, J. A. and Schuler, R. H. 1987a. Radiation chemical studies with heavy ions: Oxidation of ferrous ion in the Frick e dosimeter . J . Phys. Chem. 91: 5770–5776.

LaV erne, J. A. and Schuler, R. H. 1987b. Track effects in radiation chemistry: Production of HO 2 i in the radiolysis of w ater by high-LET 58 Ni ions. J. Phys. Chem. 91: 6560–6563.

LaVerne, J. A. and Schuler, R. H. 1996. Radiolysis of the Fricke dosimeter with 58 Ni and 238 U ions: Response for particles of high linear ener gy transfer . J . Phys. Chem. 100: 16034–16040.

LaV erne, J. A., Burns, W. G., and Schuler, R. H. 1985. Production of HO 2 within the track core in the heavy particle radiolysis of w ater. J . Phys. Chem. 89: 242–243.

LaV erne, J. A., Schuler, R. H., and Burns, W. G. 1986. Track effects in radiation chemistry: Production of HO 2 i within the track core in the hea vy-particle radiolysis of w ater. J . Phys. Chem. 90: 3238–3242.

Lefort, M. 1955. Chimie des radiations des solutions aqueuses. Aspect actuel des résultats expérimentaux. In Actions Chimiques et Biologiques des Radiations, Vol. 1, M. Haïssinsky (ed.), pp. 93–204. Paris, France: Masson.

Lefort, M. and Tarrago, X. 1959. Radiolysis of water by particles of high linear energy transfer. The primary chemical yields in aqueous acid solutions of ferrous sulfate, and in mixtures of thallous and ceric ions. J. Phys. Chem. 63: 833–836.

Le gendre, S., Giglio, E., Tarisien, M., Cassimi, A., Gervais, B., and Adoui, L. 2005. Isotopic effects in water dication fragmentation. J . Phys. B: At. Mol. Opt. Phys. 38: L233–L241.

Lu, Q.-B., Baskin, J. S., and Zewail, A. H. 2004. The presolvated electron in water: Can it be scavenged at long range? J . Phys. Chem. B 108: 10509–10514. Luna, H. and Montene gro, E. C. 2005. Fragmentation of w ater by hea vy ions. Phys. Re v. Lett. 94: 043201.

L ymar, S. V. and Poskrebyshev, G. A. 2003. Rate of ON–OO − bond homolysis and the Gibbs energy of formation of peroxynitrite. J . Phys. Chem. A 107: 7991–7996.

M agee, J. L. and Chatterjee, A. 1987. In Kinetics of Nonhomogeneous Processes, G. R. Freeman (ed.), pp. 171–214. New York: Wiley.

Manson, S. T., Dubois, R. D., and Toburen, L. H. 1983. Multiple-ionization mechanisms in fast proton-neon collisions. Phys. Re v. Lett. 51: 1542–1545.

McCrack en, D. R., Tsang, K. T., and Laughton, P. J. 1998. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors. Report AECL-11895. Chalk River, Canada: Atomic Ener gy of Canada Ltd.

M cDaniel, E. W., Mitchell, J. B. A., and Rudd, M. E. 1993. Atomic Collisions: Heavy Particle Projectiles. New York: Wiley.

Medin, J., Ross, C. K., Klassen, N. V., Palmans, H., Grusell, E., and Grindborg, J.-E. 2006. Experimental determination of beam quality factors, k Q , for two types of Farmer chamber in a 10 MV photon and a 175 MeV proton beam. Phys. Med. Biol . 51: 1503–1521.

Meesungnoen, J. and Jay-Gerin, J.-P. 2005a. High-LET radiolysis of liquid water with 1 H + , 4 He 2+ , 12 C 6+ , and 20 Ne 9+ ions: Effects of multiple ionization. J. Phys. Chem. A 109: 6406–6419.

Meesungnoen, J. and Jay-Gerin, J.-P. 2005b. Effect of multiple ionization on the yield of H 2 O 2 produced in the radiolysis of aqueous 0.4 M H 2 SO 4 solutions by high-LET 12 C 6+ and 20 Ne 9+ ions. Radiat. Res. 164: 688–694.

Meesungnoen, J. and Jay-Gerin, J.-P. 2009. High-LET ion radiolysis of water: Oxygen production in tracks. Radiat. Res. 171: 379–386.

Meesungnoen, J., Benrahmoune, M., Filali-Mouhim, A., Mankhetkorn, S., and Jay-Gerin, J.-P. 2001. Monte Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in the linear energy transfer range 0.3–6.5 keV/μm: Application to 137 Cs gamma rays. Radiat. Res. 155: 269–278.

Meesungnoen, J., Jay-Gerin, J.-P., Filali-Mouhim, A., and Mankhetkorn, S. 2002a. Low-energy electron penetration range in liquid w ater. Radiat. Res . 158: 657–660.

Meesungnoen, J., Jay-Gerin, J.-P., Filali-Mouhim, A., and Mankhetkorn, S. 2002b. On the temperature dependence of the primary yield and the product Gε max of hydrated electrons in the low-LET radiolysis of liquid water. Can. J . Chem. 80: 767–773.

Meesungnoen, J., Filali-Mouhim, A., Snitwongse Na Ayudhya, N., Mankhetkorn, S., and Jay-Gerin, J.-P. 2003. Multiple ionization effects on the yields of HO /O 2 2 i i− and H 2 O 2 produced in the radiolysis of liquid water with high-LET 12 C 6+ ions: A Monte Carlo simulation study. Chem. Phys. Lett. 377: 419–425.

Michael, B. D. and Prise, K. M. 1996. A multiple-radical model for radiation action on DNA and the dependence of OER on LET . Int. J . Radiat. Biol. 69: 351–358.

Michaud, M., Cloutier, P., and Sanche, L. 1991. Low-energy electron-energy-loss spectroscopy of amorphous ice: Electronic e xcitations. Phys. Re v. A 44: 5624–5627.

Michaud, M., Wen, A., and Sanche, L. 2003. Cross sections for low-ener gy (1–100 eV) electron elastic and inelastic scattering in amorphous ice. Radiat. Res . 159: 3–22.

Millar , B. C., Fielden, E. M., and Steele, J. J. 1979. A biphasic radiation survival response of mammalian cells to molecular oxygen. Int. J . Radiat. Biol. 36: 177–180.

M iller, N. 1958. Radical yield measurements in irradiated aqueous solutions. II. Radical yields with 10.9MeV deuterons, 21.3- and 3.4-MeV alpha particles, and B(n,α)Li recoil radiations. Radiat. Res. 9: 633–646.

Montenegro, E. C. and Luna, H. 2005. Primary radicals production from water fragmentation by heavy ions. Brazilian J. Phys. 35: 927–932.

Mozumder , A. 1999. Fundamentals of Radiation Chemistry . San Die go, CA: Academic Press.

Mozumder , A. and Magee, J. L. 1966a. Model of tracks of ionizing radiations for radical reaction mechanisms. Radiat. Res. 28: 203–214.

Mozumder , A. and Magee, J. L. 1966b. Theory of radiation chemistry. VII. Structure and reactions in low LET tracks. J . Chem. Phys. 45: 3332–3341.

Mozumder, A. and Magee, J. L. 1975. The early events of radiation chemistry. Int. J. Radiat. Phys. Chem. 7: 83–93.

Mozumder, A., Chatterjee, A., and Magee, J. L. 1968. Theory of radiation chemistry. IX. Model and structure of hea vy particle tracks in w ater. Adv . Chem. Series 81: 27–48.

M uroya, Y., Meesungnoen, J., Jay-Gerin, J.-P., Filali-Mouhim, A., Goulet, T., Katsumura, Y., and Mankhetkorn, S. 2002. Radiolysis of liquid water: An attempt to reconcile Monte Carlo calculations with new experimental h ydrated electron yield data at early times. Can. J . Chem. 80: 1367–1374.

Muro ya, Y., Plante, I., Azzam, E. I., Meesungnoen, J., Katsumura, Y., and Jay-Gerin, J.-P. 2006. High-LET ion radiolysis of water: Visualization of the formation and evolution of ion tracks and relevance to the radiation-induced bystander ef fect. Radiat. Res . 165: 485–491.

Neary , G. J. 1965. Chromosome aberrations and the theory of RBE. 1. General considerations. Int. J. Radiat. Biol. 9: 477–502.

Ogura, H. and Hamill, W. H. 1973. Positive hole migration in pulse-irradiated water and heavy water. J. Phys. Chem. 77: 2952–2954.

Oli vera, G. H., Caraby, C., Jardin, P., Cassimi, A., Adoui, L., and Gervais, B. 1998. Multiple ionization in the earlier stages of w ater radiolysis. Phys. Med. Biol . 43: 2347–2360.

P aretzke, H. G. 1987. Radiation track structure theory. In Kinetics of Nonhomogeneous Processes, G. R. Freeman (ed.), pp. 89–170. Ne w York: Wile y.

Paretzke, H. G., Goodhead, D. T., Kaplan, I. G., and Terrissol, M. 1995. Track structure quantities. In Atomic and Molecular Data for Radiotherapy and Radiation Research, IAEA-TECDOC-799, pp. 633–721. Vienna, Austria: International Atomic Ener gy Agency . Pastina, B. and LaV erne, J. A. 1999. Hydrogen peroxide production in the radiolysis of w ater with hea vy ions. J. Phys. Chem. A 103: 1592–1597.

P astina, B., LaVerne, J. A., and Pimblott, S. M. 1999. Dependence of molecular hydrogen formation in water on sca vengers of the precursor to the h ydrated electron. J . Phys. Chem. A 103: 5841–5846.

P att, H. M. 1953. Protecti ve mechanisms in ionizing radiation injury . Physiol. Re v. 33: 35–76.

P ešic´, Z. D. , Ch esnel, J. -Y., He llhammer, R. , Su lik, B. , an d St olterfoht, N. 20 04. Fr agmentation of H 2 O molecules following the interaction with slow, highly charged Ne ions. J. Phys. B: At. Mol. Opt. Phys. 37: 1405–1417.

Pimblott, S. M. and Green, N. J. B. 1995. Recent advances in the kinetics of radiolytic processes. Res. Chem. Kinet. 3: 117–174.

Pimblott, S. M. and LaVerne, J. A. 1998. On the radiation chemical kinetics of the precursor to the hydrated electron. J . Phys. Chem. A 102: 2967–2975.

Pimblott, S. M. and LaVerne, J. A. 2002. Effects of track structure on the ion radiolysis of the Fricke dosimeter. J. Phys. Chem. A 106: 9420–9427.

Pimblott, S. M. and LaVerne, J. A. 2007. Production of low-energy electrons by ionizing radiation. Radiat. Phys. Chem. 76: 1244–1247.

Pimblott, S. M. and Mozumder, A. 1991. Structure of electron tracks in water. 2. Distribution of primary ionizations and e xcitations in w ater radiolysis. J . Phys. Chem. 95: 7291–7300.

P imblott, S. M. and Mozumder, A. 2004. Modeling of physicochemical and chemical processes in the interactions of fa st ch arged pa rticles wi th ma tter. In Ch arged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozumder and Y. Hatano (eds.), pp. 7 5–103. New York: Marcel Dekker.

Pimblott, S. M., LaVerne, J. A., Mozumder, A., and Green, N. J. B. 1990. Structure of electron tracks in water . 1. Distrib ution of ener gy deposition e vents. J . Phys. Chem. 94: 488–495.

Pimblott, S. M., Pilling, M. J., and Green, N. J. B. 1991. Stochastic models of spur kinetics in water. Radiat. Phys. Chem. 37: 377–388.

Plante, I. 2009. Développement de codes de simulation Monte Carlo de la radiolyse de l’eau par des électrons, ions lourds, photons et neutrons. Applications à divers sujets d’intérêt expérimental. PhD thesis, Univ ersité de Sherbrook e, Sherbrook e, Canada.

P lante, I., Filali-Mouhim, A., and Jay-Gerin, J.-P. 2005. SimulRad: A Java interface for a Monte Carlo simulation code to visualize in 3D the early stages of water radiolysis. Radiat. Phys. Chem. 72: 173–180.

Platzman, R. L. 1952. On the primary processes in radiation chemistry and biology. In Symposium on Radiobiology. The Basic Aspects of Radiation Effects on Living Systems, J. J. Nickson (ed.), pp. 97–116. New York: Wiley.

Platzman, R. L. 1955. Sube xcitation electrons. Radiat. Res . 2: 1–7.

Platzman, R. L. 1958. The physical and chemical basis of mechanisms in radiation biology. In Radiation Biology and Medicine. Selected Reviews in the Life Sciences, W. D. Claus (ed.), pp. 15–72. Reading, MA: Addison-Wesley.

Platzman, R. L. 1962a. Supere xcited states of molecules. Radiat. Res . 17: 419–425.

Platzman, R. L. 1962b. Dissociative attachment of subexcitation electrons in liquid water, and the origin of radiolytic “molecular” hydrogen. In Abstracts of Papers, 2nd International Congress of Radiation Research, Harrog ate, U.K., August 5–11, 1962, p. 128.

Pogue, B. W., O’Hara, J. A., Wilmot, C. M., Paulsen, K. D., and Swartz, H. M. 2001. Estimation of oxygen distribution in RIF-1 tumors by diffusion model-based interpretation of pimonidazole hypoxia and Eppendorf measurements. Radiat. Res . 155: 15–25.

Pucheault, J. 1961. Action des rayons alpha sur les solutions aqueuses. In Actions Chimiques et Biologiques des Radiations, Vol. 5, M. Haïssinsk y (ed.), pp. 31–84. P aris, France: Masson. Radi, R., Denicola, A., Alvarez, B., Ferrer-Sueta, G., and Rubbo, H. 2000. The biological chemistry of peroxynitrite. In Nitric Oxide: Biology and Pathobiology, L. J. Ignarro (ed.), pp. 57–82. San Diego, CA: Academic Press.

Ramsay , W. and Soddy, F. 1903. Experiments in radioactivity, and the production of helium from radium. Proc. R. Soc. London 72: 204–207.

Ro wntree, P., Parenteau, L., and Sanche, L. 1991. Electron stimulated desorption via dissociativ e attachment in amorphous H 2 O. J. Chem. Phys. 94: 8570–8576.

Rudd, M. E. 1990. Cross sections for production of secondary electrons by charged particles. Radiat. Prot. Dosim. 31: 17–22.

S amuel, A. H. and Magee, J. L. 1953. Theory of radiation chemistry. II. Track effects in radiolysis of water. J. Chem. Phys. 21: 1080–1087.

Sauer , M. C., Jr ., Schmidt, K. H., Hart, E. J., Nale way, C. A., and Jonah, C. D. 1977. LET dependence of transient yields in the pulse radiolysis of aqueous systems with deuterons and α particles. Radiat. Res. 70: 91–106.

Scholes, G. and , J. 1959. Oxygen effects and formation of peroxides in aqueous solutions. Radiat. Res . Suppl. 1: 177–189.

Schmidt, K. H. and Bartels, D. M. 1995. Lack of ionic strength effect in the recombination of hydrated electrons: (e − ) aq + (e − ) aq → 2(OH − ) + H 2 . Chem. Phys. 190: 145–152.

Schuler, R. H. and Allen, A. O. 1957. Radiation chemistry studies with cyclotron beams of variable energy: Yields in aerated ferrous sulf ate solution. J . Am. Chem. Soc. 79: 1565–1572.

Schw arz, H. A. 1969. Applications of the spur diffusion model to the radiation chemistry of aqueous solutions. J. Phys. Chem . 73: 1928–1937.

Sie gmann, B., Werner , U., Lutz, H. O., and Mann, R. 2001. Multiple ionization and fragmentation of H 2 O in collisions with f ast highly char ged Xe ions. J . Phys. B: At. Mol. Opt. Phys. 34: L587–L593.

Sims, H. E. 1978. Some effects of linear energy transfer on the radiolysis of aqueous solutions. PhD thesis, University of Salford, Salford, U.K.

Sobocinski, P., Pešic´, Z. D., Hellhammer, R., Klein, D., Sulik, B., Chesnel, J.-Y., and Stolterfoht, N. 2006. Anisotropic proton emission after fragmentation of H 2 O by multiply charged ions. J. Phys. B: At. Mol. Opt. Phys. 39: 927–937.

Spinks, J. W. T. and Woods, R. J. 1990. An Intr oduction to Radiation Chemistry, 3rd edn. Ne w York: Wiley.

Stolterfoht, N., Cabrera-Trujillo, R., Hellhammer, R., Pešic´, Z., Deumens, E., Öhrn, Y., and Sabin, J. R. 2007. Charge exchange and fragmentation in slow collisions of He 2+ with water molecules. Adv. Quantum Chem. 52: 149–170.

Stuglik, Z. 1995. On the “oxygen in hea vy-ion tracks” h ypothesis. Radiat. Res . 143: 343–348.

Sw allow, A. J. and Velandia, J. A. 1962. Oxygen effect as an explanation of differences between the action of α-particles and xor γ-rays on aqueous solutions of amino-acids and proteins. Nature (London) 195: 798–800.

Swiatla-Wojcik, D. and Buxton, G. V. 1995. Modeling of radiation spur processes in water at temperatures up to 300°C. J . Phys. Chem. 99: 11464–11471.

T aube, H. 1957. Photochemical reactions of ozone in solution. T rans. Faraday Soc. 53: 656–665.

T avernelli, I., Gaigeot, M.-P., Vuilleumier, R., Stia, C., Hervé du Penhoat, M.-A., and Politis, M.-F. 2008. Time-dependent density functional theory molecular dynamics simulations of liquid water radiolysis. ChemPhysChem 9: 2099–2103.

T oburen, L. H. 2004. Ionization and secondary electron production by fast charged particles. In Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozumder and Y. Hatano (eds.), pp. 31–74. Ne w York: Marcel Dekk er.

Tsuruoka, C., Suzuki, M., Kanai, T., and Fujitaka, K. 2005. LET and ion species dependence for cell killing in normal human skin �broblasts. Radiat. Res . 163: 494–500. T ubiana, M. (ed.) 2008. Radiobiolo gie. P aris, France: Hermann.

Turner, J. E., Magee, J. L., Hamm, R. N., Chatterjee, A., Wright, H. A., and Ritchie, R. H. 1981. Early events in irradiated water. In Seventh Symposium on Microdosimetry, Oxford, U.K., September 8–12, 1980, J. Booz, H. G. Ebert, and H. D. Hart�el (eds.), pp. 507–520. London, U.K.: Harwood Academic.

Turner, J. E., Magee, J. L., Wright, H. A., Chatterjee, A., Hamm, R. N., and Ritchie, R. H. 1983. Physical and chemical de velopment of electron tracks in liquid w ater. Radiat. Res . 96: 437–449.

T urner, J. E., Hamm, R. N., Wright, H. A., Ritchie, R. H., Magee, J. L., Chatterjee, A., and Bolch, W. E. 1988. Studies to link the basic radiation physics and chemistry of liquid water. Radiat. Phys. Chem. 32: 503–510.

Uehara, S. and Nikjoo, H. 2006. Monte Carlo simulation of water radiolysis for low-energy charged particles. J. Radiat. Res. 47: 69–81.

Usher , F. L. 1911. Die chemische Einzelwirkung und die chemische Gesamtwirkung der αund der β-Strahlen. Jahrb. Radioakt. Elektron. 8: 323–334. v on Sonntag, C. 2006. Free-Radical-Induced DNA Damage and Its Repair. Berlin, Germany: Springer-Verlag.

Ward, J. F. 1994. The complexity of DNA damage: Relevance to biological consequences. Int. J. Radiat. Biol. 66: 427–432.

W asselin-Trupin, V., Baldacchino, G., Bouff ard, S., Balanzat, E., Gardès-Albert, M., Abedinzadeh, Z., Jore, D., Deycard, S., and Hickel, B. 2000. A new method for the measurement of low concentrations of OH/O 2 − radical species in water by high-LET pulse radiolysis. A time-resolved chemiluminescence study. J. Phys. Chem. A 104: 8709–8714.

W asselin-Trupin, V., Baldacchino, G., Bouffard, S., and Hickel, B. 2002. Hydrogen peroxide yields in water radiolysis by high-ener gy ion beams at constant LET . Radiat. Phys. Chem . 65: 53–61.

W att, D. E. 1996. Quantities for Dosimetry of Ionizing Radiations in Liquid Water. London, U.K.: Taylor & Francis.

Werner , U., Beckord, K., Becker , J., Folk erts, H. O., and Lutz, H. O. 1995a. Ion-impact-induced fragmentation of w ater molecules. Nucl. Instrum. Methods Phys. Res. B 98: 385–388.

W erner, U., Beckord, K., Becker , J., and Lutz, H. O. 1995b. 3D imaging of the collision-induced Coulomb fragmentation of w ater molecules. Phys. Re v. Lett. 74: 1962–1965.

W ilson, C. D., Dukes, C. A., and Baragiola, R. A. 2001. Search for the plasmon in condensed water . Phys. Re v. B 63: 121101.

Y amashita, S., Katsumura, Y., Lin, M., Muroya, Y., Maeyama, T., and Murakami, T. 2008. Water radiolysis with heavy ions of energies up to 28 GeV – 2: Extension of primary yield measurements to very high LET values. Radiat. Phys. Chem . 77: 1224–1229.

Zimbrick, J. D. 2002. Radiation chemistry and the Radiation Research Society: A history from the beginning. Radiat. Res. 158: 127–140.

Zirkle, R. E., Marchbank, D. F., and Kuck, K. D. 1952. Exponential and sigmoid survival curves resulting from alpha and X irradiation of asper gillus spores. J . Cellular Comp. Physiol. 39 (Suppl. 1): 75–85. 15 Chapter 15. Radiation Chemistry of High Temperature and Supercritical Water and Alcohols

Akiya, N. and Savage, P. E. 2002. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 102 (8): 2725–2750.

Ashton, L., Buxton, G. V., and Stuart, C. R. 1995. Temperature-dependence of the rate of reaction of OH with some aromatic-compounds in aqueous-solution — Evidence for the formation of a π-complex intermediate. J . Chem. Soc. Faraday Trans. 91 (11): 1631–1633.

A yotte, P. and Johnson, M. A. 1997. Electronic absorption spectra of size-selected hydrated electron clusters: (H 2 O) n − , n = 6–50. J. Chem. Phys. 106 (2): 811–814.

Baldacchino, G., De Waele, V., Monard, H., Sorgues, S., Gobert, F., Larbre, J. P., Vigneron, G., Marignier, J. L., Pommeret, S., and Mostafavi, M. 2006. Hydrated electron decay measurements with picosecond pulse radiolysis at ele vated temperatures up to 350°C. Chem. Phys. Lett . 424 (1–3): 77–81.

B artels, D. M., Cook, A. R., Mudaliar, M., and Jonah, C. D. 2000. Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy. J. Phys. Chem. A 104 (8): 1686–1691.

Bartels, D. M., Takahashi, K., Cline, J. A., Marin, T. W., and Jonah, C. D. 2005. Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. J. Phys. Chem. A 109 (7): 1299–1307.

Bernas, A., Ferradini, C., and Jay-Gerin, J. P. 1996. Excess electrons in homogeneous and heterogeneous porous media. Can. J . Chem. 74 (1): 1–23.

Boag, J. W. and Hart, E. J. 1963. Absorption spectra in irradiated water and some solutions. Nature 197: 45–47.

Boero, M., Parrinello, M., Terakura, K., Ikeshoji, T., and Liew, C. C. 2003. First-principles molecular-dynamics simulations of a h ydrated electron in normal and supercritical w ater. Phys. Re v. Lett. 90 (22): 226403.

Boutin, A., Spezia, R., Coudert, F. X., and Mostafavi, M. 2005. Molecular dynamics simulations of the temperature and density dependence of the absorption spectra of hydrated electron and solvated silver atom in w ater. Chem. Phys. Lett . 409 (4–6): 219–223.

Burns, W. G. and Marsh, W. R. 1981. Radiation-chemistry of high-temperature (300–410°C) water.1. Reducing products from g amma-radiolysis. J . Chem. Soc. Faraday Trans. I 77: 197–215.

Buxton, G. V. 2001. High temperature water radiolysis, in Radiation Chemistry–Present Status and Future Trends. Eds. Jonah, C. D. and Rao, B.S.M. Else vier: Tokyo. pp. 145–162.

Buxton, G. V., Lynch, D. A., and Stuart, C. R. 1998. Radiation chemistry of D 2 O — Time dependence of the yields of the radicals at ambient temperature and rate constants for the reactions • OD + • OD and • D + • OD up to 200°C. J . Chem. Soc. Faraday Trans. 94 (16): 2379–2383.

Chandrasekhar , N. and Krebs, P. 2000. The spectra and the relative yield of solvated electrons produced by resonant photodetachment of iodide anion in ethylene glycol in the temperature range 296 < T < 453 K. J. Chem. Phys. 112 (13): 5910–5914.

Christensen, H. and Sehested, K. 1980. Pulse-radiolysis at high-temperatures and high-pressures. Radiat. Phys. Chem. 16 (2): 183–186.

Christensen, H. C. and Sehested, K. 1986. The hydrated electron and its reactions at high temperatures. J. Phys. Chem. 90 (1): 186–190.

Cline, J., Takahashi, K., Marin, T. W., Jonah, C. D., and Bartels, D. M. 2002. Pulse radiolysis of supercritical water. 1. Reactions between hydrophobic and anionic species. J. Phys. Chem. A 106 (51): 12260–12269.

Coe, J. V. 2001. Fundamental properties of bulk water from cluster ion data. Int. Re v. Phys. Chem. 20 (1): 33–58.

Darr, J. A. and Poliakof f, M. 1999. New directions in inorg anic and metal-org anic coordination chemistry in supercritical ¡uids. Chem. Re v. 99 (2): 495–541.

Dixon, R. S. and Lopata, V. J. 1978. Spectrum of the solvated electron in heavy water up to 445 K. Radiat. Phys. Chem . 11 (3): 135–137. du Penhoat, M. A. H., Goulet, T., Frongillo, Y., Fraser, M. J., Bernat, P., and Jay-Gerin, J. P. 2000. Radiolysis of liquid water at temperatures up to 300°C: A Monte Carlo simulation study. J. Phys. Chem. A 104 (50): 11757–11770.

Eckert, C. A., Knutson, B. L., and Debenedetti, P. G. 1996. Supercritical ¡uids as solvents for chemical and materials processing. Natur e 383 (6598): 313–318.

Elliot, A. J. 1994. Rate constants and G-values for the simulation of the radiolysis of light water ov er the range 0–300°C. Report No. AECL-11073, COG-94-167.

Elliot, A. J. and Buxton, G. V. 1992. Temperature-dependence of the reactions OH + O 2 and OH + HO 2 in water up to 200°C. J . Chem. Soc. Faraday Trans. 88 (17): 2465–2470.

Elliot, A. J., Ouellette, D. C., and Stuart, C. R. 1996. The temperature dependence of the rate constants and yields for the simulation of the radiolysis of hea vy w ater. Report No. AECL-11658, COG-96-390-1.

Feng, J., Aki, S. N. V. K., Chateauneuf, J. E., and Brennecke, J. F. 2002. Hydroxyl radical reactivity with nitrobenzene in subcritical and supercritical w ater. J . Am. Chem. Soc. 124 (22): 6304–6311.

F erry, J. L. and Fox, M. A. 1998. Effect of temperature on the reaction of HO• with benzene and pentahalogenated phenolate anions in subcritical and supercritical water. J. Phys. Chem. A 102 (21): 3705–3710.

Ferry, J. L. and Fox, M. A. 1999. Temperature effects on the kinetics of carbonate radical reactions in nearcritical and supercritical w ater. J . Phys. Chem. A 103 (18): 3438–3441.

Ghandi, K. and Percival, P. W. 2003. Prediction of rate constants for reactions of the hydroxyl radical in water at high temperatures and pressures. J . Phys. Chem. A 107 (17): 3005–3008.

Gottschall, W. C. and Hart, E. J. 1967. The effect of temperature on the absorption spectrum of the hydrated electron and on its bimolecular recombination reaction. J . Phys. Chem. 71 (7): 5.

H an, Z. 2005. Temperature and pressure dependent absorption spectra, kinetics and yields of solvated in alcohols from ro om te mperature to su percritical co ndition st udied by pu lse ra diolysis an d la ser ph otolysis. Ph D th esis, Th e University of Tokyo, Tokyo, Japan.

Han, Z., Katsumura, Y., Lin, M., He, H., Muroya, Y., and Kudo, H. 2005. Temperature and pressure dependence of the absorption spectra and decay kinetics of solvated electrons in ethanol from 22 to 250°C studied by pulse radiolysis. Chem. Phys. Lett . 404 (4–6): 267–271.

Han, Z., Katsumura, Y., Lin, M., He, H., Muroya, Y., and Kudo, H. 2008. Effect of temperature on the absorption spectra of the solvated electron in 1-propanol and 2-propanol: Pulse radiolysis and laser photolysis studies at temperatures up to supercritical condition. Radiat. Phys. Chem . 77 (4): 409–415.

Hart, E. J. and Anbar, M. 1970. The Hydr ated Electron. Ne w York: Wiley-Interscience.

Hart, E. J. and Boag, J. W. 1962. Absorption spectrum of the hydrated electron in water and in aqueous solutions. J . Am. Chem. Soc. 84: 4090–4095.

Herrmann, V. and Krebs, P. 1995. Temperature-dependence of optical absorption spectra of solvated electrons in CD 3 OD for T ≤ T c . J. Phys. Chem. 99 (18): 6794–6800.

Hoffmann, M. M. and Conradi, M. S. 1997. Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 119 (16): 3811–3817.

Ikushima, Y., Hatakeda, K., Saito, N., and Arai, M. 1998. An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point. J. Chem. Phys. 108 (14): 5855–5860.

Janik, D., Janik, I., and Bartels, D. M. 2007a. Neutron and beta/gamma radiolysis of water up to supercritical conditions. 1. Beta/gamma yields for H 2 , H • atom, and hydrated electron. J. Phys. Chem. A 111 (32): 7777–7786.

Janik, I., Bartels, D. M., and Jonah, C. D. 2007b. Hydroxyl radical self-recombination reaction and absorption spectrum in w ater up to 350°C. J . Phys. Chem. A 111 (10): 1835–1843.

Jay-Gerin, J. P. 1997. Correlation between the electron solvation time and the solvent dielectric relaxation times τ 2 and τ L1 , in liquid alcohols and water: Towards a universal concept of electron solvation? Can. J. Chem. 75 (10): 1310–1314.

Jay-Gerin, J. P., Lin, M., Katsumura, Y., He, H., Muroya, Y., and Meesungnoen, J. 2008. Effect of water density on the absorption maximum of hydrated electrons in sub- and supercritical water up to 400°C. J. Chem. Phys. 129 (11): 114511.

Jessop, P. G., Ikariya, T., and Noyori, R. 1994. Homogeneous catalytic-hydrogenation of supercritical carbondioxide. Natur e 368 (6468): 231–233.

Jortner , J. and Gaathon, A. 1977. Effects of phase density on ionization processes and electron localization in ¡uids. Can. J . Chem. 55 (11): 1801–1819.

Jou, F. Y. and Freeman, G. R. 1979a. Band resolution of optical spectra of solvated electrons in water , alcohols, and tetrah ydrofuran. Can. J . Chem. 57: 591–597.

Jou, F. Y. and Freeman, G. R. 1979b. Temperature and isotope effects on the shape of the optical absorption spectrum of solv ated electron in w ater. J . Phys. Chem. 83 (18): 2383–2387.

K eene, J. P . 1963. Optical absorptions in irradiated w ater. Natur e 197: 47–48.

K umagai, Y., Lin, M., Lampre, I., Mostafavi, M., Muroya, Y., and Katsumura, Y. 2008. Temperature effect on the absorption spectrum of the hydrated electron paired with a metallic cation in deuterated water. Radiat. Phys. Chem. 77: 1198–1202.

Lampre, I., Lin, M., He, H., Han, Z., Mostafavi, M., and Katsumura, Y. 2005. Temperature dependence of the solvated electron absorption spectra in propanediols. Chem. Phys. Lett . 402: 192–196.

La verne, J. A. and Pimblott, S. M. 1993. Diffusion-kinetic modeling of the electron radiolysis of water at elevated-temperatures. J . Phys. Chem. 97 (13): 3291–3297.

L in, M., Katsumura, Y., Muroya, Y., He, H., Wu, G., Han, Z., Miyazaki, T., and Kudo, H. 2004. Pulse radiolysis study on the estimation of radiolytic yields of water decomposition products in hightemperature and supercritical water: Use of methyl viologen as a scavenger. J. Phys. Chem. A 108 (40): 8287–8295.

Lin, M., Katsumura, Y., He, H., Muroya, Y., Han, Z., Miyazaki, T., and Kudo, H. 2005. Pulse radiolysis of 4,4′ -bipyridyl aqueous solutions at elev ated temperatures: Spectral changes and reaction kinetics up to 400°C. J . Phys. Chem. A 109 (12): 2847–2854.

Lin, M., Katsumura, Y., Muroya, Y., and He, H. 2006a. A high temperature/pressure optical cell for absorption studies of supercritical ¡uids by laser photolysis. Ind. J . Radiat. Res. 3 (2–3): 69–77.

Lin, M., Mostafavi, M., Muroya, Y., Han, Z. H., Lampre, I., and Katsumura, Y. 2006b. Time-dependent radiolytic yields of the solvated electrons in 1,2-ethanediol, 1,2-propanediol, and 1,3-propanediol from picosecond to microsecond. J . Phys. Chem. A 110 (40): 11404–11410.

L in, M., Kumagai, Y., Lampre, I., Coudert, F. X., Muroya, Y., Boutin, A., Mostafavi, M., and Katsumura, Y. 2007a. Temperature effect on the absorption spectrum of the hydrated electron paired with a lithium cation in deuterated w ater. J . Phys. Chem. A 111: 3548–3553.

Lin, M., Mostafa vi, M., Muroya, Y., Lampre, I., and Katsumura, Y. 2007b. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols. Nucl. Sci. T ech. 18 (1): 2–9.

Lin, M., Katsumura, Y., Muroya, Y., He, H., Miyazaki, T., and Hiroishi, D. 2008. Pulse radiolysis of sodium formate aqueous solution up to 400°C: Absorption spectra, kinetics and yield of carboxyl radical CO 2 • − . Radiat. Phys. Chem. 77: 1208–1212.

Marin, T. W., Cline, J. A., Takahashi, K., Bartels, D. M., and Jonah, C. D. 2002. Pulse radiolysis of supercritical water. 2. Reaction of nitrobenzene with hydrated electrons and hydroxyl radicals. J. Phys. Chem. A 106 (51): 12270–12279.

Marin, T. W., Jonah, C. D., and Bartels, D. M. 2003. Reaction of •OH radicals with H 2 in sub-critical water. Chem. Phys. Lett. 371 (1–2): 144–149.

Matubayasi, N., Wakai, C., and Nakahara, M. 1997. NMR study of water structure in superand subcritical conditions. Phys. Re v. Lett. 78 (13): 2573.

M ichael, B. D., Hart, E. J., and Schmidt, K. H. 1971. The absorption spectrum of e aq − in the temperature range −4 to 390°C. J . Phys. Chem. 75 (18): 2798–2805.

Miyazaki, T., Katsumura, Y., Lin, M., Muroya, Y., Kudo, H., Asano, M., and Yoshida, M. 2006a. γ-Radiolysis of benzophenone aqueous solution at elevated temperatures up to supercritical condition. Radiat. Phys. Chem. 75 (2): 218–228.

Miyazaki, T ., Katsumura, Y., Lin, M., Muroya, Y., Kudo, H., T aguchi, M., Asano, M., and Yoshida, M. 2006b. Radiolysis of phenol in aqueous solution at elev ated temperatures. Radiat. Phys. Chem. 75 (3): 408–415.

Mo stafavi, M. , Li n, M. , Wu , G. , Ka tsumura, Y. , an d Mu roya, Y. 20 02. Pu lse ra diolysis st udy of ab sorption sp ectra of Ag 0 and Ag 2 + in water from room temperature up to 380°C. J. Phys. Chem. A 106 (13): 3123–3127.

Mostafavi, M., Lin, M., He, H., Muroya, Y., and Katsumura, Y. 2004. Temperature-dependent absorption spectra of the solvated electron in ethylene glycol at 100 atm studied by pulse radiolysis from 296 to 598 K. Chem. Phys. Lett. 384 (1–3): 52–55.

Muroya, Y. , Me esungnoen, J. , Ja y-Gerin, J. P. , Fi lali-Mouhim, A. , Go ulet, T. , Ka tsumura, Y. , an d Ma nkhetkorn, S. 20 02. Ra diolysis of li quid wa ter: An at tempt to re concile Mo nte Ca rlo ca lculations wi th ne w ex perimental hy drated el ectron yi eld da ta at ea rly ti mes. Ca n. J. Chem. 80 (1 0): 13 67–1374.

Nicolas, C., Boutin, A., Levy , B., and Borgis, D. 2003. Molecular simulation of a hydrated electron at different thermodynamic state points. J . Chem. Phys. 118 (21): 9689–9696.

O htaki, H. , Ra dnai, T. , an d Ya maguchi, T. 19 97. St ructure of wa ter un der su bcritical an d su percritical co nditions st udied by so lution Xray di ffraction. Ch em. Soc. Rev. 26 (1 ): 41 –51.

Oka, Y. and Kataoka, K. 1992. Conceptual design of a fast breeder reactor cooled by supercritical steam. Ann. Nucl. Energy 19 (4): 243–247.

Okada, K., Imashuku, Y., and Yao, M. 1997. Microwave spectroscopy of supercritical water. J. Chem. Phys. 107 (22): 9302–9311.

Okazaki, K., Idriss-Ali, K. M., and Freeman, G. R. 1984. Temperature and molecular structure dependences of optical spectra of electrons in liquid diols. Can. J . Chem. 62: 2223–2229.

P artay, L. and Jedlo vszky, P . 2005. Line of percolation in supercritical w ater. J . Chem. Phys. 123 (2): 024502.

Perci val, P. W., Brodovitch, J. C., Ghandi, K., Addison-Jones, B., Schuth, J., and Bartels, D. M. 1999. Muonium in sub- and supercritical w ater. Phys. Chem. Chem. Phys . 1 (21): 4999–5004.

P ercival, P. W. , Gh andi, K. , Br odovitch, J. C. , Ad dison-Jones, B. , an d Mc Kenzie, I. 20 00. De tection of mu oniated or ganic fr ee ra dicals in su percritical wa ter. Ph ys. Chem. Chem. Phys. 2 (2 0): 47 17–4720.

Savage, P. E., Gopalan, S., Mizan, T. I., Martino, C. J., and Brock, E. E. 1995. Reactions at supercritical co nditions—Applications an d fu ndamentals. AI ChE J. 41 (7 ): 17 23–1778.

Shiraishi, H. , Su naryo, G. R. , an d Is higure, K. 19 94. Te mperature de pendence of eq uilibrium an d ra te co nstants of reactions inducing conversion between hydrated electron and atomic hydrogen. J. Phys. Chem. 98 (19): 5164–5173.

Sims, H. E. 2006. Yields of radiolysis products from gamma-irradiated supercritical water-A re-analysis data by W. G. Burns and W. R. Marsh. Radiat. Phys. Chem . 75(9): 1047–1050.

Soper , A. K., Bruni, F., and Ricci, M. A. 1997. Site-site pair correlation functions of water from 25 to 400°C: Revised analysis of ne w and old dif fraction data. J . Chem. Phys. 106 (1): 247–254.

S quarer, D., Schulenberg, T., Struwe, D., Oka, Y., Bittermann, D., Aksan, N., Maraczy, C., Kyrki-Rajamaki, R., Souyri, A., and Dumaz, P. 2003. High performance light water reactor. Nucl. Eng. Des. 221 (1–3): 167–180.

Swiatla-Wojcik, D. and Buxton, G. V. 1995. Modeling of radiation spur processes in water at temperatures up to 300°C. J . Phys. Chem. 99 (29): 11464–11471.

T akahashi, K., Cline, J. A., Bartels, D. M., and Jonah, C. D. 2000. Design of an optical cell for pulse radiolysis of supercritical w ater. Re v. Sci. Instrum. 71 (9): 3345–3350.

T akahashi, K., Bartels, D. M., Cline, J. A., and Jonah, C. D. 2002. Reaction rates of the hydrated electron with NO 2 − , NO 3 − , and hydronium ions as a function of temperature from 125 to 380°C. Chem. Phys. Lett. 357 (5–6): 358–364.

Takahashi, K. J., Ohgami, S., Koyama, Y., Sawamura, S., Marin, T. W., Bartels, D. M., and Jonah, C. D. 2004. Reaction rates of the hydrated electron with N 2 O in high temperature water and potential surface of the N 2 O − anion. Chem. Phys. Lett. 383 (5–6): 445–450.

Tucker, S. C. and Maddox, M. W. 1998. The effect of solvent density inhomogeneities on solute dynamics in supercritical ¡uids: A theoretical perspecti ve. J . Phys. Chem. B 102 (14): 2437–2453.

W ang, C.-R. and Lu, Q.-B. 2007. Real-time observation of a molecular reaction mechanism of aqueous 5-halo2′-deoxyuridines under UV/ionizing radiation. Angew. Chem. Int. Ed. 46 (33): 6316–6320.

Wernet, P., Testemale, D., Hazemann, J.-L., Argoud, R., Glatzel, P., Pettersson, L. G. M., Nilsson, A., and Bergmann, U. 2005. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. J. Chem. Phys. 123 (15): 154503.

Wu, G., Katsumura, Y., Muroya, Y., Li, X., and Terada, Y. 2000. Hydrated electron in subcritical and supercritical w ater: A pulse radiolysis study . Chem. Phys. Lett . 325 (5–6): 531–536.

W u, G., Katsumura, Y., Muroya, Y., Li, X., and Terada, Y. 2001a. Pulse radiolysis of high temperature and supercritical w ater: Experimental setup and e aq − observation. Radiat. Phys. Chem. 60 (4–5): 395–398.

Wu, G., Katsumura, Y., Muroya, Y., Lin, M., and Morioka, T. 2001b. Temperature dependence of (SCN) 2 •− in water at 25–400°C: Absorption spectrum, equilibrium constant, and decay. J. Phys. Chem. A 105 (20): 4933–4939.

Wu, G., Katsumura, Y., Lin, M., Morioka, T., and Muroya, Y. 2002a. Temperature dependence of ketyl radical in aqueous benzophenone solutions up to 400°C: A pulse radiolysis study. Phys. Chem. Chem. Phys. 4 (1 6): 39 80–3988.

Wu, G., Katsumura, Y., Muroya, Y., Lin, M., and Morioka, T. 2002b. Temperature dependence of carbonate radical in NaHCO 3 and Na 2 CO 3 solutions: Is the radical a single anion? J. Phys. Chem. A 106 (11): 2430–2437. 16 Chapter 16. Radiation Chemistry of Water with Ceramic Oxides

Al-Abadleh, H. A. and Grassian, V. H. 2003. FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 19: 341–347.

Aleksandro v, A. B., Byakov, A. Y., Vall, A. I., Petrik, N. G., and Sedov, V. M. 1991. Radiolysis of adsorbed substances on oxide surf aces. Russ. J . Phys. Chem. 65: 847–849.

Alig, R. C. and Bloom, S. 1975. Electron-hole-pair creation energies in semiconductors. Phys. Rev. Lett. 35: 1522–1525.

Allen, A. O. 1961. The Radiation Chemistry of Water and Aqueous Solutions. Ne w York: Van Nostrand.

Aoki, M., Nakazato, C., and Masuda, T. 1988. Hydrogen formation from water adsorbed on zeolite during gamma-irradiation. Bull. Chem. Soc. Jpn . 61: 1899–1902.

A udebert, P., Daguzan, P., Dos Santos, A., Gauthier, J. C., Geindre, J. P., Guizard, S., Hamoniaux, G., Krastev, K., Martin, P., Petite, G., and Antonetti, A. 1994. Space-time observation of an electron gas in SiO 2 . Phys. Rev. Lett. 73: 1990–1993.

Behar , D. and Rabani, J. 2006. Kinetics of hydrogen production upon reduction of aqueous TiO 2 nanoparticles catalyzed by Pd 0 , Pt 0 , or Au 0 coating and an unusual hydrogen abstraction; steady state and pulse radiolysis study. J . Phys. Chem. B 110: 8750–8755.

Bethe, H. 1930. Zur Theorie des Durchgangs Schneller Korpuskularstrahlen Durch Materie. Ann. Phys. 5: 325–400.

Bethe, H. and Ashkin, J. 1953. Passage of radiations through matter. In Experimental Nuclear Physics, E. Segre (ed.). Ne w York: Wiley.

Boehm, H. P. 1971. Acidic and basic properties of hydroxylated metal oxide surfaces. Disc. Faraday Soc. 53: 264–289.

Bohr, N. 1913. On the theory of the decrease of velocity of moving electri�ed particles on passing through matter. Phil. Ma g. 25: 10–31. Bohr , N. 1948. The penetration of atomic particles through matter. Det. Klg. Danske Videnskabernes Selskab 18: 1–144.

Bubyre va, N. S., Dolin, P. I., Kononovich, A. A., and Rozenblyum, N. D. 1966. The radiolysis of water vapor in the presence of the semiconductor oxides ZnO and V 2 O 5 . Kinet. Catal. 7: 846–848.

Busca, G. 1996. The use of vibrational spectroscopies in studies of heterogeneous catalysis by metal oxides: An introduction. Catal. Today 27: 323–352.

Buxton, G. V. 2004. The radiation chemistry of liquid water: Principles and applications. In Charg ed Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.), pp. 331–363. Ne w York: Marcel Dekk er.

Caffrey, J. M. J. and Allen, A. O. 1958. Radiolysis of pentane adsorbed on mineral surfaces. J. Phys. Chem. 62: 33–37.

Carrasco-Flores, E. A. and La Verne, J. A. 2007. Surface species produced in the radiolysis of zirconia nanoparticles. J . Chem. Phys. 127: 234703.

Cecal, A., Macov ei, A., Tamba, G., Hauta, O., Popa, K., Ganju, D., and Rusu, I. 2008. On the hydrogen production by catalyzed radiolysis of w ater. Re v. Roumaine Chim. 53: 203–206.

Chemeriso v, S. D. and Trifunac, A. D. 2001. Probing nanocon�ned water in zeolite cages: H atom dynamics and spectroscop y. Chem. Phys. Lett . 347: 65–72.

Chemeriso v, S. D., Werst, D. W., and Trifunac, A. D. 2001. Formation, trapping and kinetics of H atoms in wet zeolites and mesoporous silica. Radiat. Phys. Chem . 60: 405–410.

Chitose, N., Ueta, S., Seino, S., and Yamamoto, T. A. 2003. Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC remov al in solutions containing TiO 2 induced by UV, γ-ray and electron beams. Chemospher e 50: 1007–1013.

Christensen, H. and Sunder, S. 1996. An ev aluation of water layer thickness effecti ve in the oxidation of UO 2 fuel due to radiolysis of w ater. J . Nucl. Mater. 238: 70–77.

Christensen, H., Sunder, S., and Showsmith, D. W. 1994. Oxidation of nuclear fuel (UO 2 ) by the products of water radiolysis: De velopment of a kinetic model. J . Alloys Compd. 213/214: 93–99.

C orbel, C. , Sa ttonnay, G. , Lu cchini, J. F. , Ar dois, C. , Ba rthe, M. F. , Hu et, F. , De haudt, P. , Hi ckel, B. , an d Je gou, C. 2001. Increase of the uranium release at an UO 2 /H 2 O interface under He 2+ ion beam irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 179: 225–229.

Corb ut, V., Jay-Gerin, J.-P., Frongillo, Y., and Patau, J. P. 1996. On the dissociative electron attachment as a potential source of molecular h ydrogen in irradiated liquid w ater. Radiat. Phys. Chem . 47: 247–250.

De Waele, V., Lampre, I., and Mostafavi, M. 2010. Time-resolved study on nonhomogeneous chemistry induced by ionizing radiation with low linear energy transfer in water and polar solvents at room temperature. In Ch arged Particle Interactions with Matter: Recent Advances, Applications, and Interfaces. Y. Hatano, Y. Katsumura, and A. Mozumder (eds.), pp. 289–324, Boca Raton, Florida: CRC press.

Dimitrije vic, N. M., Henglein, A., and Meisel, D. 1999. Charge separation across the silica nanoparticle/water interface. J . Phys. Chem. B 103: 7073–7076.

Emmett, P. H., Livingston, R., Zeldes, H., and Kokes, R. J. 1962. Formation of hydrogen atoms in irradiated catalysts. J . Phys. Chem. 66: 921–923.

F ano, U. 1963. Penetration of protons, alpha particles, and mesons. Ann. Re v. Nucl. Sci. 13: 1–66.

F oley, S., Rotureau, P., Pin, S., Baldacchino, G., Renault, J.-P., and Mialocq, J.-C. 2005. Radiolysis of con�ned water: Production and reacti vity of h ydroxyl radicals. Ang ew. Chem. Int. Ed. 44: 110–112.

Freund, H.-J., K uhlenbeck, H., and Staemmler , V. 1996. Oxide surf aces. Rep. Pr og. Phys. 59: 283–347.

Gao, R., Safrany, A., and Rabani, J. 2002. Fundamental reactions in TiO 2 nanocrystallite aqueous solutions studied by pulse radiolysis. Radiat. Phys. Chem . 65: 599–609.

Gao, R., Safrany, A., and Rabani, J. 2003. Reactions of TiO 2 excess electron in nanocrystalline aqueous solutions studied in pulse and g amma-radiolysis systems. Radiat. Phys. Chem . 67: 25–39.

Garibo v, A. A. 1983. Water radiolysis in the presence of oxides. In Proceedings of the Fifth Tihany Symposium on Radiation Chemistry, Budapest, Hung ary, Akademiai Kiado.

Garibov, A. A., Melikzade, M. M., Bakirov, M. Y., and Ramazanova, M. K. 1982a. Effect of cations on the catalytic properties of silica gel in the radiolysis of adsorbed w ater. High Ener gy Chem. 16: 101–105.

Garibo v, A. A., Melikzade, M. M., Barikov, M. Y., and Ramazanova, M. K. 1982b. Radiolysis of adsorbed water molecules on the oxides. High Ener gy Chem. 16: 177–179.

Garibo v, A. A., Bakirov, M. Y., Velibekova, G. Z., and Elchiev, Y. M. 1984. Radiation catalytic properties of natural zeolite of the mordenite type in the radiolysis of w ater. High Ener gy Chem. 18: 398–401.

Garibo v, A. A., Gezalov, K. B., and Kasumov, R. D. 1987a. Radiation-induced heterogeneous reactions in BeO + H 2 O using EPR. Radiat. Phys. Chem. 30: 197–199.

Garibov, A. A., Gezalov, K. B., Velibekova, G. Z., Khudiev, A. T., Ramazanova, M. K., Kasumov, R. D., Agaev, T. N., and Gasanov, A. M. 1987b. Heterogeneous radiolysis of water: Effect of the concentration of w ater in the adsorbed phase on the h ydrogen yield. High Ener gy Chem. 21: 416–420.

Garibo v, A. A., Velibekova, G. Z., Kasumov, R. D., Gezalov, K. B., and Agaev, T. N. 1990. Characteristics of energy transfer in heterogeneous radiolysis of water in the presence of amorphous aluminosilicate. High Energy Chem. 24: 174–179.

Garibo v, A. A., Agae v, T. N., and Kasumov , R. D. 1991a. Effect of concentration of aluminum on the radiolyticcatalytic activity of aluminosilicate in obtaining hydrogen from water . High Ener gy Chem. 25: 337–341.

Garibov , A. A., Parmon, V. N., Agae v, T. N., and Kasumov , R. D. 1991b. In¡uence of the polymorphous forms of the oxide and the temperature on the transfer of energy during radiation-induced heterogeneous processes in the Al 2 O 3 + H 2 O system. High Energy Chem. 25: 86–90.

Garibov, A. A., Velibekova, G. Z., Agaev, T. N., Dzhafarov, Y. D., and Gadzhieva, N. N. 1992. Radiation heterogeneous processes in contact of aluminum with w ater. High Ener gy Chem. 26: 184–187.

G arrett, B. C., Dixon, D. A., Camaioni, D. M., Chipman, D. M., Johnson, M. A., Jonah, C. D., Kimmel, G. A., Miller, J. H., Rescigno, T. N., Rossky , P. J., Xantheas, S. S., Colson, S. D., Laufer, A. H., Ray, D., Barbara, P. F., Bartels, D. M., Becker , K. H., Bowen, K. H., Bradforth, S. E., Carmichael, I., Coe, J. V. , Co rrales, L. R. , Co win, J. P. , Du puis, M. , Ei senthal, K. B. , Fr anz, J. A. , Gu towski, M. S. , Jo rdan, K. D. , Ka y, B. D. , La Verne, J. A. , Ly mar, S. V. , Ma dey, T. E. , Mc Curdy, C. W. , Me isel, D. , Mu kamel, S. , Ni lsson, A. R., Orlando, T. M., Petrik, N. G., Pimblott, S. M., Rustad, J. R., Schenter, G. K., Singer, S. J., Tokmak off, A., Wa ng, L. -S., Wi ttig, C. , an d Zw ier, T. S. 20 05. Th e ro le of wat er on el ectron-initiated pr ocesses an d ra dical chemistry: Issues and scienti�c adv ances. Chem. Re v. 105: 355–389.

Henderson, M. A. 2002. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46: 1–308.

Hendrich, V. E. and Cox, P. A. 1996. The Surface Science of Metal Oxides. Cambridge, U.K.: Cambridge University Press.

Hertl, W. 1989. Surf ace chemistry of zirconia polymorphs. Langmuir 5: 96–100.

H iroki, A. and LaVerne, J. A. 2005. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. J. Phys. Chem. B 109: 3364–3370.

Hubbell, J. H. and Seltzer, S. M. 1996. Tables of X-Ray Mass Attenuation Coef±cients and Mass EnergyAbsorption Coef±cients Report NISTIR 5632. Gaithersburg, MD: National Institute of Standards and Technology .

Hudgins, D. M., Sandford, S. A., Allamandola, L. J., and Tielens, A. G. G. M. 1993. Midand far -infrared spectroscopy of ices: Optical constants and inte grated absorbances. Astr ophys. J. Suppl. Ser. 86: 713–870. ICR U. 1984. Stopping P owers for Electron and Positrons. Bethesda, MD: International Commission on Radiation Units and Measurements.

Jung, J., Jeong, H. S., Chung, H. H., Lee, M. J., Jin, J. H., and Park, K. B. 2003. Radiocatalytic H 2 production with g amma-irradiation and TiO 2 catalysts. J. Radioanal. Nucl. Chem. 258: 543–546.

Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A. N., Generalov, R., Generalova, N., and Christensen, I. L. 2008. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Del. Rev. 60: 1600–1614.

K asarevic-Popovic, Z., Behar, D., and Rabani, J. 2004. Role of excess electrons in TiO 2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions. J. Phys. Chem. B 108: 20291–20295.

Khare, M. and Johnson, E. R. 1970. Ener gy transfer in alkali halide matrices. J . Phys. Chem. 74: 4085–4091.

Kimmel, G. A., Orlando, T. M., Vezina, C., and Sanche, L. 1994. Low-energy electron-stimulated production of molecular h ydrogen from amorphous w ater ice. J . Chem. Phys. 101: 3282–3286.

Klyachk o, D. V., Rowntree, P., and Sanche, L. 1997. Dynamics of surface reactions induced by low-energy electrons oxidation of h ydrogen-passivated Si by H 2 O. Sur. Sci. 389: 29–47.

Krylova, Z. L. and Dolin, P . I. 1966. Radiolysis of w ater adsorbed on silica gel. Kinet. Catal . 7: 840–844.

Lavalley, J.-C., Bensitel, M., Gallas, J. P., Lamotte, J., Busca, G., and Lorenzelli, V. 1988. FT-IR study of the δ(OH) mode of surf ace h ydroxyl groups on metal oxides. J . Mol. Struct. 175: 453–458.

LaV erne, J. A. 2000. Track ef fects of hea vy ions in liquid w ater. Radiat. Res . 153: 487–496.

LaV erne, J. A. 2005. H 2 formation from the radiolysis of liquid water with zirconia. J. Phys. Chem. B 109: 5395–5397.

LaVerne, J. A. and Mozumder, A. 1986. Effect of phase on the stopping and range distribution of low-energy electrons in w ater. J . Phys. Chem. 90: 3242–3247.

LaV erne, J. A. and Pimblott, S. M. 2000. New mechanism for H 2 formation in water. J. Phys. Chem. A 104: 9820–9822.

LaVerne, J. A. and Tandon, L. 2002. H 2 production in the radiolysis of water on CeO 2 and ZrO 2 . J. Phys. Chem. B 106: 380–386.

LaV erne, J. A., Meisel, D., and Jonah, C. 2003. unpublished results.

L e Caer, S., Rotureau, P., Brunet, F., Charpentier, T., Blain, G., Renault, J. P., and Mialocq, J. C. 2005a. Radiolysis of con�ned water: Hydrogen production at low dose rate. Chem. Phys. Chem. 6: 2585–2596.

Le Caer, S., Rotureau, P., Vigneron, G., Blain, G., Renault, J. P., and Mialocq, J. C. 2005b. Irradiation of controlled pore glasses with 10 MeV electrons. Re v. Adv. Mater. Sci. 10: 161–165.

Le Caer, S., Renault, J. P., and Mialocq, J. C. 2007. Hydrogen peroxide formation in the radiolysis of hydrated nanoporous glasses: A lo w and high dose rate study . Chem. Phys. Lett . 450: 91–95.

Lemaignan, C. 2002. Physical phenomena concerning corrosion under irradiation of Zr alloys. In Zirconia in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, G. D. Moan and P. Rudling (eds.), pp. 20–29. West Conshohock en, P A: ASTM International.

Liu, X., Zhang, G., and Thomas, J. K. 1995. Spectroscopic studies of electron trapping in zeolites: Cation cluster trapped electrons and h ydrated electrons. J . Phys. Chem. 99: 10024–10034.

McDonald, R. S. 1958. Surface functionality of amorphous silica by infrared spectroscopy . J. Phys. Chem. 62: 1168–1178.

Meisel, D. 2003. Radiation effects in nanoparticle suspensions. In Nanoscale Materials , L. M. Liz-Maran and P. V. Kamat (eds.), pp. 119–134. Norwell, MA: Academic Publishers.

Merle-Mejean, T., Barberis, P., Othmane, S. B., Nardou, F., and Quintard, P. E. 1998. Chemical forms of hydroxyls on/in zirconia: An FT -IR study . J . Eur. Ceram. Soc. 18: 1579–1586.

Milosa vljevic, B. H., Pimblott, S. M., and Meisel, D. 2004. Yields and migration distances of reducing equivalents in the radiolysis of silica nanoparticles. J . Phys. Chem. B 108: 6696–7001.

M ozumder, A. 19 69. Ch arged pa rticle tr acks an d th eir st ructure. In Ad vances in Radiation Chemistry, M. Burton and J. L. Magee (eds.), pp. 1–102. Ne w York: Wiley-Interscience.

Murakami, Y., Kenji, E., Nosaka, A. Y., and Nosaka, Y. 2006. Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO 2 surfaces by means of laser-induced ¡uorescence spectroscopy. J . Phys. Chem. B 110: 16808–16811.

Nakashima, M. and Tachikawa, E. 1983. Hydrogen evolution from tritiated water on silica gel by gammairradiation. Radioc him. Acta 33: 217–222.

Nakazato, C. and Masuda, T. 1986. Reactivity of electrons produced in gamma-irradiated zeolite tow ard sev eral electron sca vengers. Bull. Chem. Soc. Jpn . 59: 2237–2239.

Nakashima, M. and Aratono, Y. 1993. Radiolytic hydrogen gas formation from water adsorbed on type A zeolites. Radiat. Phys. Chem . 41: 461–465.

Nakashima, M. and Masaki, N. M. 1996. Radiolytic hydrogen gas formation from water adsorbed on type Y zeolites. Radiat. Phys. Chem . 47: 241–245.

Nakashima, M. and Tachika wa, E. 1987. Radiolytic gas production from tritiated water adsorbed on molecular sieve 5A. J . Nucl. Sci. Tech. 24: 41–46.

National Research Council. 2001. Impro ving Operations and Long-Term Safety of the Waste Isolation Pilot Plant. Washington, DC: National Research Council.

National Research Council. 2002. Researc h Opportunities for Managing the Department of Energy’s Transuranic and Mixed Wastes. Washington, DC: National Research Council.

Nechae v, A. 1986. Radiation induced processes on solid surfaces: General approach and outlook. Radiat. Phys. Chem. 28: 433–436.

Oza wa, M., Suzuki, S., Loong, C.-K., and Nipko, J. C. 1997. Neutron and Raman scattering studies of surface adsorbed molecular vibrations and bulk phonons in ZrO 2 nanoparticles. Appl. Surf. Sci. 121/122: 133–137.

Pastina, B. and LaV erne, J. A. 1999. Hydrogen peroxide production in the radiolysis of w ater with hea vy ions. J. Phys. Chem. A 103: 1592–1597.

Pastina, B. and LaVerne, J. A. 2001. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A 105: 9316–9322.

P astina, B., LaVerne, J. A., and Pimblott, S. M. 1999. Dependence of molecular hydrogen formation in water on sca vengers of the precursor to the h ydrated electron. J . Phys. Chem. A 103: 5841–5846.

Peri, J. B. 1965. A model for the surf ace of γ -alumina. J . Phys. Chem. 69: 220–230.

Petr , I. 1985. Production of electron-hole pairs in SiO 2 �lms. J. Radioanal. Nucl. Chem. Lett. 95: 195–200.

Petrik, N. G., Alexandrov, A. B., Orlando, T. M., and Vall, A. I. 1999. Radiation-induced processes at oxide surfaces and interf aces rele vant to spent nuclear fuel. T rans. Am. Nucl. Soc. 81: 101–102.

Petrik, N. G., Alexandrov, A. B., and Vall, A. I. 2001. Interfacial energy transfer during gamma radiolysis of water on the surf ace of ZrO 2 and some other oxides. J. Phys. Chem. B 105: 5935–5944.

Rabani, J., Fessenden, R. W., and Sassoon, R. E. 1988. A pulse radiolysis study to probe reduced platinum colloids in aqueous solution using optical and conductivity techniques. J. Phys. Chem. 92: 2379–2385.

Rabe, J. G., Rabe, B., and Allen, A. O. 1964. Radiolysis in the adsorbed state. J. Am. Chem. Soc. 86: 3887–3888.

Rabe, J. G., Rabe, B., and Allen, A. O. 1966. Radiolysis and energy transfer in the adsorbed state. J. Phys. Chem. 70: 1098–1107.

Roberto, J. and de la Rubia, T. D. 2006. Basic Research Needs for Advance Nuclear Energy Systems. Washington, DC: Of �ce of Science U.S. Department of Ener gy

Rojo, E. A. and Hentz, R. R. 1966. The reaction of isopropylbenzene on γ-irradiated silica gels. J. Phys. Chem. 70: 2919–2925.

Roscoe, J. M. and Abbatt, J. P. D. 2005. Diffuse re¡ectance FTIR study of the interaction of alumina surfaces with ozone and w ater v apor. J . Phys. Chem. A 109: 9028–9034.

Rotureau, P., Renault, J. P., Lebeau, B., Patarin, J., and Mialocq, J. C. 2005. Radiolysis of con�ned water: Molecular h ydrogen formation. Chem. Phys. Chem . 6: 1316–1323.

Ro wntree, P., Parenteau, L., and Sanche, L. 1991. Electron stimulated desorption via dissociativ e attachment in amorphous H 2 O. J. Chem. Phys. 94: 8570–8576.

Rustamov, V. R., Bugaenko, L. T., Kurbanov, M. A., and Kerimov, V. K. 1982. Energy-transfer performance in the heterogeneous radiolysis of w ater. High Ener gy Chem. 16: 148–150.

Rutherford, E. 1911. The scattering of a and b particles by matter and the structure of the atom. Phil. Ma g. 21: 669–688.

Saeta, P. N. and Greene, B. I. 1993. Primary relaxation processes at the band edge of SiO 2 . Phys. Rev. Lett. 70: 3588–3591.

Safrany, A., Gao, R., and Rabani, J. 2000. Optical properties and reactions of radiation induced TiO 2 electrons in aqueous colloid solutions. J . Phys. Chem. B 104: 5848–5853.

Sagert, N. H. and Robinson, R. W. 1968. Radiolysis in the adsorbed state. II. N 2 O adsorbed on silica gel and zirconia. Can. J . Chem. 46: 2075–2080.

Sattonnay , G., Ardois, C., Corbel, C., Lucchini, J. F., Barthe, M. F., Garrido, F., and Gosset, D. 2001. Alpharadiolysis ef fects on UO 2 alteration in water. J. Nucl. Mater. 288: 11–19.

Schatz, T., Cook, A. R., and Meisel, D. 1998. Charge carrier transfer across the silica nanoparticle/water interface. J . Phys. Chem. B 102: 7225–7230.

Seino, S., Fujimoto, R., Yamamoto, T., Katsura, M., and Okuda, S. 2000. Hydrogen gas evolution from waterdispersed titania and alumina nanoparticles by γ -ray irradiation. Radioisotopes 49: 354–358.

Seino, S., Yamamoto, T. A., Fugimoto, R., Hashimoto, K., Katsura, M., Okuda, S., Okitsu, K., and Oshima, R. 2001a. Hydrogen evolution from water dispersing nanoparticles irradiated with gamma-ray/size effect and dose rate ef fect. Scr . Mater. 44: 1709–1712.

Seino, S., Yamamoto, T. A., Fujimoto, R., Hashimoto, K., Katsura, M., Okuda, S., and Okitsu, K. 2001b. Enhancement of hydrogen evolution yield from water dispersing nanoparticles irradiated with gamma ray. J . Nucl. Sci. Tech. 38: 633–636.

Shkrob, I. A. and Trifunac, A. D. 1996. Time-resolved EPR of spin-polarized mobile H atoms in amorphous silica: The in volvement of small polarons. Phys. Re v. B 54: 15073–15078.

Shkrob, I. A. and Trifunac, A. D. 1997. Spin-polarized H/D atoms and radiation chemistry in amorphous silica. J. Chem. Phys. 107: 2374–2385.

Shkrob, I. A., Tadjik ov, B. M., Chemerisov , S. D., and Trifunac, A. D. 1999. Electron trapping and hydrogen atoms in oxide glasses. J . Chem. Phys. 111: 5124–5140.

Stak ebake, J. L. 1981. Kinetic-studies of the reaction of plutonium hydride with oxygen. Nucl. Sci. Eng. 78: 386–392.

Stakebake, J. L. 1967. Low temperature adsorption of oxygen on plutonium dioxide. J. Nucl. Mater. 23: 154–162.

Stakebake, J. L. and Dringman, M. R. 1968a. Desorption from plutonium dioxide. US Atomic Energy Commission Report RFP-1248.

Stak ebake, J. L. and Dringman, M. R. 1968b. Hydroscopy of plutonium dioxide. US Atomic Energy Commission Report RFP-1056.

Sutherland, J. W. and Allen, A. O. 1961. Radiolysis of pentane in the adsorbed state. J. Am. Chem. Soc. 83: 1040–1047.

Szczepankiewicz, S. H., Colussi, A. J., and Hof fman, M. R. 2000. Infrared spectra of photoinduced species on hydroxylated titania surf aces. J . Phys. Chem. B 104: 9842–9850.

T akeuchi, M., Martra, G., Coluccia, S., and Anpo, M. 2005. Investigations of the structure of H 2 O clusters adsorbed on TiO 2 surfaces by near-infrared absorption spectroscopy. J. Phys. Chem. B 109: 7387–7391.

Tanabe, K. 1985. Surf ace and catalytic properties of ZrO 2 . Mater. Chem. Phys. 13: 347–364.

Thiel, P. A. and Madey, T. E. 1987. The interaction of water with solid surfaces—Fundamental aspects. Surf. Sci. Rep. 7: 211–385.

Thomas, J. K. 1993. Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on SiO 2 , γ-Al 2 O 3 , zeolites, and clays. Chem. Rev. 93: 301–320.

Thomas, A. C. and Richardson, H. H. 2006. 2D-IR correlation analysis of thin �lm water adsorbed on α-Al 2 O 3 (0001). J. Mol. Struct. 799: 158–162.

U.S. Department of Energy. 2003. Basic Research Needs to Assure a Secure Energy Future. Washington, DC: Of�ce of Basic Ener gy Sciences, U.S. Department of Ener gy.

U.S. Department of Energy. 2006. Basic Research Needs for Advanced Nuclear Energy Systems. Washington, DC: Of �ce of Basic Ener gy Sciences, U.S. Department of Ener gy.

U.S. Department of Energy . 2008. Basic Resear ch Needs for Materials under Extreme Environments. Washington, DC: Of �ce of Basic Ener gy Sciences, U.S. Department of Ener gy.

Vickerman, J. C. Ed. 1997. Surface Analysis. Ne w York: John Wile y & Sons.

W eeks, R. A. and Abraham, M. 1965. Electron spin resonance of irradiated quartz: Atomic hydrogen. J. Chem. Phys. 42: 68–71.

W ong, P. K. and Willard, J. E. 1968. Evidence for electron migration during γ irradiation of silica gels. Reactions of adsorbed electron sca vengers. J . Phys. Chem. 72: 2623–2627.

Y amamoto, T. A., Seino, S., Okitsu, K., Oshima, R., and Nagata, Y. 1999. Hydrogen gas ev olution from alumina nanoparticles dispersed in w ater irradiated with γ -ray. Nanostruct. Mater . 12: 1045–1048.

Y ates, D. J. C. 1961. Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide. J . Phys. Chem. 65: 746–753.

Zhang, G., Mao, Y., and Thomas, J. K. 1997. Surface chemistry induced by high energy radiation in silica of small particle structures. J . Phys. Chem. B 101: 7100–7113.

Zhang, G., Liu, X., and Thomas, J. K. 1998. Radiation induced physical and chemical processes in zeolite materials. Radiat. Phys. Chem . 51: 135–152. 17 Chapter 17. Ionization of Solute Molecules at the Liquid Water Surface, Interfaces, and Self-Assembled Systems

Benjamin, I. 1996. Chemical reactions and solvation at liquid interfaces: A microscopic perspective. Chem. Rev. 96: 1449–1475.

Benjamin, I. 2006. Static and dynamic electronic spectroscopy at liquid interfaces. Chem. Rev. 106: 1212–1233.

Birdi, K. S. (ed.), 1997. Handbook of Surface and Colloid Chemistry . Boca Raton, FL: CRC Press.

Birdi, K. S. 1999. Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces. New York: Kluwer Academic/Plenum Publishers.

Born, M. 1920. Volumes and h ydration w armth of ions. Z. für Phys . 1: 45–48.

Chang, T.-M. and Dang, L. X. 2006. Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem. Re v. 106: 1305–1322.

Chen, H., Inoue, T., and Ogawa, T. 1994. Solvents effects in determination of anthracene on solution surfaces by laser tw o-photon ionization technique. Anal. Chem . 66: 4150–4153.

Da vidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T ., and Worsnop, D. R. 2006. Mass accommodation and chemical reactions at g as-liquid interf aces. Chem. Re v. 106: 1323–1354.

Donaldson, D. J. and Vaida, V. 2006. The in¡uence of org anic �lms at the air-aqueous boundary on atmospheric processes. Chem. Re v. 106: 1445–1461.

Dre xhage, K. H. 1997. Structure and properties of laser dyes. In Dye Lasers, 2nd edn., F. P. Schäfer (ed.), p. 167, Berlin, German y: Springer .

Eisenthal, K. B. 1992. Equilibrium and dynamic processes at interfaces by second harmonic and sum frequency generation. Annu. Re v. Phys. Chem. 43: 627–661.

F arrell, P . G. and Ne wton, J. 1965. Ionization potentials of aromatic amines. J . Phys. Chem. 69: 3506–3509.

Garret, B. C., Schenter, G. K., and Morita, A. 2006. Molecular simulation of the transport of molecules across the liquid/v apor interf ace of w ater. Chem. Re v. 106: 1355–1374.

Gopalakrishnan, S., Liu, D., and Allen, H. C. 2006. Vibrational spectroscopic studies of aqueous interfaces: Salt, acids, bases, and nanodrops. Chem. Re v. 106: 1155–1175.

Gridin, V. V., Litani-Barzilai, I., Kadosh, M., and Schechter, I. 1998. Determination of aqueous solubility and surface adsorption of polycyclic aromatic hydrocarbons by laser multiphoton ionization. Anal. Chem . 70: 2685–2692.

Harata, A. 2003. Ultrasensitiv e and ultrafast spectroscopies for inv estigating dynamic behavior of molecules in a nanospace at interf aces. Housyasen Ka gaku 75: 12–19 (in Japanese).

Harata, A., Ishioka, T., and Hatano, Y. 2002. Photoionization of molecules adsorbed at the water surface: Acidity dependence of photoionization thresholds studied with a synchrotron light source. In Abstract of The 1st Saga Synchrotron Light Symposium SSLS2002, Tosu, Sag a, Japan, pp. 21–22.

Harata, A., Seno, K., Slyadne va, O. N., and Hatano, Y. 2009. Unpublished results.

H atano, Y. 1999. Interaction of vacuum ultraviolet photons with molecules. Formation and dissociation dynamics of molecular superexcited states. Phys. Rep. 313: 109–169.

Hatano, Y. 2001a. Interaction of VUV photons with molecules: Spectroscopy and dynamics of molecular superexcited states. J. Electron Spectrosc. Relat. Phenom. 119: 107–125.

Hatano, Y. 2001b. Spectroscopy and dynamics of molecular superexcited molecules. In Chemical Applications of Synchrotron Radiation, T. K. Sham (ed.), pp. 55–111. Sing apore: World Scienti�c Publishing Co.

Hoenig, D. and Moebius, D. 1991. Direct visualization of monolayers at the air-water interface by Brewster angle microscop y. J . Phys. Chem. 95: 4590–4592. Hof fman, G. J. and Albrecht, A. C. 1991. Near-threshold photoionization spectra in nonpolar liquids: A geminate pair based model. J . Phys. Chem. 95: 2231–2241.

Holro yd, R. A., Preses, J. M., and Zevos, N. 1983. Single-photon induced conductivity of solutes in nonpolar solvents. J . Chem. Phys. 79: 483–487.

Inoue, T., Masuda, K., Nakashima, K., and Oga wa, T. 1994. Highly sensitiv e detection of aromatic molecules by laser tw o-photon ionization on the surf ace of w ater in ambient air . Anal. Chem . 66: 1012–1014.

Inoue, T., Moriguchi, M., and Oga wa, T. 1995. Highly sensitiv e determination of dye molecules on a surface by the second harmonic generation technique. Anal. Sci . 11: 671–672.

Inoue, T., Sasaki, S., Tok eshi, M., and Oga wa, T., 1998. Photoionization threshold of perylene on water surface as measured by synchrotron radiation. Chem. Lett . 7: 609–610.

I noue, T. , Ni shi, H. , Ki tauira, T. , Ku rauchi, Y. , an d Oh ga, K. 20 05. Hi ghly se nsitive de termination of ar omatic mo lecules in th e in terface re gion of an oi l/water sy stem us ing la ser tw o-photon io nization. Bu nseki Kagaku 54 : 46 7–471.

Ishioka, T. and Harata, A. 2004. Nonuniform distribution of adsorbed dye at the water surface probed by photoionization methods. UVSOR Act. Rep. 2003: 54.

Ishioka, T., Harata, A., and Hatano, Y. 2003. Photoionization of adsorbed dye below aliphatic acid monolayer at the aqueous solution surf ace. UVSOR Act. Rep. 2002: 108–109.

J akobi, H. an d Ku hn, H. 19 62. Th e or ientation of th e tr ansition mo ments of ab sorption ba nds of ac ridinephenazine, ph enoxazine, an d xa nthine dy es fr om di chroism an d ¡u orescence-polarization st udies. Z. Elektrochem. Angew. Phys. Chem. 66 : 46 –53.

Jo, S. K. and White, J. M. 1991. Low energy (<1 eV) electron transmission through condensed layers of water . J. Chem. Phys . 94: 5761–5765.

Jungwirth, P . and Tobias, D. J. 2006. Speci�c ion ef fects at air/w ater interf ace. Chem. Re v. 106: 1259–1281.

Jungwirth, P., Finlayson-Pitts, B. J., and Tobias, D. J. 2006. Introduction: Structure and chemistry at aqueous interfaces. Chem. Re v. 106: 1137–1139.

K oltun, W. L. 1965. Precision space-�lling atomic models. Biopolymer s 3: 665–679.

K ouchi, N. and Hatano, Y. 2004. Interaction of photons with molecules: Photoabsorption, photoionization and photodissociation. In Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mo zumder an d Y. Ha tano (e ds.), pp . 10 5–120, Ne w York: Marcel Dekk er.

Lheveder, C., Meunier, J., and Henon, S. 2000. Brewster angle microscopy. In Physical Chemistry of Biological Interfaces, A. Baszbin and W. Norde (eds.), pp. 559–575. Ne w York: Marcel Dekk er.

Li, Y.-Q., Sasaki, S., Inoue, T., Harata, A., and Ogawa, T. 1998a. Spatial imaging identi�cation in a �ber-bundle confocal ¡uorescence microspectrometer . Appl. Spectr osc. 52: 1111–1114.

Li, Y.-Q., Slyadnev , M. N., Inoue, T., Harata, A., and Oga wa, T. 1998b. Spectral ¡uctuation and heterogeneous distribution of porphine on a w ater surf ace. Langmuir 15: 3035–3037.

Maeda, Y. 2006. Chemical state analysis of environmental molecules adsorbed at the water surface by using photoionization methods. Master thesis, K yushu Uni versity, Fukuoka, Japan, pp. 1–40 (in Japanese).

Maeda, Y., Isoda (Sato), M., Ishioka, T., and Harata, A. 2005. Analysis of environmental chloride and nitride pollutants at the water surface by photoionization methods using laser and synchrotron radiation. In Books of Abstracts for 7th Cross Straits Symposium on Material, Energy, and Environmental Sciences, Fukuoka, Japan, pp. 251–252.

Masuda, K., Inoue, T., Yasuda, T., Nakashima, K., and Ogawa, T. 1993. Highly sensitive detection of pyrene by laser multi-photon ionization on the surf ace of w ater. Anal. Sci . 9: 297–298. Motomura, K. 1978. Thermodynamic studies on adsorption at interfaces. I. General formulation. J. Colloid Interface Sci. 64: 348–355.

M otomura, K. , Iwa naga, S. , Ha yami, Y. , Ur yu, S. , an d Ma tuura, R. 19 81. Th ermodynamic st udies on ad sorption at in terfaces. IV . Do decylammonium ch loride at wat er/air in terface. J. Colloid Interface Sci. 80 : 32 –38.

Mundy, C. J. and Kuo, I.-F. W. 2006. First principles approaches to the structure and reactivity of atmospherically relevant aqueous interfaces. Chem. Rev. 106: 1282–1304.

Ogawa, T. 1999. Laser 2-photon ionization in solution and on surface in ambient air: Investigations through conductivity measurement. In Photoionization and Photodetachment, C.-Y. Ng (ed.), pp. 601–633. Singapore: World Scienti�c Publishing Co.

Og awa, T., Kise, K., Yasuda, T., Kawazumi, H., and Yamada, S. 1992a. Trace determination of benzene and aromatic molecules in he xane by laser tw o-photon ionization. Anal. Chem . 64: 1217–1220.

Og awa, T., Yasuda, T., and Kawazumi, H. 1992b. Laser two-photon ionization detection of aromatic molecules on a metal surf ace in ambient air . Anal. Chem . 64: 2615–2617.

Og awa, T., Chen, H., Masuda, K., and Inoue, T. 1994a. Highly sensitive determination of aromatic molecules on the w ater surf ace by laser tw o-photon ionization at 355 nm. Anal. Sci . 10: 219–221.

Og awa, T., Chen, H., Inoue, T., and Nakashima, K. 1994b. Laser two-photon ionization spectrometry and photoionization threshold of perylene on the surf ace of w ater. Chem. Phys. Lett . 229: 328–332.

Og awa, T., Sato, M., Tachibana, M., Ideta, K., Inoue, T., and Nakashima, K. 1995. Dependence of the laser two-photon ionization signal of anthracene on the electron mobility and the excess energy in non-polar solvents. Anal. Chim. Acta 299: 355–359.

Og awa, T., Sasaki, S., Tok eshi, M., Inoue, T., and Harata, A. 1999. One-photon photoionization thresholds of aromatic molecules at w ater/air surf ace. UVSOR Act. Rep. 1998: 68–69.

P agano, R. E. and Gershfeld, N. L. 1972. Millidyne �lm balance for measuring intermolecular energies in lipid �lms. J . Colloid Interface Sci. 41: 311–317.

Perry , A. P., Neipert, C., Space, B., and Moor, P. B. 2006. Theoretical modelling of interface speci�c vibrational spectroscopy: Methods and applications to aqueous interf aces. Chem. Re v. 106: 1234–1258.

Peterson, E. S. and Harris, C. B. 1989. A new technique for the determination of surface adsorbate geometries utilizing second harmonic generation and absorption band shifts. J . Chem. Phys. 91: 2683–2688.

Sato, M., Kaieda, T., Ohmukai, K., Kaw azumi, H., Harata, A., and Oga wa, T. 2000. Acid-base equilibrium constants at the water surface and distribution coef�cients between the surface and the bulk as studied by the laser tw o-photon ionization technique. J . Phys. Chem. 104: 9873–9877.

Sato, M., Akagishi, H., Harata, A., and Oga wa, T. 2001. Polarization and surface density dependence of pyrenehe xadecanoic acid at the air-w ater interface under compression studied by a laser two-photon ionization. Langmuir 17: 8167–8171.

Sato, M., Harata, A., Hatano, Y., Oga wa, T., Kaieda, T., Ohmukai, K., and Kaw azumi, H. 2004. Acid-base equilibrium constants and distribution coef�cients of aminopyrene between the surface and bulk of liquid water as studied by a laser tw o-photon ionization technique. J . Phys. Chem. 108: 12111–12115.

Seno, K., Ishioka, T., Harata, A., and Hatano, Y. 2001. Multi-photon ionization of rhodamine dyes adsorbed at the aqueous solution surf aces. In Abstr acts for ASIANALYSIS VI, Yo yogi, Japan, p. 28.

Seno, K., Ishioka, T., Harata, A., and Hatano, Y. 2002. Photoionization of rhodamine dyes adsorbed at the aqueous solution surf aces in vestigated by synchrotron radiation. Anal. Sci . 17: i1177–i1179.

Shen, Y. R. 1989. Optical second harmonic generation at interf aces. Annu. Re v. Phys. Chem 40: 327–350.

Shen, Y. R. and Ostrov erkhov, V. 2006. Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of w ater molecules at interf aces. Chem. Re v. 106: 1140–1154.

Slyadne va, O. N., Slyadnev , M. N., Tsukanov a, V. M., Inoue, T., Harata, A., and Oga wa, T. 1999. Orientation and aggregation behavior of rhodamine dye in insoluble �lm at the air–water interface under compression: Second harmonic generation and spectroscopic studies. Langmuir 15: 8651–8658.

Slyadne va, O. N., Slyadnev , M. N., Harata, A., and Oga wa, T. 2001. Second harmonic generation from the mixed �lms of rhodamine dye and arachidic acid at the air-water interface: Correlation with spectroscopic properties, role of spacer molecules in the monolayer . Langmuir 17: 5329–5336.

Slyadne va, O. N., Harata, A., and Hatano, Y. 2003. Second harmonic generation from insoluble �lms of a rhodamine dye at the air/water interface: Effect of sodium dodecylsulfate. J. Colloid Interface Sci. 260: 142–148.

Tashiro, K., Ishioka, T., and Harata, A. 2003. Analysis of the oil/water interface probed by laser-multiphoton ionization of rhodamine dyes. In Proceedings of the 5th Cross Straits Symposium on Materials, Energy and Environmental Sciences, Pusan, K orea, pp. 61–62.

T imoshenko, M. M., Korkoshko, I. V., Kleimenov, V. I., Petrachenko, N. E., Chizhov, Y. V., Ryl’kov, V. V., and Akop yan, M. E. 1981. Ionization potentials of rhodamine dyes. Doklady Akademii Nauk SSSR 260: 138–140.

Ts ukanova, V. , Ha rata, A. , an d Og awa, T. 20 00. Se cond-harmonic pr obe of pr essure-induced st ructure or dering wi thin lo ng-chain ¡u orescence mo nolayer at th e ai r/water in terface. J. Phys. Chem. B 10 4: 77 07–7712.

Voigtman, E. and Winefordner, J. D. 1982. Two-photon photoionization detection of polycyclic aromatic hydrocarbons and drugs in a windo wless ¡o w cell. Anal. Chem . 54: 1834–1989.

V oigtman, E., Jurgensen, A., and Winefordner, J. D. 1981. Comparison of laser excited ¡uorescence and photoacoustic limits of detection for static and ¡ow cells. Anal. Chem. 53: 1921–1923.

Watanabe, I. 1994. Optical oxidation potential: A ne w measure for reducing po wer. Anal. Sci . 10: 229–239.

W atanabe, I. 2006. Analytical methods for surfaces, interfaces and boundary regions: Photoelectron as a probe for the solution surf ace study . Bunseki 3: 102–108 (in Japanese).

W atanabe, I. and Ikeda, S. 1983. Study of solutions by photoemission spectroscopy. Kagaku (Kyoto, Japan) 38: 14–20 (in Japanese).

W atanabe, I., Flanagan, J. B., and Delahay, P. 1980. Vacuum ultraviolet photoelectron emission spectroscopy of water and aqueous solutions. J . Chem. Phys. 73: 2057–2062.

W atanabe, I., Takahashi, N., and Tanida, H. 1998. Dehydration of iodide segregated by tetraalkylammonium at the air/solution interface studied by photoelectron emission spectroscopy. Chem. Phys. Lett. 287: 714–718.

Winter , B. and F aubel, M. 2006. Photoemission from liquid aqueous solutions. Chem. Re v. 106: 1176–1211.

Y amada, S. , Ka no, K. , an d Og awa, T. 19 82. La ser two -photon io nization te chnique fo r a hi ghly se nsitive de tection of p yrene. Bunseki Ka gaku 31: E247–E250.

Y amada, S. , Hi no, A. , Ka no, K. , an d Og awa, T. 19 83. La ser tw o-photon io nization fo r de termination of ar omatic molecules in solution. Anal. Chem . 55: 1914–1917.

Y amada, S. , Og awa, T. , an d Zh ang, P. 19 86. Tr ace de termination of so me ar omatic mo lecules by la ser tw o-photon ionization. Anal. Chim. Acta 183: 251–256.

Zhao, X., Subrahmanyan, S., and Eisenthal, K. B. 1990. Determination of pK a at the air/water interface by second harmonic generation. Chem. Phys. Lett . 171: 558–562.

Zheng, X.-Y. and Harata, A. 2001. Confocal ¡uorescence microscope studies of the adsorptive behavior of dioctadecyl-rhodamine B molecules at a c yclohexane-water interf ace. Anal. Sci . 17: 131–135.

Z heng, X.-Y., Harata, A., and Ogawa, T. 2000. Fluorescence photon bursts from low surface-density dioctadecylrhodamine B molecules at the air-water surface observed with a confocal ¡uorescence photon-counting microscope. Chem. Phys. Lett. 316: 6–12.

Zheng, X.-Y., Harata, A., and Ogawa, T. 2001. Study of the adsorptive behavior of water-soluble dye molecules (rhodamine 6G) at the air-water interface using confocal ¡uorescence microscope. Spectrochim. Acta Part A 57: 315–322.

Zheng, X.-Y., Wachi, M., Harata, A., and Hatano, Y. 2004. Acidity effects on the adsorptive behavior and ¡uorescence pr operties of rh odamine 6G mo lecules at th e ai r-water in terface st udied wi th co nfocal ¡u orescence microscopy. Spectrochim. Acta Part A 60: 1085–1090. 18 Chapter 18. Low-Energy Electron- Stimulated Reactions in Nanoscale Water Films and Water–DNA Interfaces

Abdoul-Carime, H., Cloutier, P., and Sanche, L. 2001. Low-energy (5–40 eV) electron-stimulated desorption of anions from ph ysisorbed DN A bases. Radiat. Res . 155 (4): 625–633.

Ahlstrom, P., Lofgren, P., Lausma, J., Kasemo, B., and Chakarov, D. 2004. Crystallization kinetics of thin amorphous water �lms on surfaces: Theory and computer modeling. Phys. Chem. Chem. Phys. 6 (8): 1890–1898.

Ahmed, F. E. 1993. Urea facilitates quantitative estimation of DNA damage in situ by preventing its degradation. Anal. Bioc hem. 210 (2): 253–257.

Ahnstrom, G. 1974. Repair processes in germinating seeds. Caffeine enhancement of damage induced by gamma-radiation and alk ylating chemicals. Mutat. Res . 26 (2): 99–103.

Akb ulut, M., Madey , T. E., and Nordlander, P. 1997. Low energy (<5 eV) F + and F − ion transmission through condensed layers of w ater. J . Chem. Phys. 106 (7): 2801–2810.

Ale xandrov, A., Piacentini, M., Zema, N., Felici, A. C., and Orlando, T. M. 2001. Role of excitons in electronand photon-stimulated desorption of neutrals from alkali halides. Phys. Re v. Lett. 86 (3): 536–539.

Ankudino v, A. L., Zabinsky, S. I., and Rehr, J. J. 1996. Single con�guration Dirac-Fock atom code. Comput. Phys. Commun. 98 (3): 359–364.

Antic, D., Parenteau, L., Lepage, M., and Sanche, L. 1999. Low-energy electron damage to condensed-phase deoxyribose analogues investigated by electron stimulated desorption of Hand electron energy loss spectroscopy. J . Phys. Chem. B 103 (31): 6611–6619.

Azria, R., Parenteau, L., and Sanche, L. 1987. Dissociative attachment for condensed molecular oxygen: Violation of the selection rule Σ − ↔ Σ + . Phys. Rev. Lett. 59 (6): 638–640.

Balog, R., Langer, J., Gohlke, S., Stano, M., Abdoul-Carime, H., and Illenberger, E. 2004. Low energy electron driven reactions in free and bound molecules: From unimolecular processes in the gas phase to complex reactions in a condensed en vironment. Int. J . Mass Spectrom. 233 (1–3): 267–291.

Banath, J. P., Wallace, S. S., Thompson, J., and Olive, P. L. 1999. Radiation-induced DNA base damage detected in individual aerobic and hypoxic cells with endonuclease III and formamidopyrimidine-glycosylase. Radiat. Res. 151 (5): 550–558.

Bass, A. D. and Sanche, L. 1998. Absolute and effecti ve cross-sections for low-ener gy electron-scattering processes within condensed matter . Radiat. En viron. Biophys. 37 (4): 243–257.

Bass, A. D. and Sanche, L. 2003a. Dissociative electron attachment and charge transfer in condensed matter. Radiat. Phys. Chem. 68 (1–2): 3–13.

Bass, A. D. and Sanche, L. 2003b. Reactions induced by low energy electrons in cryogenic �lms (review). Low Temp. Phys. 29 (3): 202–214.

Beach, C., Fuciarelli, A. F., and Zimbrick, J. D. 1994. Electron migration along 5-bromouracil-substituted DNA irradiated in solution and in cells. Radiat. Res . 137 (3): 385–393.

Bernholc, J. and Phillips, J. C. 1986. Kinetics of cluster formation in the laser vaporization source: Carbon clusters. J . Chem. Phys. 85 (6): 3258–3267.

Boudaif fa, B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L. 2000. Resonant formation of DNA strand breaks by lo w-energy (3 to 20 eV) electrons. Science 287 (5458): 1658–1660.

Caron, L. G. and Sanche, L. 2003. Low-energy electron diffraction and resonances in DNA and other helical macromolecules. Phys. Re v. Lett. 91 (11): 113201/1–113201/4.

Caron, L. and Sanche, L. 2004. Diffraction in resonant electron scattering from helical macromolecules: Aand B-type DN A. Phys. Re v. A 70 (3): 032719/1–032719/10.

Caron, L. and Sanche, L. 2005. Diffraction in resonant electron scattering from helical macromolecules: Effects of the DN A backbone. Phys. Re v. A 72 (3, Pt. A): 032726/1–032726/6.

Chen, H.-Y. and Chao, I. 2004. Ionization-induced proton transfer in model DNA base pairs: A theoretical study of the radical ions of the 7-azaindole dimer . ChemPhysChem 5 (12): 1855–1863.

C hen, Y. , Ga rcia de Ab ajo, F. J. , Ch asse, A. , Yn zunza, R. X. , Ka duwela, A. P. , Va n Ho ve, M. A. , an d Fa dley, C. S. 19 98. Co nvergence an d re liability of th e Re hr-Albers fo rmalism in mu ltiple-scattering ca lculations of ph otoelectron di ffraction. Ph ys. Rev. B 58 (1 9): 13 121–13131.

Chen, Y. F., Aleksandrov , A., and Orlando, T. M. 2008. Probing low-ener gy electron induced DNA damage using single photon ionization mass spectrometry . Int. J . Mass Spectrom. 277 (1–3): 314–320.

Christophorou, L. G. and Olthoff, J. K. 2002. Electron interactions with plasma processing gases: Present status and future needs. Appl. Surf . Sci. 192 (1–4): 309–326.

Christophorou, L. G. and Olthoff, J. K. 2004. Fundamental Electr on Interactions with Plasma Processing Gases, Physics of Atoms and Molecules. Ne w York: Kluwer Academic/Plenum Publishers.

Christophorou, L. G., McCorkle, D. L., and Christodoulides, A. A. 1984. Electron–Molecule Interactions and Their Applications, Vol. 1. Ne w York: Academic Press Inc.

Chutjian, A., Garscadden, A., and Wadehra, J. M. 1996. Electron attachment to molecules at low electron energies. Phys. Rep . 264 (6): 393–470.

Cob ut, V., Frongillo, Y., Patau, J. P., Goulet, T., Fraser, M. J., and Jay-Gerin, J. P. 1998. Monte Carlo simulation of fast electron and proton tracks in liquid water: I. Physical and physicochemical aspects. Radiat. Phys. Chem. 51 (3): 229–243.

Compton, R. N. and Christophorou, L. G. 1967. Neg ative-ion formation in H 2 O and D 2 O. Phys. Rev. 154 (1): 110–116.

Curtis, M. G. and Walker, I. C. 1992. Dissociative electron attachment in water and methanol (5–14 eV). J. Chem. Soc. Faraday Trans. 88 (19): 2805–2810.

Deni¡, S., Ptasiń ska, S., Probst, M., Hrušák, J., Scheier, P., and Märk, T. D. 2004. Electron attachment to the gas-phase DN A bases c ytosine and th ymine. J . Phys. Chem. A 108 (31): 6562–6569.

Fedor , J., Cicman, P., Coupier, B., Feil, S., Winkler, M., Gluch, K., Husarik, J., Jaksch, D., Farizon, B., Mason, N. J., Scheier, P., and Märk, T. D. 2006. Fragmentation of transient water anions following low-ener gy electron capture by H 2 O/D 2 O. J. Phys. B: At., Mol. Opt. Phys. 39 (18): 3935–3944.

Haxton, D. J., McCurdy, C. W., and Rescigno, T. N. 2007a. Dissociative electron attachment to the H 2 O molecule. I. Complex-valued potential-energy surfaces for the 2 B 1 , 2 A 1 , and 2 B 2 metastable states of the water anion. Phys. Re v. A: At., Mol. Opt. Phys. 75 (1, Pt. A): 012710/1–012710/25.

Haxton, D. J., Rescigno, T. N., and McCurdy, C. W. 2007b. Dissociative electron attachment to the H 2 O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model. Phys. Rev . A: At., Mol. Opt. Phys. 75 (1, Pt. A): 012711/1–012711/24.

Herring, J., Aleksandrov, A., and Orlando, T. M. 2004. Stimulated desorption of cations from pristine and acidic low-temperature w ater ice surf aces. Phys. Re v. Lett. 92 (18):187602.

Herring-Captain, J., Grieves, G., Alexandrov, A., Sieger, M. T., Chen, H., and Orlando, T. M. 2005. Low-energy (5–250 eV) electron stimulated desorption of H + , H 2 + and H + (H 2 O) n from low-temperature water ice surfaces. Phys. Re v. B 72: 035431-1.

Huels, M. A., Parenteau, L., Michaud, M., and Sanche, L. 1995. Kinetic-energy distributions of O − produced by dissociative electron attachment to ph ysisorbed O 2 . Phys. Rev. A 51 (1): 337–349.

Huels, M. A., Hahndorf, I., Illenberger, E., and Sanche, L. 1998. Resonant dissociation of DNA bases by subionization electrons. J . Chem. Phys. 108 (4): 1309–1312.

Huels, M. A., Boudaiffa, B., Cloutier, P., Hunting, D., and Sanche, L. 2003. Single, double, and multiple double strand breaks induced in DN A by 3–100 eV electrons. J . Am. Chem. Soc. 125 (15): 4467–4477.

Ingolfsson, O., Weik, F., and Illenberger, E. 1996. The reactivity of slow electrons with molecules at different degrees of aggregation: Gas phase, clusters and condensed phase. Int. J. Mass Spectrom. Ion Processes 155 (1/2): 1–68.

Johnson, R. E. and Quickenden, T. I. 1997. Photolysis and radiolysis of water ice on the outer solar system bodies. J . Geophys. Res., [Planets] 102 (E5): 10985–10996.

Johnson, R. E., Cooper, P. D., Quickenden, T. I., Grieves, G. A., and Orlando, T. M. 2005. Production of oxygen by electronically induced dissociations in ice. J . Chem. Phys. 123 (18): 184715/1–184715/8.

J ohnson, R. E., Luhmann, J. G., Tokar, R. L., Bouhram, M., Berthelier, J. J., Sittler, E. C., Cooper, J. F., Hill, T. W., Smith, H. T., Michael, M., Liu, M., Crary, F. J., and Young, D. T. 2006. Production, ionization and redistribution of O 2 in Saturn’s ring atmosphere. Icarus 180 (2): 393–402.

Jorgensen, W. L. and Salem, L. 1973. The Or ganic Chemist’s Book of Orbitals. Ne w York: Academic Press.

Jungen, M., Vogt, J., and Staemmler, V. 1979. Feshbach resonances and dissociative electron attachment of water . Chem. Phys . 37 (1): 49–55.

Kimmel, G. A. and Orlando, T. M. 1995. Low-ener gy (5–120 eV) electron-stimulated dissociation of amorphous D 2 O ice: D( 2 S), O( 3 P 2,1,0 ), and O( 1 D 2 ) yields and velocity distributions. Phys. Rev. Lett. 75 (13): 2606–2609.

Kimmel, G. A. and Orlando, T. M. 1996. Observation of negative ion resonances in amorphous ice via low-energy (5–40 eV) electron-stimulated production of molecular hydrogen. Phys. Rev. Lett. 77 (19): 3983–3986.

Kimmel, G. A., Orlando, T. M., Vezina, C., and Sanche, L. 1994. Low-energy electron-stimulated production of molecular-h ydrogen from amorphous w ater ice. J . Chem. Phys. 101 (4): 3282–3286.

Kimmel, G. A., Tonk yn, R. G., and Orlando, T. M. 1995. Kinetic and internal energy distributions of molecular hydrogen produced from amorphous ice by impact of 100 eV electrons. Nucl. Instrum. Methods Phys. Res. Sect. B 101 (1,2): 179–183. Kimmel, G. A., Orlando, T. M., Cloutier, P., and Sanche, L. 1997. Low-energy (5–50 eV) electron-stimulated desorption of atomic hydrogen and metastable emission from amorphous ice. J. Phys. Chem. B 101 (32): 6301–6303.

Kobayashi, K. 1983. Optical spectra and electronic structure of ice. J . Phys. Chem. 87 (21): 4317–4321.

K onig, C., Kopyra, J., Bald, I., and Illenberger, E. 2006. Dissociative electron attachment to phosphoric acid esters: The direct mechanism for single strand breaks in DNA. Phys. Rev. Lett. 97 (1): 018105/1–018105/4.

Lofgren, P., Ahlstrom, P., Lausma, J., Kasemo, B., and Chakarov, D. 2003. Crystallization kinetics of thin amorphous w ater �lms on surf aces. Langmuir 19 (2): 265–274.

Lu, Q. B. and Sanche, L. 2004. Enhancements in dissociative electron attachment to CF 4 , chloro¡uorocarbons and h ydrochloro¡uorocarbons adsorbed on H 2 O ice. J. Chem. Phys. 120 (5): 2434–2438.

Madey, T. E., Johnson, R. E., and Orlando, T. M. 2002. Far-out surface science: Radiation-induced surface processes in the solar system. Surf . Sci. 500 (1–3): 838–858.

Mayer , E. and Pletzer, R. 1986. Astrophysical implications of amorphous ice: A microporous solid. Nature 319 (6051): 298–301.

Meesungnoen, J., Jay-Gerin, J.-P., Filali-Mouhim, A., and Mankhetkorn, S. 2002. Low-energy electron penetration range in liquid w ater. Radiat. Res . 158 (5): 657–660.

Melton, C. E. 1972. Cross sections and interpretation of dissociativ e attachment reactions producing OH − , O − , and H − in water. J. Chem. Phys. 57 (10): 4218–4225.

Michael, B. D. and O’Neill, P. 2000. Molecular biology: A sting in the tail of electron tracks. Science 287 (5458): 1603–1604.

Michaud, M., Wen, A., and Sanche, L. 2003. Cross sections for low-ener gy (1–100 eV) electron elastic and inelastic scattering in amorphous ice. Radiat. Res . 159 (1): 3–22.

Morii, N., Kido, G., Suzuki, H., Nimori, S., and Morii, H. 2004. Molecular chain orientation of DNA �lms induced by both the magnetic �eld and the interf acial ef fect. Biomacr omolecules 5 (6): 2297–2307.

Nagesha, K. and Sanche, L. 1998. Effects of band structure on electron attachment to adsorbed molecules: Cross section enhancements via coupling to image states. Phys. Re v. Lett. 81 (26, Pt. 1): 5892–5895.

Ness, K. F. and Robson, R. E. 1988. Transport-properties of electrons in water-vapor. Phys. Rev. A 38 (3): 1446–1456.

Nordlund, D., Odelius, M., Bluhm, H., Ogasawara, H., Pettersson, L. G. M., and Nilsson, A. 2008. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory. Chem. Phys. Lett. 460 (1–3): 86–92.

Oh, D., Sieger, M. T., and Orlando, T. M. 2006. Zone speci�city in low energy electron stimulated desorption of Cl + from reconstructed Si(111) 7 × 7:Cl surfaces. Surf. Sci. 600 (19): L245–L249.

Orlando, T. M. and Kimmel, G. A. 1997. The role of excitons and substrate temperature in low-energy (5–50 eV) electron-stimulated dissociation of amorphous D 2 O ice. Surf. Sci. 390 (1–3): 79–85.

Orlando, T. M. and Sieger, M. T. 2003. The role of electron-stimulated production of O 2 from water ice in the radiation processing of outer solar system surf aces. Surf . Sci. 528 (1–3): 1–7.

Orlando, T. M., Kimmel, G. A., and Simpson, W. C. 1999. Quantum-resolved electron stimulated interface reactions: D 2 formation from D 2 O �lms. Nucl. Instrum. Methods Phys. Res., Sect. B 157 (1–4): 183–190.

Orlando, T. M., Oh, D., Sieger, M. T., and Lane, C. D. 2004. Electron collisions with complex targets: Diffraction effects in stimulated desorption. Phys. Scr. T110: 256–261. (XXIII International Conference on Photonic, Electronic and Atomic Collisions, Stockholm, Sweden, 2003)

Orlando, T. M., Oh, D., Chen, Y., and Aleksandrov, A. B. 2008. Low-energy electron diffraction and induced damage in h ydrated DN A. J . Chem. Phys. 128 (19): 195102/1–195102/7.

P an, X. and Sanche, L. 2005. Mechanism and site of attack for direct damage to DNA by low-energy electrons. Phys. Rev. Lett. 94 (19): 198104/1–198104/4.

P an, X. and Sanche, L. 2006. Dissociative electron attachment to DNA basic constituents: The phosphate group. Chem. Phys. Lett . 421 (4–6): 404–408.

P an, X., Cloutier, P., Hunting, D., and Sanche, L. 2003. Dissociative electron attachment to DNA. Phys. Rev. Lett. 90 (20): 208102.

Petrenk o, V. and Whiteworth, R. W. 2002. Physics of Ice . Ne w York: Oxford Uni versity Press.

P iancastelli, M. N. , He mpelmann, A. , He iser, F. , Ge ssner, O. , Ru del, A. , an d Be cker, U. 19 99. Re sonant ph otofragmentation of wat er at th e ox ygen K ed ge by hi gh-resolution io n-yield sp ectroscopy. Ph ys. Rev. A 59 (1): 300–306.

Ptasińska, S. and Sanche, L. 2006. On the mechanism of anion desorption from DNA induced by low energy electrons. J . Chem. Phys. 125 (14): 144713/1–144713/9.

Ptasi ńska, S. and Sanche, L. 2007. Dissociative electron attachment to hydrated single DNA strands. Phys. Rev. E 75 (3): 031915/1–031915/5.

Ptasi ńska, S., Deni¡, S., Scheier, P., and Märk, T. D. 2004. Inelastic electron interaction (attachment/ionization) with deoxyribose. J . Chem. Phys. 120 (18): 8505–8511.

P tasińska, S. , De ni¡, S. , Sc heier, P. , Il lenberger, E. , an d Mä rk, T. D. 20 05a. Bi ndungs un d or tsselektive abspaltung von H-atomen aus nucleobasen, induziert durch elektronen sehr niedriger energie (<3 eV). Angew. Chem. 117 (42): 6949–7125.

Ptasińska, S., Deni¡, S., Scheier, P., Illenberger, E., and Märk, T. D. 2005b. Bondand site-selective loss of H atoms from nucleobases by very-lo w-energy electrons (<3 eV). Ange w. Chem., Int. Ed. 44 (42): 6941–6943.

Pt asińska, S. , De ni¡, S. , Go hlke, S. , Sc heier, P. , Il lenberger, E. , an d Mä rk, T. D. 20 06. De composition of th ymidine by lo w-energy el ectrons: im plications fo r th e mo lecular me chanisms of si ngle-strand br eaks in DNA. Angew. Chem., Int. Ed. 45 (12): 1893–1896. Purkayastha, S. and Bernhard, W. A. 2004. What is the initial chemical precursor of DNA strand breaks generated by direct-type ef fects? J . Phys. Chem. B 108 (47): 18377–18382.

Ramak er, D. E. 1983. Comparison of photon-stimulated dissociation of gas-phase, solid and chemisorbed water. Chem. Phys . 80 (1–2): 183–202.

Rehr , J. J. and Albers, R. C. 1990. Scattering-matrix formulation of curved-wave multiple-scattering theory: Application to x-ray-absorption �ne structure. Phys. Re v. B 41 (12): 8139.

R ehr, J. J., Zabinsky, S. I., Ankudinov, A., and Albers, R. C. 1995. Atomic-XAFS and XANES. Physica B 208 & 209 (1–4): 23–26.

Reimann, C. T., Brown, W. L., Nowakowski, M. J., Cui, S. T., and Johnson, R. E. 1990. Ejection of argon dimers from solid argon �lms electronically excited by MeV helium ions. Springer Ser. Surf. Sci. 19 (Desorption Induced Electron. Transitions DIET 4): 226–234.

R ottke, H., Trump, C., and Sandner, W. 1998. Multiphoton ionization and dissociation of H 2 O. J. Phys. B 31 (5): 1083–1096.

Rowntree, P., Sambe, H., Parenteau, L., and Sanche, L. 1993. Formation of anionic excitations in the rare-gas solids and their coupling to dissociati ve states of adsorbed molecules. Phys. Re v. B 47 (8): 4537–4554.

Sanche, L. 1995a. Interactions of low-energy electrons with atomic and molecular solids. Scanning Microsc. 9 (3): 619–656.

Sanche, L. 1995b . Transmission through or ganic thin-�lms. Phys. Re v. Lett. 75 (15): 2904–2904.

Sanche, L. 2000. Electron resonances in DIET . Surf . Sci. 451 (1–3): 82–90.

Sanche, L. 2002. Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary lowenergy electrons. Mass Spectr om. Rev. 21 (5): 349–369.

Sanche, L. 2005. Lo w ener gy electron-dri ven damage in biomolecules. Eur . Phys. J. D 35 (2): 367–390. Sieger, M. T. and Orlando, T. M. 1997. Effect of surface roughness on the electron-stimulated desorption of D + from microporous D 2 O ice. Surf. Sci. 390 (1–3): 92–96.

Sieger, M. T. and Orlando, T. M. 2000. Probing low-temperature water ice phases using electron-stimulated desorption. Surf . Sci. 451 (1–3): 97–101.

Sie ger, M. T., Simpson, W. C., and Orlando, T. M. 1997. Electron-stimulated desorption of D + from D 2 O ice: Surface structure and electronic e xcitations. Phys. Re v. B: Condens. Matter 56 (8): 4925–4937.

Sie ger, M. T., Simpson, W. C., and Orlando, T. M. 1998. Production of O 2 on icy satellites by electronic excitation of lo w-temperature w ater ice. Natur e 394 (6693): 554–556.

Sie ger, M. T., Schenter, G. K., and Orlando, T. M. 1999. Stimulated desorption by surface electron standing waves. Phys. Re v. Lett. 82 (16): 3348–3351.

Simpson, W. C., Parenteau, L., Smith, R. S., Sanche, L., and Orlando, T. M. 1997. Electron-stimulated desorption of D − (H − ) from condensed D 2 O (H 2 O) �lms. Surf. Sci. 390 (1–3): 86–91.

Slanger, T. G. and Black, G. 1982. Photodissociative channels at 1216 Å´. for water, ammonia, and methane. J. Chem. Phys. 77 (5): 2432–2437.

Smith, R. S., Huang, C., Wong, E. K. L., and Kay, B. D. 1996. Desorption and crystallization kinetics in nanoscale thin �lms of amorphous w ater ice. Surf . Sci. 367 (1): L13–L18.

Sognier , M. A., Eberle, R. L., Zhang, Y., and Belli, J. A. 1991. Interaction between radiation and drug damage in mammalian cells. V. DNA damage and repair induced in LZ cells by adriamycin and/or radiation. Radiat. Res. 126 (1): 80–87.

Sonntag, C. V. 1987. The Chemical Basis for Radiation Biolo gy. London, U.K.: Taylor & Francis.

Soukup, G. A. and Breaker , R. R. 1999. Relationship between internucleotide linkage geometry and the stability of RN A. RN A 5 (10): 1308–1325.

Ste venson, K. P., Kimmel, G. A., Dohnalek, Z., Smith, R. S., and Kay, B. D. 1999. Controlling the morphology of amorphous solid w ater. Science 283 (5407): 1505–1507.

Sto yanova, I. G., Anaskin, I. F., and Shpagina, M. D. 1968. Mean inner potential of biological and org anic microobjects measured in an electron interference microscope. Bio±zika 13 (3): 521–524.

S warts, S. G. , Se villa, M. D. , Be cker, D. , To kar, C. J. , an d Wh eeler, K. T. 19 92. Ra diation-induced DN A da mage as a fu nction of hy dration. I. Re lease of un altered ba ses. Ra diat. Res. 12 9 (3 ): 33 3–344.

Tan, K. H., Brion, C. E., Van der Leeuw, P. E., and Van der Wiel, M. J. 1978. Absolute oscillator strengths (10–60 eV) for the photoabsorption, photoionization and fragmentation of water . Chem. Phys . 29 (3): 299–309.

Tao, N. J., Lindsay, S. M., and Rupprecht, A. 1989. Structure of DNA hydration shells studied by Raman spectroscop y. Biopolymer s 28 (5): 1019–1030.

V an der Schans, G. P., Van Loon, A. A. W. M., Groenendijk, R. H., and Baan, R. A. 1989. Detection of DNA damage in cells exposed to ionizing radiation by use of anti-single-stranded DNA monoclonal antibody. Int. J. Radiat. Biol . 55 (5): 747–760. v an Harrevelt, R. and van Hemert, M. C. 2008. Quantum mechanical calculations for the H 2 O + hv → O( 1 D) + H 2 photodissociation process. J. Phys. Chem. A 112 (14): 3002–3009.

Westley, M. S., Baragiola, R. A., Johnson, R. E., and Baratta, G. A. 1995. Ultraviolet photodesorption from water ice. Planet. Space Sci . 43 (10/11): 1311–1315.

W inter, B., Weber, R., Widdra, W., Dittmar, M., Faubel, M., and Hertel, I. V. 2004. Full valence band photoemission from liquid w ater using EUV synchrotron radiation. J . Phys. Chem. A 108 (14): 2625–2632.

Zamenhof, S., De Giovanni, R., and Greer, S. 1958. Induced gene unstabilization. Nature 181 (4612): 827–829.

Zheng, Y., Cloutier, P., Hunting, D. J., Sanche, L., and Wagner, J. R. 2005. Chemical basis of DNA sugarphosphate clea vage by lo w-energy electrons. J . Am. Chem. Soc. 127 (47): 16592–16598.

Zheng, Y., Cloutier, P., Hunting, D. J., Wagner, J. R., and Sanche, L. 2006. Phosphodiester and N-glycosidic bond clea vage in DN A induced by 4–15 eV electrons. J . Chem. Phys. 124 (6): 064710/1–064710/9. 19 Chapter 19. Physicochemical Mechanisms of Radiation-Induced DNA Damage

Adhikary, A., Malkhasian, A. Y. S., Collins, S., Koppen, J., Becker, D., and Sevilla, M. D. 2005. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures. Nucleic Acids Res. 33: 5553–5564.

Adhikary , A., Kumar , A., and Sevilla, M. D. 2006a. Photo-induced hole transfer from base to sugar in DNA: Relationship to primary radiation damage. Radiat. Res . 165: 479–484.

Adhikary , A., Becker , D., Collins, S., Koppen, J., and Sevilla, M. D. 2006b. C5′ and C3′ -sugar radicals produced via photo-excitation of one-electron oxidized adenine in 2′ -deoxyadenosine and its deriv atives. Nucleic Acids Res . 34: 1501–1511.

Adhikary , A., Kumar , A., Becker , D., and Sevilla, M. D. 2006c. The guanine cation radical: Inv estigation of deprotonation states by ESR and DFT . J . Phys. Chem. B 110: 24171–24180.

Adhikary , A., Collins, S., Khanduri, D., and Sevilla, M. D. 2007. Sugar radicals formed by photo-excitation of guanine cation radical in oligonucleotides. J . Phys. Chem. B 111: 7415–7421.

Adhikary , A., K umar, A., Khanduri, D., and Se villa, M. D. 2008a. The ef fect of base stacking on the acid-base properties of the adenine cation radical [A •+ ] in solution: ESR and DFT studies. J. Am. Chem. Soc. 130: 10282–10292.

Adhikary, A., Khanduri, D., Kumar, A., and Sevilla, M. D. 2008b. Photo-excitation of adenine cation radical [A •+ ] in the near UV-vis region produces sugar radicals in adenosine and in its nucleotides. J. Phys. Chem. B 112: 15844–15855.

Adhikary , A., Khanduri, D., and Sevilla, M. D. 2009. Direct observation of the hole protonation state and hole localization site in DN A-oligomers. J . Am. Chem. Soc. 131: 8614–8619.

Agmon, N. 2005. Elementary steps in e xcited-state proton transfer . J . Phys. Chem. A 109: 13–35. Anderson, R. F., Shinde, S. S., and Maroz, A. 2006. Cytosine-gated hole creation and transfer in DNA in aqueous solution. J . Am. Chem. Soc. 128: 15966–15967.

Arkin, M. R., Stemp, E. D. A., Pulver , S. C., and Barton, J. K. 1997. Long-range oxidation of guanine by Ru(III) in duple x DN A. Chem. Biol . 4: 389–400.

Augustyn, K. E., Genereux, J. C., and Barton, J. K. 2007. Distance-independent DNA charge transport across an adenine tract. Ang ew. Chem. Int. Ed. 46: 5731–5733.

Bald, I., Kopyra, J., and Illenberger, E. 2006. Selective excision of C5 from D-ribose in the gas phase by lowenergy electrons (0–1 eV): Implications for the mechanism of DNA damage. Angew. Chem. Int. Ed. 45: 4851–4855.

Bald, I., Dabkowska, I., and Illenberger, E. 2008. Probing biomolecules by laser-induced acoustic desorption: Electrons at near zero electron volts trigger sugar-phosphate cleavage. Angew. Chem. Int. Ed. 47: 8518–8520.

Becker, D. and Sevilla, M. D. 1993. The chemical consequences of radiation-damage to DNA. Adv. Radiat. Biol. 17: 121–180.

Beck er, D. and Sevilla, M. D. 1998. Radiation damage to DNA and related biomolecules. In Royal Society of Chemistry Specialist Periodical Report: Electron Spin Resonance, B. C. Gilbert, M. J. Davies, and D. M. Murphy (eds.), Vol. 16, pp. 79–115. Cambridge, U.K.: The Ro yal Society of Chemistry .

Becker, D. and Sevilla, M. D. 2008. EPR studies of radiation damage to DNA and related molecules. In Royal Society of Chemistry Specialist Periodical Report: Electron Spin Resonance, B. C. Gilbert, M. J. Davies, and D. M. Murph y (eds.), Vol. 21, pp. 33–58. Cambridge, U.K.: The Ro yal Society of Chemistry .

Becker, D., Razskazovskii, Y., Callaghan, M. U., and Sevilla, M. D. 1996. Electron spin resonance of DNA irradiated with a heavy-ion beam ( 16 O 8+ ): Evidence for damage to the deoxyribose phosphate backbone. Radiat. Res. 146: 361–368.

Becker, D., Bryant-Friedrich, A., Trzasko, C., and Sevilla, M. D. 2003. Electron spin resonance study of DNA irradiated with an argon-ion beam: Evidence for formation of sugar phosphate backbone radicals. Radiat. Res. 160: 174–185.

Beck er, D., Adhikary, A., and Sevilla, M. D. 2007. The role of charge and spin migration in DNA radiation damage. In Charge Migration in DNA Physics, Chemistry and Biology Perspectives, T. Chakraborty (ed.), p. 139. Berlin/Heidelber g, German y: Springer -Verlag.

Becker, D., Adhikary, A., and Sevilla, M. D. 2010. Mechanism of radiation induced DNA damage: Direct effects. In Recent Trends in Radiation Chemistry, B. S. M. Rao and J. Wishart (eds.), pp. 509–542. Singapore/New Jerse y/London, U.K.: World Scienti�c Publishing Co.

Bera, P. P. and Schaefer III, H. F. 2005. (G-H) • -C and G-(C-H) • radicals derived from the guanine-cytosine base pair cause DN A sub unit lesions. Pr oc. Natl. Acad. Sci. USA 102: 6698–6703.

Bernhard, W. A. 1981. Solid-state radiation of DN A: The bases. Adv . Radiat. Biol. 9: 199–280.

Bernhard, W. A. and Close, D. M. 2004. DNA damage dictates the biological consequences of ionizing irradiation: The chemical pathways. In Charged Particle and Photon Interactions with Matter. Chemical, Physicochemical and Biological Consequences with Applications, A. Mozumdar and Y. Hatano (eds.), pp. 431–470. Ne w York/Basel, Switzerland: Marcel Dekk er, Inc.

Bertran, J., Oliva, A., Rodriguez-Santiego, L., and Sodupe, M. 1998. Single versus double proton-transfer reactions in Watson-Crick base pair radical cations. A theoretical study . J . Am. Chem. Soc. 120: 8159–8167.

Boudaïf fa, B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L. 2000. Resonant formation of DNA strand breaks by lo w-energy (3–20 eV) electrons. Science 287: 1658–1660.

Bo wman, M. K., Becker , D., Sevilla, M. D., and Zimbrick, J. D. 2005. Track structure in DNA irradiated with heavy ions. Radiat. Res . 163: 447–454.

Burro w, P. D., Gallup, G. A., Scheer, A. M., Deni¡, S., Ptasinska, S., Mark, T., and Scheier, P. 2006. Vibrational Feshbach resonances in uracil and th ymine. J . Chem. Phys. 124,124310.

Burro w, P. D., Gallup, G. A., and Modelli, A. 2008. Are there pi* shape resonances in electron scattering from phosphate groups? J . Phys. Chem. A 112: 4106–4113.

Cadet, J., Bourdat, A.-G., D’Ham, C., Duarte, V., Gasparutto, D., Romieu, A., and Ravanat, J.-L. 2000. Oxidative base damage to DNA: Speci�city of base excision repair enzymes. Mutat. Res. 462: 121–128.

Cai, Z. and Sevilla, M. D. 2000. Electron spin resonance study of electron transfer in DNA: Inter-double-strand tunneling processes. J . Phys. Chem. B 104: 6942–6949.

Cai, Z. and Sevilla, M. D. 2004. Studies of excess electron and hole transfer in DNA at low temperature. In Long Rang e Transfer in DNA II: Topics in Current Chemistry, G. B. Shuster (ed.), Vol. 237, pp. 103–127. Berlin/Heidelberg, German y/New York: Springer -Verlag.

Cai, Z., Gu, Z., and Sevilla, M. D. 2001. Electron spin resonance study of electron and hole transfer in DNA: Effects of hydration, aliphatic amine cations, and histone proteins. J. Phys. Chem. B 105: 60 31–6041.

Chatgilialoglu, C., Caminal, C., Guerra, M., and Mulazzani, Q. G. 2005. Tautomers of one-electron-oxidized guanosine. Ang ew. Chem. Int. Ed . 44: 6030–6032.

C hatgilialoglu, C. , Ca minal, C. , Al tieri, A. , Vo ugioukalakis, G. C. , Mu lazzani, Q. G. , Gi misis, T. , an d Gu erra, M. 2006. Tautomerism in the guan yl radical. J . Am. Chem. Soc. 128: 13796–13805.

Chatterjee, A. 2006. Importance of collaborativ e research between theoretical modelers and experimentalists, In Abstr acts, Fifty-Third Annual Meeting of the Radiation Research Society, Philadelphia, P A, p. 3.

Chatterjee, A. and Holley , W. R. 1993. Computer-simulation of initial ev ents in the biochemical-mechanisms of DN A-damage. Adv . Radiat. Biol. 17: 181–226.

Close, D. M. 2008. From the primary radiation induced radicals in DNA constituents to strand breaks: Low temperature EPR/ENDOR studies. In Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis, M. K. Shukla and J. Leszczynski (eds.), pp. 493–529. Berlin/Heidelber g, German y/New York: Springer -Verlag.

Colson, A.-O. and Sevilla, M. D. 1995a. Elucidation of primary radiation damage in DNA through application of ab initio molecular orbital theory . Int. J . Radiat. Biol., 67: 627–645.

Colson, A.-O. and Sevilla, M. D. 1995b. Structure and relative stability of deoxyribose radicals in a model DNA backbone: ab initio molecular orbital calculations. J . Phys. Chem. 99: 3867–3874.

Conwell, E. M. 2005. Charge transport in DNA in solution: The role of polarons. Proc. Natl. Acad. Sci. USA 102: 8795–8799.

Conwell, E. M. and Rakhmano va, S. V. 2000. Polarons in DN A. Pr oc. Natl. Acad. Sci. USA 97: 4556–4560.

Cullis, P. M., Malone, M. E., and Merson-Davies, L. A. 1996. Guanine radical cations are precursor of 7,8-dihydro-8-oxo-2′-deoxyguanosine but are not precursor of immediate strand breaks in DNA. J. Am. Chem. Soc. 118: 2775–2781.

Dawidzik, J. B., Budzunzki, E. E., Patrzyc, H. B., Cheng, H.-C., Iijima, H., Alderfer, J. L., Tabaczynski, W. A., Wallace, J. C., and Box, H. C. 2004. Dihydrothymine lesion in x-irradiated DNA: Characterization at the molecular le vel and detection in cells. Int. J . Radiat. Biol. 80: 355–361. de Lara, C. M., Jenner, T. J., Townsend, K. M., Marsden, S. J., and O’Neill, P. 1995. The effect of dimethyl sulfoxide on the induction of DNA double-strand breaks in V79-4 mammalian cells by alpha particles. Radiat. Res. 144: 43–49.

Debije, M. G. and Bernhard, W. A. 2000. Electron and hole transfer induced by thermal annealing of crystalline DNA x-irradiated at 4 K. J . Phys. Chem. B 104: 7845–7851.

Drummond, T. G., Hill, M. G., and Barton, J. K. 2003. Electrochemical DNA sensors. Nat. Biotechnol. 21: 1192–1199.

Fink, H.-W. and Schönenberger, C. 1999. Electrical conduction through DNA molecules. Nature 398: 407–410.

Friedland, W., Jacob, P., Bernhardt, P., Paretzke, H. G., and Dingfelder, M. 2003. Simulation of DNA damage after proton irradiation. Radiat. Res . 159: 401–410. Gasper , S. M. and Schuster, G. B. 1997. Intramolecular photoinduced electron transfer to anthroquinones linked to duplex DNA: Effect of gaps and traps on long range of radical cation migration. J. Am. Chem. Soc. 119: 12762–12771.

G iese, B. 20 00. Lo ng di stance ch arge tr ansport in DN A: Th e ho pping me chanism. Ac c. Chem. Res. 33 : 63 1–636.

Giese, B. 2002. Long-distance electron transfer through DN A. Annu. Re v. Biochem. 71: 51–70.

Giese, B., Amaudrut, J., Köhler , A.-K., Spormann, M., and Wessely , S. 2001. Direct observation of the hole transfer through DN A by hopping between adenine bases and by tunneling. Natur e 412: 318–320.

Goodhead, D. T., Leenhouts, H. P., Paretzk e, H. G., Terrisol, M., Nikjoo, H., and Blaauboer, R. 1994. Track structure approaches to the interpretation of radiation effects on DNA. Radiat. Prot. Dosimetry 52: 217–223.

Grozema, F. C. and Siebbeles, L. D. 2007. Mechanism and absolute rates of charge transfer through DNA. In Charg e Migration in DNA Physics, Chemistry and Biology Perspectives, T. Chakraborty (ed.), pp. 21–43. Berlin/Heidelberg, German y: Springer -Verlag.

Hada, M. and Georg akilas, A. G. 2008. Formation of clustered DNA damage after high-LET irradiation: A revie w. J . Radiat. Res. 49: 203–210.

Henderson, P. T., Jones, D., Hampikian, G., Kan, Y. Z., and Schuster, G. B. 1999. Long-distance charge transport in duplex DNA: The phonon-assisted polaron-like hopping mechanism. Proc. Natl. Acad. Sci. USA 96: 8353–8358.

Hill, M. A. 1999. Radiation damage to DN A: The importance of track structure. Radiat. Meas . 31: 15–23.

Hütter , M. and Clark, T. 1996. On the enhanced stability of the guanine-cytosine base-pair radical cation. J. Am. Chem. Soc. 118: 7574–7577.

Jak ob, B., Scholz, M., and Taucher -Scholz, G. 2003. Biological imaging of heavy charged-particle tracks. Radiat. Res. 159: 676–684.

Jones, G. D., Milligan, J. R., Ward, J. F., Calabro-Jones, P. M., and Aguilera, J. A. 1993. Yield of strand breaks as a function of scav enger concentration and LET for SV40 irradiated with 4 He ions. Radiat. Res. 136: 190–196.

Jortner, J., Bixon, M., Langenbacher, T., and Michel-Beyerle, M. E. 1998. Charge transfer and transport in DNA. Pr oc. Natl. Acad. Sci. USA 95: 12759–12765.

Jo y, A., Ghosh, A. K., and Schuster, G. B. 2006. One-electron oxidation of DNA oligomers that lack guanine: Reaction and strand cleavage at remote thymines by long-distance radical cation hopping. J. Am. Chem. Soc. 128: 5346–5347.

Ka wai, K. and Majima, T. 2005. Spectroscopic investigation of oxidative hole transfer via adenine hopping in DNA. In Charge Transfer in DNA: From Mechanism to Application, H.-A. Wagenknecht (ed.), p. 117. Weinheim, German y: Wiley-VCH Verlag GmbH & Co. KGaA.

Khanduri, D., Collins, S., Kumar, A., Adhikary, A., and Sevilla, M. D. 2008. Formation of sugar radicals in RNA model systems and oligomers via excitation of guanine cation radical. J. Phys. Chem. B 112: 2168–2178.

Kobayashi, K. and Tagawa, S. 2003. Direct observation of guanine radical cation deprotonation in duplex DNA using pulse radiolysis. J . Am. Chem. Soc. 125: 10213–10218.

K obayashi, K., Yamag ami, R., and Tag awa, S. 2008. Effect of base sequence and deprotonation of guanine cation radical in DN A. J . Phys. Chem. B 112: 10752–10757.

Kraft, G. and Kramer , M. 1993. Linear -energy-transfer and track structure. Adv . Radiat. Biol. 17: 1–52.

K umar, A. and Sevilla, M. D. 2006. Photoexcitation of dinucleoside radical cations: A time-dependent density functional study . J . Phys. Chem. B 110: 24181–24188.

Kumar, A. and Sevilla, M. D. 2007. Low-energy electron attachment to 5″-thymidine monophosphate: Modeling single strand breaks through dissociati ve electron attachment. J . Phys. Chem. B 111: 5464–5474.

K umar, A. and Sevilla, M. D. 2008a. Radiation effects on DNA: Theoretical investigations of electron, hole and excitation pathways to DNA damage. In Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis, M. K. Shukla and J. Leszczynski (eds.), pp. 577–617. Berlin/Heidelber g, German y/New York: Springer -Verlag.

Kumar, A. and Sevilla, M. D. 2008b. The role of pi sigma* excited states in electron-induced DNA strand break formation: A time-dependent density functional theory study . J . Am. Chem. Soc. 130: 2130–2131.

K umar, A. and Sevilla, M. D. 2009a. In¡uence of hydration on proton transfer in the guanine-cytosine radical cation (G( •+ )-C) base pair: A density functional theory study. J. Phys. Chem. B 113(33): 11359–11361. Article ASAP DOI: 10.1021/jp903403d, Publication Date (W eb): June 1, 2009.

K umar, A. and Sevilla, M. D. 2009b. Role of excited states in low-energy electron (LEE) induced strand breaks in DN A model systems: In¡uence of aqueous en vironment. ChemPhysChem . 10: 1426–1430.

La Vere, T., Becker, D., and Sevilla, M. D. 1996. Yields of • OH in gamma-irradiated DNA as a function of DNA hydration: Hole transfer in competition with • OH formation. Radiat. Res. 145: 673–680.

Lee, Y. A., Durandin, A., Dedon, P. C., Geacintov, N. E., and Sha�rovich, V. 2008. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: Relationship between kinetics and distribution of alkali-labile lesions. J. Phys. Chem. B 112: 1834–1844.

Lewis, F . D. 2005. DN A molecular photonics. Photoc hem. Photobiol. 81: 65–72.

Le wis, F. D., Llu, X., Llu, J., Miller, S. E., Hayes, R. T., and Wasiele wski, M. R. 2000. Direct measurement of hole transport dynamics in DN A. Natur e 406: 51–53.

Le wis, F. D., Letsinger, R. L., and Wasiele wski, M. R. 2001. Dynamics of photoinduced charge transfer and hole transport in synthetic DN A hairpins. Acc. Chem . Res . 34: 159–170.

L ewis, F. D. , Da ublain, P. , Zh ang, L. , Co hen, B. , Vu ra-Weis, J. , Wa sielewski, M. R. , Sh a�rovich, V. , Wa ng, Q., Ra ytchev, M. , an d Fi ebig, T. 20 08. Re versible br idge-mediated ex cited-state sy mmetry br eaking in stilbene-linked DN A dumbbells. J . Phys. Chem. B 112: 3838–3843. Li, X. F. and Sevilla, M. D. 2007. DFT treatment of radiation produced radicals in DNA model systems. Adv. Quantum Chem. 2007, 52: 59–87.

Li, X., Cai, Z., and Sevilla, M. D. 2001. Investigation of proton transfer within DNA base pair anion and cation radicals by density functional theory (DFT). J . Phys. Chem. B 105: 10115–10123.

Li, M.-J., Liu, L., Fu, Y., and Guo, Q.-X. 2005. Development of an ONIOM-G3B3 method to accurately predict C-H and N-H bond dissociation enthalpies of ribonucleosides and deoxyribonucleosides. J. Phys. Chem. B 109: 13818–13826.

Li, M.-J., Liu, L., Fu, Y., and Guo, Q.-X. 2006. Signi�cant effects of phosphorylation on relative stabilities of DNA and RNA sugar radicals: Remarkably high susceptibility of H-2″ abstraction in RNA. J. Phys. Chem. B 110: 13582–13589.

Liu, T. and Barton, J. K. 2005. DNA electrochemistry through the base pairs not the sugar -phosphate backbone. J. Am. Chem. Soc. 127: 10160–10601.

Luo, Q., Li, Q. S., Xie, Y., and Schaefer III, H. F. 2005. Radicals deriv ed from guanine: Structures and energetics. Collect. Czec h. Chem. Commun. 70: 826–836.

L y, D., Sanii, L., and Schuster, G. B. 1999. Mechanism of charge transport in DNA: Internally-linked anthraquinone conjug ates support phonon-assisted polaron hopping. J . Am. Chem. Soc. 121: 9400–9410.

Magee, J. L. and Chatterjee, A. 1987. Track reactions of radiation chemistry. In Kinetics of Nonhomogenous Processes, G. R. Freeman (ed.), pp. 171–214. Ne w York: Wiley.

Mundy, C. J., Colvin, M. E., and Quong, A. A. 2002. Irradiated guanine: A Car-Parrinello molecular dynamics study of deh ydrogenation in the presence of an OH radical. J . Phys. Chem. A 106: 10063–10071.

Naumo v, S. and von Sonntag, C. 2008. Guanine-derived radicals: Dielectric constant-dependent stability and UV/Vis spectral properties: A DFT study . Radiat. Res . 169: 364–372.

Nelson, D. and Symons, M. C. R. 1977. Unstable intermediates. Part 169. Electron capture processes in organic phosphates: An electron spin resonance study . J . Chem. Soc. Perkin II 286–293.

Nelson, D. J., Symons, M. C. R., and Wyatt, J. L. 1993. Electron-paramagnetic-resonance studies of irradiated D-glucose-6-phosphate ions: Rele vance to DN A. J . Chem. Soc. Faraday Trans. 89: 1955–1958.

Nikjoo, H. and Uehara, S. 2004. Track structure studies of biological systems. In Charged Particle and Photon Interactions with Matter. Chemical, Physicochemical and Biological Consequences with Applications, A. Mozumdar and Y. Hatano (eds.), pp. 491–531. Ne w York/Basel, Switzerland: Marcel Dekk er, Inc.

Nocek, J. M., Zhou, J. S., de Forest, S., Priyadarshy, S., Beratan, D. N., Onuchic, J. N., and Hoffman, B. M. 1996. Theory and practice of electron transfer within protein-protein complexes: Application to the multi-domain binding of c ytochrome c by c ytochrome c peroxidase. Chem. Re v. 96: 2459–2489.

Núñez, M. E., Hall, D. B., and Barton, J. K. 1999. Long-range oxidative damage to DNA: Effects of distance and sequence. Chem. Biol. 6 : 85–97.

Núñez, M. E., Holmquist, G. P., and Barton, J. K. 2001. Evidence for DNA charge transport in the nucleus. Biochemistry 40: 12465–12471.

Núñez, M. E., Noyes, K. T., and Barton, J. K. 2002. Oxidative charge transport through DNA in nucleosome core particles. Chem. Biol . 9: 403–415.

O’Neill, P. 2001. Radiation-induced damage in DNA. In Radiation Chemistry: Present Status and Future Trends, C. D. Jonah and B. S. M. Rao (eds.), pp. 585–622. Amsterdam, the Netherlands: Else vier.

Osakada, Y., Kawai, K., Fujitsuka, M., and Majima, T. 2008. Charge transfer in DNA assemblies: Effects of sticky ends. Chem. Commun . 23: 2656–2658.

P an, X. and Sanche, L. 2006. Dissociative electron attachment to DNA basic constituents: The phosphate group. Chem. Phys. Lett . 421: 404–408.

P anajotovic, R., Martin, F., Cloutier, P. C., Hunting, D., and Sanche, L. 2006. Effective cross sections for production of single-strand breaks in plasmid DN A by 0.1 to 4.7 eV electrons. Radiat. Res . 165: 452–459.

Pezeshk, A., Symons, M. C. R., and McClymont, J. D. 1996. Electron mov ement along DNA strands: Use of intercalators and electron paramagnetic resonance spectroscop y. J . Phys. Chem. 100: 18562–18566.

Porath, D., Bezryadin, A., de Vries, S., and Dekker , C. 2001. Direct measurements of electrical transport through DN A molecules. Natur e 403: 635–637.

Purkayastha, S., Milligan, J. R., and Bernhard, W. A. 2005. Correlation of free radical yields with strand break yields produced in plasmid DNA by the direct effect of ionizing radiation. J. Phys. Chem. B 109: 16967–16973.

Purkayastha, S., Milligan, J. R., and Bernhard, W. A. 2006a. The role of hydration in the distribution of free radical trapping in directly ionized DN A. Radiat. Res . 166: 1–8.

P urkayastha, S., Milligan, J. R., and Bernhard, W. A. 2006b. An investigation into the mechanisms of DN A st rand br eakage by di rect io nization of va riably hy drated pl asmid DN A. J. Phys. Chem. B 11 0: 26 286–26291.

Purkayastha, S. , Mi lligan, J. R. , an d Be rnhard, W. A. 20 07. On th e ch emical yi eld of ba se le sions, st rand br eaks, an d cl ustered da mage ge nerated in pl asmid DN A by th e di rect ef fect of x ra ys. Ra diat. Res. 16 8: 35 7–366.

Ravanat, J.-L., Saint-Pierre, C., and Cadet, J. 2003. One electron oxidation of the guanine moiety of 2′ -deoxyguanosine: In¡uence of 8-oxo-7,8-dih ydro-2′-deoxyguanosine. J . Am. Chem. Soc. 125: 2030–2031.

Razskazo vskiy, Y., Debije, M. G., and Bernhard, W. A. 2003a. Strand breaks produced in X-írradiated crystalline DN A: In¡uence of base sequence. Radiat. Res . 159: 663–669.

Razskazo vskiy, Y., Debije, M. G., Howerton, S. B., Williams, L. D., and Bernhard, W. A. 2003b. Strand breaks in x-irradiated crystalline DN A: Alternating CG oligomers. Radiat. Res . 160: 334–339. Saito, I., Nakamura, T., Nakatani, K., Yoshioka, Y., Yamaguchi, K., and Sugiyama, H. 1998. Mapping of the hot spots for DNA damage by one-electron oxidation: Ef�cac y of GG doublets and GGG triplets as a trap in long-range hole migration. J . Am. Chem. Soc. 120: 12686–12687.

Sanche, L. 2008. Low energy electron damage to DNA. In Radiation Induced Molecular Phenomena in Nucleic Acid: A Comprehensive Theoretical and Experimental Analysis, M. K. Shukla and J. Leszczynski (eds.), pp. 531–575. Berlin/Heidelber g, German y/New York: Springer -Verlag.

Sanderud, A. and Sagstuen, E. 1996. EPR study of X-irradiated hydroxyalk yl phosphate esters: Phosphate radical formation in polycrystalline glucose phosphate, ribose phosphate and glycerol phosphate salts at 77 and 295 K. J . Chem. Soc. Faraday Trans. 92: 995–999.

Schuhmacher , H. and Dangendorf, V. 2002. Experimental tools for track structure inv estigations: New approaches for dosimetry and microdosimetry . Radiat. Pr ot. Dosimetry . 2002, 99: 317–323.

Schuster , G. B. 2000. Long-range charge transfer in DNA: Transient structural distortions control the distance dependence. Acc. Chem. Res . 33: 253–260.

Schuster , G. B. (ed.) 2004. Long Range Charge Transfer in DNA. I and II, Topics in Current Chemistry. Berlin/ Heidelberg, German y: Springer -Verlag.

Sevilla, M. D. and Becker, D. 2004. ESR studies of radiation damage to DNA and related biomolecules. In Royal Society of Chemistry Specialist Periodical Report: Electron Spin Resonance, B. C. Gilbert, M. J. Davies, and D. M. Murphy (eds.), Vol. 19, pp. 243–278. Cambridge, U.K.: The Royal Society of Chemistry.

Sha�rovich, V., Dourandin, A., and Geacintov, N. E. 2001. Proton-coupled electron-transfer reactions at a distance in DN A duple xes: Kinetic deuterium isotope ef fect. J . Phys. Chem. B 105: 8431–8435.

Shao, F., O’Neill, M. A., and Barton, J. K. 2004. Long-range oxidative damage to cytosines in duplex DNA. Proc. Natl. Acad. Sci. USA 101: 17914–17919.

Sharma, K. K., Purakayastha, S., and Bernhard, W. A. 2007. Unaltered free base release from d(CGCGCG) 2 produced by the direct effect of ionizing radiation at 4 K and room temperature. Radiat. Res. 167: 501–507.

Sharma, K. K., Milligan, J. R., and Bernhard, W. A. 2008. Multiplicity of DNA single-strand breaks produced in pUC18 e xposed to the direct ef fects of ionizing radiation. Radiat. Res . 170: 156–162.

Shukla, L. I., Adhikary, A., Pazdro, R., Becker, D., and Sevilla, M. D. 2004a. Formation of 8-oxo-7,8-dihydroguanine-radicals in gamma-irradiated DNA by multiple one-electron oxidations. Nucleic Acids Res. 32: 6565–6574.

Shukla, L. I., Pazdro, R., Huang, J., DeVreugd, C., Becker, D., and Sevilla, M. D. 2004b. The formation of DNA sug ar radicals from photoe xcitation of guanine cation radicals. Radiat. Res . 161: 582–590.

Shukla, L. I., Pazdro, R., Becker, D., and Sevilla, M. D. 2005. Sugar radicals in DNA: Isolation of neutral radicals in g amma-irradiated DN A by hole and electron sca venging. Radiat. Res . 163: 591–602.

Shukla, L. I., Adhikary, A., Pazdro, R., Becker, D., and Sevilla, M. D. 2007. Formation of 8-oxo-7,8-dihydroguanine-radicals in gamma-irradiated DNA by multiple one-electron oxidations. Nucleic Acids Res. 35: 2460–2461.

Simons, J. 2006. How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks? Acc. Chem. Res. 39: 772–779.

Spalletta, R. A. and Bernhard, W. A. 1992. Free radical yields in A:T polydeoxynucleotides, oligodeoxynucleotides, and monodeoxynucleotides at 4 K. Radiat . Res . 130: 7–14.

Steenk en, S. 1989. Purine bases, nucleosides and nucleotides: Aqueous solution redox chemistry and transformation reactions of their radical cations and e − and • OH adducts. Chem. Rev. 89: 503–520.

Steenken, S. 1992. Electron-transfer-induced acidity/basicity and reactivity changes of purine and pyrimidine bases. Consequences of redox processes for DNA base pairs. Free. Radical Res. Commun. 16: 349–379.

Steenken, S. 1997. Electron transfer in DNA? Competition by ultra-fast proton transfer? Biol. Chem. 378: 1293–1297. Steenken, S., Jovanovic, S. V., Bietti, M., and Bernhard, K. 2000. The trap depth (in DNA) of 8-oxo-7,8dihydro-2′-deoxyguanosine as derived from electron transfer equilibria in aqueous solution. J. Am. Chem. Soc. 122: 2373–2374.

Sw arts, S. G., Sevilla, M. D., Becker, D., Tokar, C. J., and Wheeler, K. T. 1992. Radiation-induced DNA damage as a function of h ydration. I. Release of unaltered bases. Radiat. Res . 129: 333–344.

Sw arts, S. G., Becker, D., Sevilla, M. D., and Wheeler, K. T. 1996. Radiation-induced DNA damage as a function of h ydration. II. Base damage from electron-loss centers. Radiat. Res . 145: 304–314.

S widerek, P. 2006. Fundamental processes in radiation damage of DNA. Angew. Chem. Int. Ed. 45: 40 56–4059.

Terato, H., Tanaka, R., Nakaarai, Y., Nohara, T., Doi, Y., Iwai, S., Hirayama, R., Furusaw a, Y., and Ide, H. 2008. Quantitativ e analysis of isolated and clustered DNA damage induced by gamma-rays, carbon ion beams, and iron ion beams. J . Radiat. Res . 49: 133–146.

Urushibara, A., Shikazono, N., O’Neill, P., Fujii, K., Wada, S., and Yokoya, A. 2008. LET dependence of the yield of single-, double-strand breaks and base lesions in fully hydrated plasmid DNA �lms by ( 4 He 2+ ) ion irradiation. Int. J . Radiat. Biol. 84: 23–33. v on Sonntag, C. 2006. Free-Radical-Induced DNA Damage and Its Repair, pp. 335–447. Berlin/Heidelberg, Germany: Springer -Verlag.

Wagenknecht, H.-A. 2003. Reductive electron transfer and transport of excess electrons in DNA. Angew. Chem. Int. Ed. 42: 2454–2460.

W agenknecht, H.-A. (ed.) 2005. Charg e Transfer in DNA: From Mechanism to Application. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

W an, C., Fiebig, T., Kelly, S. O., Treadway, C. R., Barton, J. K., and Zewail, A. H. 1999. Femtosecond dynamics of DN A-mediated electron transfer . Pr oc. Natl. Acad. Sci. USA 96, 6014–6019.

W an, C., Fiebig, T., Schiemann, O., Barton, J. K., and Zewail, A. H. 2000. Femtosecond direct observation of charge transfer between bases in DN A. Pr oc. Natl. Acad. Sci. USA 97: 14052–14055.

W ang, W., Becker, D., and Sevilla, M. D. 1993. The in¡uence of hydration on the absolute yields of primary ionic free radicals in gamma-irradiated DNA at 77 K. I. Total radical yields. Radiat. Res. 135: 146–154.

Wang, W., Yan, M., Becker, D., and Sevilla, M. D. 1994. The in¡uence of hydration on the absolute yields of primary free radicals in gamma-irradiated DNA at 77 K. II. Individual radical yields. Radiat. Res. 137: 2–10.

W eiland, B. and Hüttermann, J. 1999. Free radicals from lyophilized “dry” DNA bombarded with heavy-ions as studied by electron spin resonance spectroscop y. Int. J . Radiat. Biol. 75: 1169–1175.

Yokoya, A., Cunniffe, S. M. T., and O’Neill, P. 2002. Effect of hydration on the induction of strand breaks and base lesions in plasmid DN A �lms by g amma-radiation. J . Am. Chem. Soc. 124: 8859–8866.

Y okoya, A., Cuniffe, S. M. T., Stevens, D. L., and O’Neill, P. 2003. Effects of hydration on the induction of strand breaks, base lesions, and clustered damage in DNA �lms by alpha-radiation. J. Phys. Chem. B 107: 832–837.

Y okoya, A., Fujii, K., Usigome, T., Shikazono, N., Urushibara, A., and Watanabe, R. 2006. Yields of strand breaks and base lesions induced by soft x-rays in plasmid DN A. Radiat. Pr ot. Dosimetry 122: 86–88.

Y ushchenko, D. A., Shvadchak, V. V., Klymchenko, A. S., Duportail, G., Pivovarenko, V. G., and Mély, Y. 2007. Modulation of excited-state intramolecular proton transfer by viscosity in protic media. J. Phys. Chem. A 111: 10435–10438. 20 Chapter 20. Spectroscopic Study of Radiation-Induced DNA Lesions and Their Susceptibility to Enzymatic Repair

Agrawala, P. K., Eschenbrenner, A., Hervè Du Penhoat, M. A., Boissière, A., Eot-Houllier, G., Abel, F., Politis, M. F., Touati, A., Sage, E., and Chetioui, A. 2008. Induction and repairability of DNA damage caused by ultrasoft X-rays: Role of core e vents. Int. J . Radiat. Biol. 84: 1093–1103.

Ahnstrom, G. and Bryant, P. E. 1982. DNA double-strand breaks generated by the repair of X-ray damage in Chinese hamster cells. Int. J . Radiat. Biol. Relat. Stud. Phys. Chem. Med. 41: 671–676.

Akamatsu, K., Fujii, K., and Yokoya, A. 2004a. Low-energy Augerand photo-electron effects on the degradation of th ymine by ultrasoft X-irradiation. Int. J . Radiat. Biol. 80: 849–853.

Akamatsu, K., Fujii, K., and Yokoya, A. 2004b. Qualitative and quantitative analyses of the decomposition products that arise from the exposure of thymine to monochromatic ultrasoft X rays and 60Co gamma rays in the solid state. Radiat. Res . 162: 469–473.

Beck er, D. and Sevilla, M. D. 1993. The chemical consequences of radiation damage to DNA. Adv. Radiat. Biol. 17: 121–180.

Beck er, D., La Vere, T., and Sevilla, M. D. 1994. ESR detection at 77 K of the hydroxyl radical in the hydration layer of g amma-irradiated DN A. Radiat. Res . 140: 123–129.

Beck er, D., Bryant-Friedrich, A., Trzasko, C., and Sevilla, M. D. 2003, Electron spin resonance study of DNA irradiated with an argon-ion beam: evidence for formation of sugar phosphate backbone radicals. Radiat. Res. 160: 174–185.

Bellon, S., Shikazono, N., Cunniffe, S., Lomax, M., and O’Neill, P. 2009. Processing of thymine glycol in a clustered DN A damage site: Mutagenic or c ytotoxic. Nucl. Acids Res. 37: 4430–4440.

Berk owitz, J. 2002. Atomic Molecular Photoabsorption: Absolute Total Cross Sections, J. Berkowitz (ed.) (Argonne National Laboratory). San Die go, CA: Academic Press.

B ernhard, W. A. and Close, D. M. 2004. DNA damage dictates the biological consequence of ionizing radiation: Th e ch emical pa thways. In Ch arged Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.), pp. 471–489. New York: Marcel Dekker.

Blaisdell, J. O. and Wallace, S. S. 2001. Abortiv e base-excision repair of radiation-induced clustered DNA lesions in Esc herichia coli. Proc. Natl. Acad. Sci. USA 98: 7426–7430.

Boiteux, S., Gajewski, E., Lav al, J., and Dizdaroglu, M. 1992. Substrate speci�city of the Escheric hia coli Fpg protein (formamidopyrimidine-DNA glycosylase): Excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Bioc hemistry 31: 106–110.

Boudaïf fa, B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L. 2000. Resonant formation of DNA strand breaks by lo w-energy (3 to 20 eV) electrons. Science 287: 1658–1660.

Bo wman, M. K., Becker, D., Sevilla, M. D., and Zimbrick, J. D. 2005. Track structure in DNA irradiated with heavy ions. Radiat. Res . 163: 447–454.

Breimer , L. H. and Lindahl, T. 1984. DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J. Biol. Chem. 259: 5543–5548.

Chang, P. W., Zhang, Q. M., Takatori, K., Tachibana, A., and Yonei, S. 2005. Increased sensitivity to sparsely ionizing radiation due to excessive base excision in clustered DNA damage sites in Escherichia coli. Int. J. Radiat. Biol. 81: 115–123.

C hetsanga, C. J. and Lindahl, T. 1979. Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucl. Acids Res. 6: 3673–3684.

Cunniffe, S. M., Lomax, M. E., and O’Neill, P. 2007. An AP site can protect against the mutagenic potential of 8-oxoG’ when present within a tandem clustered site in E. coli. DN A Repair (Amst.) 6: 1839–1849. de Lara, C. M., Jenner, T. J., Townsend, K. M., Marsden, S. J., and O’Neill, P. 1995. The effect of dimethyl sulfoxide on the induction of DNA double-strand breaks in V79-4 mammalian cells by alpha particles. Radiat. Res. 144: 43–49. de Lara, C. M., Hill, M. A., Jenner, T. J., Papworth, D., and O’Neill, P., 2001. Dependence of the yield of DNA double-strand breaks in Chinese hamster V79-4 cells on the photon energy of ultrasoft X-rays. Radiat. Res. 155: 440–448.

Demple, B. and Linn, S. 1980. DN A N-glycosylases and UV repair . Natur e 287: 203–208.

Diano v, G. L., Timchenko, T. V., Sinitsina, O. I., Kuzminov, A. V., Medvedev, O. A., and Salganik, R. I. 1991. Repair of uracil residues closely spaced on the opposite strands of plasmid DNA results in double-strand break and deletion formation. Mol. Gen. Genet . 225: 448–452.

Dizdaroglu, M., Laval, J., and Boiteux, S. 1993. Substrate speci�city of the Escherichia coli endonuclease III: Excision of thymineand cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry 32: 12105–12111.

D’Souza, D. I. and Harrison, L. 2003. Repair of clustered uracil DNA damages in Escheric hia coli. Nucl. Acids Res. 31: 4573–4581.

Dugle, D. L., Gillespie, C. J., and Chapman, J. D. 1976. DNA strand breaks, repair, and surviv al in x-irradiated mammalian cells. Pr oc. Natl. Acad. Sci. USA 73: 809–812.

Eschenbrenner , A., Hervè Du Penhoat, M. A., Boissière, A., Eot-Houllier, G., Abel, F., Politis, M. F., Touati, A., Sage, E., and Chetioui, A. 2007. Strand breaks induced in plasmid DNA by ultrasoft X-rays: In¡uence of hydration and packing. Int. J . Radiat. Biol. 83: 687–697.

F aubel, M. and Kisters, T. 1989. Non-equilibrium molecular ev aporation of carboxylic acid dimmers. Nature 339: 527–529.

F aubel, M. and Steiner B. 1992. Strong bipolar electrokinetic charging of thin liquid jets emerging from 10 μm PtIr nozzles. Ber . Bunsenges. Phys. Chem. 96: 1167–1172. F aubel, M., Shlemmer, S., and Toennies, J. P. 1988. A molecular beam study of the ev aporation of water from a liquid jet. Z. Phys. D 10: 269–277.

F aubel, M., Steiner, B., and Toeneies, J. P. 1997. Photoelectron spectroscopy of liquid water , some alcohols, and pure nonane in free micro jet. J . Chem. Phys. 106: 9013–9031.

F aubel, M. , St einer, B. , an d To eneies J. P. 19 99. Me asurements of He I ph otoelectron sp ectra of li quid wa ter, fo rmamide an d et hylene gl ycol in fa st-¡owing mi crojets. J. Electron Spectrosc. Rel. Phenom. 95 : 15 9–169.

Fayard, B., Touati, A., Abel, F., Herve du Penhoat, M. A., Despiney-Bailly , I., Gobert, F., Ricoul, M., L’ hoir, A. , Po lities, M. F. , Hi ll, M. A. , St evens, D. L. , Sa batier, L. , Sa ge, E. , Go odhead, D. T. , an d Ch etioui, A. 2002. Cell inactiv ation and double-strand breaks: The role of core ionization, as probed by ultrasoft X rays. Radiat. Res. 157: 128–140.

Fuchs, H. and Le gge, H. 1979. Flo w of a w ater jet into v acuum. Acta Astronaut. 6: 1213–1226.

Fujii, K., Akamatsu, K., and Yok oya, A. 2004a. Ion desorption from DNA components irradiated with 0.5 keV ultrasoft X-ray photons. Radiat Res . 161: 435–441.

Fujii, K., Akamatsu, K., and Yok oya, A. 2004b. Near-edge x-ray absorption �ne structure of DNA nucleobases thin �lm in the nitrogen and oxygen K -edge re gion. J . Phys. Chem. B 108: 8031–8035.

Fujii, K., Shikazono, N., and Yokoya, A. 2009. Nucleobase lesions and strand-breaks in dry DNA thin �lm selectiv ely induced by monochromatic soft X-rays. J . Phys. Chem. 113: 16007–16015.

Fulford, J. 2000. Quanti�cation of complex DNA damage by ionising radiation: An experimental and theoretical approach. PhD thesis, Uni versity of Brunel, London, U.K.

Fulford, J., Nikjoo, H., Goodhead, D. T., and O’Neill, P. 2001. Yields of SSB and DSB induced in DNA by AlK X-rays and α-particles: Comparison of experimental and simulated yields. Int. J. Radiat. Biol. 77: 1053–1066.

Georgakilas, A. G., Bennett, P. V., Wilson III D. M., and Sutherland, B. M. 2004. Processing of bistranded abasic DNA clusters in gamma-irradiated human hematopoietic cells. Nucl. Acids Res. 32: 5609–5620.

Goodhead, D. T. 1994a. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int. J. Radiat. Biol. 65: 7–17.

Goodhead, D. T. 1994b. In Synchrotron Radiation in the Biosciences, B. Chance, J. Deisenhofer, S. Ebashi, D. T. Goodhead, J. R. Helliwell, H. E. Huxley, T. Iizuka et al. (eds.), pp. 683–705. Oxford, U.K.: Clarendon Press.

Goodhead, D. T., Thacker, J., and Cox, R. 1981. Is selective absorption of ultrasoft x-rays biologically important in mammalian cells? Phys. Med. Biol . 26: 1115–1127.

G ulston, M. , de La ra, C. , Je nner, T. , Da vis, E. , an d O’ Neill, P. 20 04. Pr ocessing of cl ustered DN A da mage ge nerates ad ditional do uble-strand br eaks in ma mmalian ce lls po st-irradiation. Nu cl. Acids Res. 32 : 16 02–1609.

Hada, M. and Sutherland, B. M. 2006. Spectrum of complex DNA damages depends on the incident radiation. Radiat Res. 165: 223–230.

Hanai, R., Yazu, M., and Hieda, K. 1998. On the experimental distinction between SSB and DSB in circular DNA. Int. J . Radiat. Biol. 73: 457–479.

Harrison, L., Brame, K. L., Geltz, L. E., and Landry, A. M. 2006. Closely opposed apurinic/apyrimidinic sites are converted to double strand breaks in Escherichia coli even in the absence of exonuclease III, endonuclease IV , nucleotide e xcision repair and AP lyase clea vage. DN A Repair (Amst.) 5: 324–335.

Hatahet, Z., Kow, Y. W., Purmal, A. A., Cunningham, R. P., and Wallace, S. S. 1994. New substrates for old enzymes. 5-Hydroxy-2’-deoxycytidine and 5-hydroxy-2’-deoxyuridine are substrates for Escherichia coli endonuclease III and formamidopyrimidine DNA N-glycosylase, while 5-hydroxy-2’-deoxyuridine is a substrate for uracil DN A N-glycosylase. J . Biol. Chem. 269: 18814–18820.

Hieda, K. and Ito, T. 1991. Radiobiological experiments in the X-ray region with synchrotron radiation. In: Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, and E. Rubenstein (eds.), p. 431. Amsterdam, the Netherlands: North-Holland.

International Commission on Radiation Units and Measurements. 1970. Linear Energy Transfer . ICRU Report 16. Washington, DC.

I to, T. an d Sa ito, M. 19 88. De gradation of ol igonucleotides by va cuum-UV ra diation in so lid: ro le of th e ph osphate gr oup an d ba ses. Ph otochem. Photobiol. 48 : 56 7–572.

Kashtanov, S., Augustsson, A., Luo, Y., Guo, J. H., Såthe, C., Rubensson, J. E., Siegbahn, H., Nordgren, J., and Ågren, H. 2004. Local structure of liquid water studied by x-ray emission spectroscopy . Phys. Re v. B 69: 024201-1–024201-8.

Kozmin, S. G., Sedletska, Y., Reynaud-Angelin, A., Gasparutto, D., and Sage, E. 2009. The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells. Nucl. Acids Res. 37: 1767–1777.

Krisch, R. E., Flick, M. B., and T rumbore, C. N. 1991. Radiation chemical mechanism of singleand doublestrand break formation in irradiated SV40 DN A. Radiat. Res . 126: 251–259.

La Vere, T., Becker , D., and Sevilla, M. D. 1996. Yields of OH in gamma-irradiated DNA as a function of DNA hydration: Hole transfer in competition with OH formation. Radiat. Res . 145: 673–680.

Malyarchuk, S., Youngblood, R., Landry, A. M., Quillin, E., and Harrison, L. 2003. The mutation frequency of 8-oxo-7,8-dihydroguanine (8-oxodG) situated in a multiply damaged site: comparison of a single and two closely opposed 8-oxodG in Esc herichia coli. DNA Repair (Amst.) 2: 695–705.

M alyarchuk, S. , Br ame, K. L. , Yo ungblood, R. , Sh i, R. , an d Ha rrison, L. 20 04. Two cl ustered 8oxo-7,8dihydroguanine (8-oxodG) lesions increase the point mutation frequency of 8-oxodG, but do not result in double strand breaks or deletions in Esc herichia coli. Nucl. Acids Res. 32: 5721–5731.

Malyarchuk, S., Castore, R., and Harrison, L. 2008. DNA repair of clustered lesions in mammalian cells: Inv olvement of non-homologous end-joining. Nucl. Acids Res. 36: 4872–4882.

Melvin, T., Cunniffe, S. M., O’Neill, P., Parker, A. W., and Roldan-Arjona, T. 1998. Guanine is the target for direct ionisation damage in DN A, as detected using e xcision enzymes. Nucl. Acid Res. 26: 4935–4942.

Millig an, J. R., Aguilera, J. A., Nguyen, T. T., Paglina wan, R. A., and Ward, J. F. 2000. DNA strand-break yields after post-irradiation incubation with base excision repair endonucleases implicate hydroxyl radical pairs in double-strand break formation. Int. J . Radiat. Biol. 76: 1475–1483.

Mor gner, H. 1998. Electron spectroscopy for the determination of concentration depth profoles and for the investigation of local electric �elds. Surf . Investig. 13: 463–474.

Nikjoo, H., Charlton, D. E., and Goodhead, D. T. 1994. Monte Carlo track structure studies of energy deposition and calculation of initial DSB and RBE. Adv . Space Res. 14: (10)161–(10)180.

N ikjoo, H ., O ’Neill, P ., G oodhead, D . T., a nd Terrissol, M . 1 997. C omputational m odelling o f l ow-energy electron-induced DNA damage by early physical and chemical events. Int. J. Radiat. Biol. 71: 467–483.

Nikjoo, H., Uehara, S., Wilson, W. E., Hoshi, M., and Goodhead, D. T. 1998. Track structure in radiation biology: Theory and applications. Int. J . Radiat. Biol. 73: 355–364.

Nikjoo, H., O’Neill, P., Terrissol, M., and Goodhead, D. T. 1999. Quantitative modelling of DNA damage using Monte Carlo track structure method. Radiat. En viron. Biophys. 38: 31–38.

Nikjoo, H., O’Neill, P., Wilson, W. E., and Goodhead, D. T. 2001. Computational approach for determining the spectrum of DN A damage induced by ionizing radiation. Radiat. Res . 156: 577–583.

Nikjoo, H., Bolton, C. E., Watanabe, R., Terrisol, M., O’Neill, P., and Goodhead, D. T. 2002. Modelling of DNA damage induced by ener getic electrons (100 eV to 100 keV). Radiat. Pr ot. Dosim. 99: 77–80. O ’Neill, P. 20 01. Ra diation-induced da mage in DN A. In Ra diation Chemistry, pp . 58 5–622. Do rdrecht, th e Ne therlands: El sevier Sc ience.

O’Neill, P . and Fielden, E. M. 1993. Primary free radical processes in DN A. Adv . Radiat. Biol. 17: 53–120.

Ormerod, M. G. 1965. Free-radical formation in irradiated deoxyribonucleic acid. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 9: 291–300.

Pearson, C. G., Shikazono, N., Thack er, J., and O’Neill, P. 2004. Enhanced mutagenic potential of 8-oxo-7,8dihydroguanine when present within a clustered DN A damage site. Nucl. Acids Res. 32: 263–270.

Prise, K. M., Pullar, C. H., and Michael, B. D. 1999. A study of endonuclease III-sensitive sites in irradiated DNA: Detection of alpha-particle-induced oxidati ve damage. Car cinogenesis 20: 905–909.

Purkayastha, S., Milligan, J. R., and Bernhard, W. A. 2006. The role of hydration in the distribution of free radical trapping in directly ionized DN A. Radiat. Res . 166: 1–8.

Saitoh, Y., Nakatani, T., Matsushita, T., Agui, A., Teraoka, Y., and Yokoya, A. 2001. First results from the actinide science beamline BL23SU at SPring-8. Nucl. Instrum. Methods A 474: 253–258.

Shikazono, N. and O’Neil, P. 2009. Biological consequences of potential repair intermediates of clustered base damage site in Esc herichia coli. Mutat. Res. 669: 162–168.

Shikazono, N., Pearson, C., O’Neill, P., and Thacker , J. 2006. The roles of speci�c glycosylases in determining the mutagenic consequences of clustered DN A base damage. Nucl. Acids Res. 34: 3722–3730.

Sie gbahn, K. 1974. Electron spectroscop y — An outlook. J . Electron Spectrosc. Relat. Phenom. 5: 3–97.

Sutherland, B. M., Bennett, P. V., Sidorkina, O., and Lav al, J. 2000. Clustered DNA damages induced in isolated DNA and in human cells by lo w doses of ionizing radiation. Pr oc. Natl. Acad. Sci. USA 97: 103–108.

T ao, N. J., Lindsay, S. M., and Rupprecht, A. 1989. Structure of DNA hydration shells studied by Raman spectroscop y. Biopolymer s 28: 1019–1030.

T aucher-Scholz, G. and Kraft, G. 1999. In¡uence of radiation quality on the yield of DNA strand breaks in SV40 DN A irradiated in solution. Radiat. Res . 151: 595–604.

Tchou, J., Kasai, H., Shibutani, S., Chung, M. H., Laval, J., Grollman, A. P., and Nishimura, S. 1991. 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate speci�city. Proc. Natl. Acad. Sci. USA 88: 4690–4694.

Ukai, M., Yok oya, A., Fujii, K., and Saitoh, Y. 2008. X-ray absorption spectrum for guanosine-5’-monophosphate in water solution in the vicinity of the nitrogen K-edge observed in free liquid jet in vacuum. Radiat. Phys. Chem. 77: 1265–1269.

Ukai, M., Yok oya, A., Nonaka, Y., Fujii, K., and Saitoh, Y. 2009. Synchrotron radiation photoelectron studies for primary radiation effects using a liquid water jet in vacuum: total and partial photoelectron yields for liquid w ater near the oxygen K-edge. Radiat. Phys. Chem . 78: 1202–1206.

Urushibara, A., Shikazono, N., O’Neill, P., Fujii, K., Wada, S., and Yok oya, A. 2008. LET dependence of the yield of single-, double-strand breaks and base lesions in fully hydrated plasmid DNA �lms by 4 He 2+ ion irradiation. Int. J . Radiat. Biol. 84: 23–33. v on Sonntag, C. 1987. The Chemical Basis of Radiation Biolo gy. London, U.K.: Taylor & Francis.

W ard, J. F. 1988. DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability . Pr og. Nucl. Acid Res. Mol. Biol. 35: 95–125.

W atanabe, R., Yok oya, A., Fujii, K., Saito, K. 2004. DNA strand breaks by direct energy deposition by Auger and photo-electrons ejected from DNA constituent atoms following K-shell photoabsorption. Int. J . Radiat. Biol. 80: 823–832.

W ernet, Ph., Nordlund, D., Bergmann, U., Cavalleri, M., Odelius, M., Ogasawara, H., and Näslund, L. Å. 2004. The structure of the �rst coordination shell in liquid w ater. Science 304: 995–999. W ilson, K. R., Rude, B. S., Smith, J., Cappa, C., Co, D. T., Schaller, R. D., Larsson, M., Catalano, T., and Saykally, R. J. 2004. Investigation of volatile liquid surfaces by synchrotron x-ray spectroscopy of liquid microjet. Re v. Sci. Instrum. 75: 725–736.

Y amashita, S., Katsumura, Y., Lin, M., Muroya, Y., Miyazaki, T., Murakami, T., Meesungnoen, J., and Jay-Gerin, J. P. 2008. Water radiolysis with heavy ions of energies up to 28 GeV. 3. Measurement of G(MV *+ ) in deaerated methyl viologen solutions containing various concentrations of sodium formate and Monte Carlo simulation. Radiat. Res . 170: 521–533.

Y ang, N., Galick, H., and Wallace, S. S. 2004. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. DNA Repair (Amst.) 3: 1323–1334.

Y ang, N., Chaudhry, M. A., and Wallace, S. S. 2006. Base excision repair by hNTH1 and hOGG1: A two edged sword in the processing of DNA damage in gamma-irradiated human cells. DNA Repair (Amst.) 5: 43–51.

Yeh, J. J. and Lindau, I. 1985. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data Tables 32: 1–155.

Y okoya, A., Watanabe, R., and Hara, T. 1999. Singleand double-strand breaks in solid pBR322 DNA induced by ultrasoft x-rays at photon ener gies at 388, 435 and 573 eV. J . Radiat. Res. 40: 145–158.

Yokoya, A., Cunniffe, C. M. T., and O’Neill, P. 2002. Effect of hydration on the induction of strand breaks and nucleobase lesions in plasmid DN A �lms by g amma-radiation. J . Am. Chem. Soc. 124: 8859–8866.

Y okoya, A., Cunniffe, C. M. T., Stevens, D. L., and O’Neill, P. 2003. Effect of hydration on the induction of strand breaks, nucleobase lesions and clustered damage in DNA �lms by α-radiation. J. Phys. Chem. B 124: 832–837.

Y okoya, A., Fujii, K., Ushigome, T., Shikazono, N., Urushibara, A., and Watanabe, R. 2006. Yields of soft X-ray induced strand breaks and nucleobase lesions in plasmid DN A. Radiat. Pr ot. Dosim. 122: 86–88.

Y okoya, A., Fuji, K., Shikazono, N., Akamatsu, K., Urushibara, A., and Watanabe, R. 2008a. Studies of soft X-ray-induced Auger ef fect on the induction of DN A damage. Int. J . Radiat. Biol. 84: 1069–1081.

Y okoya, A., Shikazono, N., Fujii, K., Urushibara, A., Akamatsu, K., and Watanabe, R. 2008b. DNA damage induced by the direct ef fect of radiation, J . Radiat. Phys. Chem. 77: 1280–1285.

Y okoya, A., Cunniffe, S. M. T., Watanabe, R., Kobayashi, K., and O’Neill, P. 2009a. Induction of DNA strand breaks, nucleobase lesions, and clustered damage sites in hydrated plasmid DNA �lms by ultrasoft x-rays around the phosphorus K -edge. Radiat. Res . 172: 296–305.

Y okoya, A., Fujii, K., Fukuda, Y., and Ukai, M. 2009b. EPR study of radiation damage to DNA irradiated with synchrotron Soft X-rays around nitrogen and oxygen K -edge. Radiat. Phys. Chem . 78: 1211–1215. 21 Chapter 21. Application of Microbeams to the Study of the Biological Effects of Low Dose Irradiation

Baker, C. P., Curtis, H. J., Zeman, W., and Woodley, R. G. 1961. The design and calibration of a deuteron microbeam for biological studies. Radiat . Res . 15: 489–495.

Barberet, P., Balana, A., Incerti, S., Michelet-Habchi, C., Moretto, P., and Pouthier, T. 2005. Development of a focused charged particle microbeam for the irradiation of individual cells. Rev. Sci. Instrum. 76(1): 015101–015106.

Belyakov, O. V. , Mi tchell, S. A. , Pa rikh, D. , Ra nders-Pehrson, G. , Ma rino, S. A. , Am undson, S. A. , Ge ard, C. R. , and B renner, D . J . 2 005. B iological e ffects i n u nirradiated h uman t issue i nduced b y r adiation d amage u p to 1 mm away. Proc. Natl. Acad. Sci. USA 102(40): 14203–14208.

Bigelow, A., Garty, G., Funayama, T., Randers-Pehrson, G., Brenner, D., and Geard, C. 2009. Expanding the question-answering potential of single-cell microbeams at RARAF, USA. J. Radiat. Res. (Tokyo) 50 Suppl A: A21–28.

Bl ackborow, P. A. , Gu stafson, D. S. , Sm ith, D. K. , Be sen, M. M. , Ho rne, S. F. , D' Agostino, R. J. , Mi nami, Y., and Denbeaux, G. 2007. Application of the Energetiq EQ-10 electrodeless Z-Pinch EUV light source in outgassing and exposure of EUV photoresist. In Emerging Lithographic Technologies XI (Pr oceedings of the SPIE), M. Lercel (ed.). Bellingham, WA: SPIE.

Boreham, D. R., Dolling, J.-A, Broome, J., Maves, S. R., Smith, B. P., and Mitchel, R. E. J. 2000. Cellular adaptiv e response to single tracks of low-LET radiation and the effect on nonirradiated neighboring cells. Radiat. Res . 153: 230–231.

Braby , L. A. and Reece, W. D. 1990. Studying low dose effects using single particle microbeam irradiation. Radiat. Pr ot. Dosimetry 31(1–4): 311–314.

Brenner , D. J., Doll, R., Goodhead, D. T., Hall, E. J., Land, C. E., Little, J. B., Lubin, J. H., Preston, D. L., Preston, R. J., Puskin, J. S., Ron, E., Sachs, R. K., Samet, J. M., Setlow , R. B., and Zaider, M. 2003. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know . Proc . Natl. Acad. Sci . USA 100(24): 13761–13766.

Brenner , D. J., Miller, R. C., Huang, Y., and Hall, E. J. 1995. The biological effecti veness of radon-progeny alpha particles. III. Quality f actors. Radiat . Res . 142(1): 61–69.

Cardis, E., Gilbert, E. S., Carpenter, L., Howe, G., Kato, I., Armstrong, B. K., Beral, V., Cowper , G., Douglas, A., Fix, J., Fry, S. A., Kaldor, J., Lave, C., Salmon, L., Smith, P. G., Voelz, G. L., and Wiggs, L. D. 1995. Effects of low doses and low dose rates of external ionizing radiation: Cancer mortality among nuclear industry w orkers in three countries. Radiat . Res . 142(2): 117–132.

Datta, R., Cole, A., and Robinson, S. 1976. Use of track-end alpha particles from 241Am to study radiosensiti ve sites in CHO cells. Radiat . Res . 65: 139–151.

F olkard, M. , Vo jnovic, B. , Ho llis, K. J. , Bo wey, A. G. , Wa tts, S. J. , Sc hettino, G. , Pr ise, K. M. , an d Mi chael, B. D. 1997a. A charged-particle microbeam: II. A single-particle micro-collimation and detection system. Int. J. Radiat . Biol . 72(4): 387–395.

F olkard, M. , Vo jnovic, B. , Pr ise, K. M. , Bo wey, A. G. , Lo cke, R. J. , Sc hettino, G. , an d Mi chael, B. D. 19 97b. A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles. Int . J . Radiat . Biol . 72(4): 375–385.

F olkard, M., Schettino, G., Vojnovic, B., Gilchrist, S., Michette, A. G., Pfauntsch, S. J., Prise, K. M., and Michael, B. D. 2001. A focused ultrasoft x-ray microbeam for targeting cells individually with submicrometer accurac y. Radiat . Res . 156: 796–804.

F olkard, M., Prise, K. M., Schettino, G., Shao, C., Gilchrist, S., and Vojnovic, B. 2005. New insights into the cellular response to radiation using microbeams. Nucl . Instrum . Methods B 231: 189–194.

Gerardi, S., Galeazzi, G., and Cherubini, R. 2005. A microcollimated ion beam facility for investigations of the effects of lo w-dose radiation. Radiat . Res . 164(4 Pt 2): 586–590.

G reif, K., Beverung, W., Langner, F., Frankenberg, D., Gellhaus, A., and Banaz-Yasar, F. 2006. The PTB microbeam: A versatile instrument for radiobiological research. Radiat. Prot. Dosimetry 122(1–4): 31 3–315.

Hall, E. J. 2000. Radiobiolo gy for the Radiologist. Philadelphia, P A: Lippincott Williams & Wilkins.

Hei, T. K., Wu, L. J., Liu, S. X., Vannais, D., Waldren, C. A., and Randers-Pehrson, G. 1997. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells. Proc. Natl. Acad. Sci. USA 94(8): 3765–3770.

Heiss, M., Fischer, B. E., and Cholewa, M. 2004. Status of the GSI microbeam facility for cell irradiation with single ions. Radiat . Res . 161: 98–99.

Heiss, M., Fisher, B. E., Jakob, B., Fournier, C., Becker, G., and Taucher-Scholz, G. 2006. Targeted irradiation of mammalian cells using a hea vy-ion microprobe. Radiat . Res . 165(2): 231–239.

Imaseki, H., Ishikawaa, T., Isoa, H., Konishia, T., Suyaa, N., Hamanoa, T., Wanga, X., Yasudaa, N. and Yukawaa, M. 2007. Progress report of the single particle irradiation system to cell (SPICE). Nucl. Instrum. Methods Phys. Res . Sect . B : Beam Inter act. Mater . Atoms 260(1): 81–84.

K adhim, M. A., MacDonald, D. A., Goodhead, D. T., Lorimore, S. A., Marsen, S. J., and Wright, E. G. 1992. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355: 738–740.

Kadhim, M. A., Lorimore, S. A., To wnsend, K. M., Goodhead, D. T., Buckle, V. J., and Wright, E. G. 1995. Radiation-induced genomic instability: Delayed cytogenetic aberrations and apoptosis in primary human bon marro w cells. Int . J . Radiat . Biol . 67(3): 287–293.

Kadhim, M. A., Marsden, S. J., Malcomson, A. M., Goodhead, D. T., Prise, K. M., and Michael, B. D. 2001. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radiat. Res. 155: 122–126.

K obayashi, Y. , Fu nayama, T. , Wa da, S. , Fu rusawa, Y. , Ao ki, M. , Sh ao, C. , Yo kota, Y. , Sa kashita, T. , Ma tsumoto, Y., Kakizaki, T., and Hamada, N. 2004. Microbeams of heavy charged particles. Biol. Sci. Space 18(4): 235–240. K obayashi, Y., Funayama, T., Hamada, N., Sakashita, T., Konishi, T., Imaseki, H., Yasuda, K., Hatashita, M., Takagi, K., Hatori, S., Suzuki, K., Yamauchi, M., Yamashita, S., Tomita, M., Maeda, M., Kobayashi, K., Usami, N., and Wu, L. 2009. Microbeam irradiation facilities for radiobiology in Japan and China. J. Radiat. Res . ( Tokyo) 50 Suppl A: A29–47.

Kraske, F., Ritter, S., Scholz, M., Schneider, M., Kraft, G., Weisbrod, U., and Kankeleit, E. 1990. Directed irradiation of mammalian cells by single charged particles with a giv en impact parameter. Radiat. Prot . Dosimetry 31: 315–318.

Lekki, J., , J., Bozek, S., Stachura, Z., and Kwiatek, W. M. 2009. Design of the Krako w x-ray microprobe f acility for tar geted X-ray irradiations of biological objects. J . Radiat . Res . 50(Suppl.): A98.

Lo rimore, S . A. , K adhim, M . A. , P ocock, D . A. , P apworth, D ., S tevens, D . L ., G oodhead, D . T. , a nd Wr ight, E. G. 19 98. Ch romosomal in stability in th e de scendants of un irradiated su rviving ce lls af ter al pha-particle irradiation. Pr oc. Natl . Acad . Sci . USA 95: 5730–5733.

L yng, F. M., Maguire, P., Kilmurray, N., Mothersill, C., Shao, C., Folkard, M., and Prise, K. M. 2006. Apoptosis is initiated in human keratinoc ytes exposed to signalling factors from microbeam irradiated cells. Int. J. of Radiat. Biol . 82(6): 393–399.

Mancuso, M., Pasquali, E., Leonardi, S., Tanori, M., Rebessi, S., Di Majo, V., Pazzaglia, S., Toni, M. P., Pimpinella, M., Cov elli, V., and Saran, A. 2008. Oncogenic bystander radiation effects in patched heterozygous mouse cerebellum. Pr oc. Natl . Acad . Sci . USA 105(34): 12445–12450.

M arples, B. an d Jo iner, M. C. 19 93. Th e re sponse of Ch inese ha mster V7 9 ce lls to lo w ra diation do ses: ev idence of enhanced sensitivity of the whole cell population. Radiat. Res. 133: 41–51.

Michael, B. D., Prise, K. M., Folkard, M., Brocklehurst, B., Munro, I. H., and Hopkirk, A. 1995. Critical energies for ssb and dsb induction in plasmid DNA: Studies using synchrotron radiation. In Radiation Damage in DNA: Structure/Function Relationships at Early Times, ed. A. Fuciarelli, and J. Zimbrick, pp. 251–258. Columb us, Ohio: Battelle Press.

Miller , R. C., Randers-Pehrson G., Geard, C. R., Hall, E. J., and Brenner, D. J. 1999. The oncogenic transforming potential of the passage of single alpha-particles through mammalian cell nuclei. Proc. Natl. Acad. Sci. USA 96: 19–22.

Miller , J. H., Wilson, W. E., Lynch, D. E., Resat, M., and Trease, H. E. 2001. Computational dosimetry for electron microbeams: Monte Carlo track simulation combined with confocal microscopy. Radiat. Res. 156: 438–439.

Mor gan, W. F. and Sowa, M. B. 2007. Non-targeted bystander effects induced by ionizing radiation. Mutat. Res. 616(1–2): 159–164.

Muirhead, C. R., Goodill, A. A., Haylock, R. G., Vokes, J., Little, M. P., Jackson, D. A., O’Hagan, J. A., Thomas, J. M., Kendall, G. M., Silk, T. J., Bingham, D., and Berridge, G. L. 1999. Occupational radiation exposure and mortality: Second analysis of the National Registry for Radiation Work ers. J. Radiol. Prot . 19(1): 3–26.

Prewett, P. D. and Michette, A. G. 2001. MOXI: A novel microfabricated zoom lens for x-ray imaging. Proc. SPIE 4145: 180–187.

Prise, K. M., , O. V., Folkard, M., and Michael, B. D. 1998. Studies of bystander effects in human �broblasts using a char ged particle microbeam. Int . J . Radiat . Biol . 74(6): 793–798.

Prise, K. M., Folkard, M., Malcolmson, A. M., Pullar, C. H., Schettino, G., Bowey, A. G., and Michael, B. D. 2000. Single ion actions: The induction of micronuclei in V79 cells exposed to individual protons. Adv. Space Res. 25(10): 2095–2101.

Prise K. M., Schettino, G., Folkard, M., and Held, K. D. 2005. New insights on cell death from radiation exposure. Lancet Oncol . 6: 520–528.

Randers-Pehrson, G., Geard, C., Johnson, G., and Brenner, D. 2000. Technical characteristics of the Columbia University single-ion microbeam. Radiat . Res . 153: 221–223.

Randers-Pehrson, G., Geard, C. R., Johnson, G., Elliston, C. D., and Brenner, D. J. 2001. The Columbia University single-ion microbeam. Radiat . Res . 156: 210–214.

Schettino, G., Folkard, M., Prise, K. M., Vojno vic, B., Bowe y, A. G., and Michael, B. D. 2001. Low-dose hypersensiti vity in Chinese hamster V79 cells targeted with counted protons using a charged-particle microbeam. Radiat . Res . 156: 526–534.

Schettino, G., Folkard, M., Michael, B. D., and Prise, K. M. 2005. Low-dose binary behaviour of bystander cell killing after microbeam irradiation of a single cell with focused Ck x-rays. Radiat . Res . 163: 332–336.

Sedelnik ova, O. A., Nakamura, A., Ko valchuk, O., Koturbash, I., Mitchell, S. A., Marino, S. A., Brenner, D. J., and Bonner, W. M. 2007. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res . 67(9): 4295–4302.

Shao, C., Folkard, M., Michael, B. D., and Prise, K. M. 2004. Tar geted cytoplasmic irradiation induces bystander responses. Pr oc. Natl . Acad . Sci . USA 101(37): 13495–13500.

S owa Resat, M. and Morgan, W. F. 2004. Microbeam developments and applications: A low linear energy transfer pe rspective. Ca ncer Metastasis Rev. 23 : 32 3–331.

Sowa, M. B. , Mu rply, M. K. , Mi ller, J. H. , Mc Donald, J. C. , St rom, D. J. , an d Ki mmel, G. A. 20 05. A va riableenergy el ectron mi crobeam: A un ique mo dality fo r ta rgeted lo w-LET ra diation. Ra diat. Re s. 16 4: 69 5–700.

Tartier, L., Gilchrist, S., Folkard, M., and Prise, K. M. 2007. Cytoplasmic irradiation induces 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res . 67(12): 5872–5879.

Thompson, A. C., Blakely , E. A., Bjornstad, K. A., Chang, P. Y., Rosen, C. J., Sudar, D., and Schwarz, R. I. 2004. Microbeam studies of low-dose x-ray bystander effect on epithelial cells in �broblasts using synchrotron radiation. Radiat . Res . 161: 101–102.

W att, F. and Grime, G. W. 1987. Principles and Applications of High-Energy Ion Microbeams. Bristol, U.K.: Hilger. W att, F., Grime, G. W., Blower , G. D., and Takacs, J. 1982. The Oxford 1 micron proton microprobe. Nucl. Instrum. Methods 197: 65–77.

W ilson, W. E., L ynch, D. J., Wei, K., and Braby , L. A. 2001. Microdosimetry of a 25 keV electron microbeam. Radiat. Res . 155: 89–94.

W u, L. J., Randers-Pehrson, G., Xu, A., Waldren, C. A., Geard, C. R., Yu, Z., and Hei, T. K. 1999. Tar geted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc. Natl. Acad. Sci. USA 96: 4959–4964.

Zeman, W., Curtis, H. J., Gebhard, E. L., and Haymaker, W. 1959. Tolerance of mouse-brain tissue to highenergy deuterons. Science 130: 1760–1761.

Zirkle, R. E. and Bloom, W. 1953. Irradiation of parts of indi vidual cells. Science 117: 487–493. 22 Chapter 22. Redox Reactions of Antioxidants: Contributions from Radiation Chemistry of Aqueous Solutions

Abreu, I. A., Hearn, A., Haiqain, A., Harry, S., Silverman, D. N., and Cabelli, D. E. 2008. The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: A specialized enzyme for the elimination of high superoxide concentrations. Bioc hemistry 47: 2350–2356.

A gamey, A. El., Lowe, G. M., McGarvey, D. J., Mortensen, A., Phillip, D. M., Truscott, T. G., and Young, A. J. 2004. Carotenoid radical chemistry and oxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430: 37–48.

Alfassi, Z. B. 1999. S-Center ed Radicals. Ne w York: Wiley.

Alfassi, Z. B., Marguet, S., and Neta, P. 1994. Formation and reactivity of phenylperoxyl radicals in aqueous solutions. J . Phys. Chem. 98: 8019–8023.

A smus, K. D. and Bonifacic, M. 1999. In Sulfur-Centered Reactive Intermediates as Studied by Radiation Chemical and Complimentary Techniques: S-Centered Radicals, Z. B. Alfassi (ed.), p. 142. New York: Wiley.

Augusto, O., Bonini, M. G., Amanso, A. M., Linares, E., Santos, C. C., and Menezes, S. D. 2002. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radical Biol. Med. 32: 841–859.

Barik, A., Priyadarsini, K. I., and Mohan, H. 2004. Redox reactions of 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) in aqueous solution. Rad. Phys. Chem . 70: 687–696. Damaged target R Repaired target RH Chain-breaking antioxidant Chain-breaking antioxidant radical Water soluble antioxidant Water soluble antioxidant radical Non-radical non-reactive products •

SCHEME 22.17 Redox processes indicating the repair of damaged biomolecules by antioxidants.

Barik, A., Mishra, B., Shen, L., Mohan, H., Kadam, R. M., Dutta, S., Zhang, H. Y., and Priyadarsini, K. I. 2005. Evaluation of a new copper (II)-curcumin complexes as superoxide dismutase mimic and its free radical reactions. F ree Radic. Biol. Med. 39: 811–822. Barnese, K., Gralla, E. B., Cabelli, D. E., and Valentine, J. S. 2008. Manganous phosphate acts as a superoxide dismutase. J . Am. Chem. Soc. 130: 4604–4606.

Bartesaghi, S., Trujillo, M., Denicola, A., Folkes, L., Wardman, P., and Radi, R. 2004. Reactions of desferrioxamine with peroxynitrite-derived carbonate and nitrogen dioxide radicals. Free Radical Biol. Med. 36: 471–481.

Bax endale, J. H. and Busi, F. 1981. The study of fast processes and transient species by electron pulse radiolysis. In Pr oceedings of the NATO Advanced Study Institute, Italy. Boston, MA: D. Reidel Publishing Co.

Bensasson, R. V., Land, E. J., Truscott, T. G. 1983. Flash Photolysis and Pulse Radiolysis, Contributions to the Chemistry of Biology and Medicine. London, U.K.: Per gamon Press.

Bielski, B. H. J., Comstock, D. A., and Bowen, R. A. 1971. Ascorbic acid free radicals I. Pulse radiolysis study of optical absorption and kinetic properties. J . Am. Chem. Soc. 93: 5624–5629.

Bielski, B. H. J., Allen, A. O., and Schwarz, H. A. 1981. Mechanism of disproportionation of ascorbic acid radicals. J . Am. Chem. Soc. 103: 3516–3518.

Bielski, B. H. J., Cabelli, D. E., Arudi, R., and Ross, A. 1985. Reactivity of HO /O 2 2 − radicals in aqueous solutions. J . Phys. Chem. Ref. Data 14: 1041–1100.

Bisby , R. H. 1990. Interaction of vitamin E with free radicals and membrane. Free Radic. Res. Com. 8: 299–306.

Bohm, F., Edge, R., Mc Garvey, D. J., and Truscott, T. G. 1998. β-carotene with vitamin E and C offers synergestic cell protection ag ainst Nox. FEBS Lett . 436: 387–389.

Bors, W. and Michel, C. 1999. Antioxidant capacity of ¡a vanols and gallate esters: Pulse radiolysis studies. Fr ee Radic. Biol. Med. 27: 1413–1426.

B ors, W. and Saran, M. 1987. Radical scavenging by ¡avonoid antioxidants. Free Radic. Res. Commun. 2: 289–294.

Bors, W., Michel, C., and Saran, M. 1994. Flavonoid antioxidants: Rate constants for reactions with oxygen radicals. Methods Enzymol . 234: 420–429.

Bors, W., Michel, C., and Schikora, S. 1995. Interaction of ¡avonoids with ascorbate and determination of their univalent redox potentials: A pulse radiolysis study . F ree Radic. Biol. Med. 19: 45–52.

Bors, W ., Michel, C., and Stettmaier, K. 2001a. Structure-activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol . 335: 166–180.

Bors, W., Foo, L. Y., Hertkorn, N., Michel, C., and Stettmaier, K. 2001b. Chemical studies of proanthocyanidins and h ydrolyzable tannins. Antioxid. Redox Signal . 3: 995–1008.

Bors, W., Kazazic, S. P., Michel, C., Kortenska, V. D., Stettmaier, K., and Klasinc, L. 2002. Methoxyphenolsantioxidant principles in food plants and spices: Pulse radiolysis, EPR spectroscopy and DFT calculations. Int. J . Quant. Chem. 90: 969–979.

Bors, W., Michel, C., Stettmaier, K., Lu, Y., and Yeap Foo, L. 2003. Pulse radiolysis, electron paramagnetic resonance spectroscopy and theoretical calculations of caffeic acid oligomer radicals. Biochim. Biophys. Acta 1620: 97–107.

Buettner , G. R. 1993. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol and ascorbate. Ar ch. Biochem. Biophys. 300: 535–543.

Butler , J., Land, E. J., Swallow, A. J., and Prutz, W. 1984. The azide radicals and its reaction with tryptophan and tyrosine, Rad. Phys. Chem . 23: 265–270.

Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. 1988. Critical revie w of rate constants for reactions of hydrated electron, hydrogen atom and hydroxyl radicals in aqueous solutions. J. Phys. Chem. Ref. Data 17: 513–886.

Cadenas, E. and Davies, K. J. A. 2000. Mitochondrial free radical generation, oxidativ e stress and ageing. Fr ee Radic. Biol. Med. 29: 222–230.

Cadenas, E., Merenyi, G., and Lind, J. 1989. Pulse radiolysis study of the reactivity of Trolox C phenoxyl radical with superoxide anion. FEBS Lett . 253: 235–238.

C ai, Z. , Li , X. , an d Ka tsumura, Y. 19 99. In teraction of hy drated el ectron wi th di etary ¡a vonoids an d ph enolic acids: Rate constants and transient spectra studied by pulse radiolysis. Free Radic. Biol. Med. 27: 822–829.

Cao, H., Pan, X., Li, C., Zhou, C., Deng, F., and Li, T. 2003. Density functional theory calculations for resveratrol. Bioor g. Med. Chem. Lett. 13: 1869–1871.

Chauv et, J. P., Vlovy, R., Land, E. J., Santus, R., and Truscott, T. G. 1983. One-elelctron oxidation of carotene and electron transfers in volving carotene cations in micelles. J . Phys. Chem. 87: 592–601.

Cren-Oli ve, C., Hapiot, P., Pinson, J., and Rolando, C. 2002. Free radical chemistry of Flavan-3-ols: Determination of thermodynamic parameters and of kinetic reactivity from short (ns) to long (ms) time scale. J . Am. Chem. Soc. 124: 14027–14038.

Davies, M. J., Forni, L. G., and Wilson, R. L. 1988. Vitamin E analogue Trolox c. ESR and pulse radiolysis studies of free radical reactions. Bioc hem. J. 255: 513–522.

Edge, R., Land, E. J., McGarvey, J., Burke, M., and Truscott, T. G. 2000. The reduction potentials of β-carotene+/ β-carotene couple in an aqueous micro-heterogeneous en vironment. FEBS Lett . 471: 125–127.

Etche verry, S. B., Ferrer, E. G., Naso, L., Rivadeneira, J., Salinas, V., and Williams, P. A. M. 2008. Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J. Biol. Inorg. Chem. 13: 435–447.

Ev erett, S. A., Dennis, M. F., and Patel, K. B. 1996. Scavenging of nitrogen dioxide, thiyl and sulfonyl radicals by nutritional antioxidant β -carotene. J . Biol. Chem. 271: 3983–3994.

F ang, Y., Yang, S., and Wu, G. 2002. Free radicals, antioxidants and nutrition. Nutrition 18: 872–879.

F ilipe, P., Morliere, P., Patterson, L. K., Hug, G. L., Maziere, J. C., Maziere, C., Freitas, J. P., Fernandes, A., and Santus, R. 2002. Repair of amino acid radicals of apolipoprotein B100 of low-density lipoproteins by flavonoids. A pulse radiolysis study with quercetin and rutin. Biochemistry 41: 11 057–11064.

Filipe, P., Morliere, P., Patterson, L. K., Hug, G. L., Maziere, J. C., Freitas, J. P., Fernandes, A., and Santus, R. 2004. Oxygen-copper (II) interplay in the repair of semi-oxidized urate by quercetin bound to human serum alb umin. F ree Radic. Res. 38: 295–301.

Fink el, T. and Holbrook, N. J. 2000. Oxidants, oxidati ve stress and biology of ageing. Natur e 408: 239–247.

Fu, H., Katsumura, Y., Lin, M., and Muroya, Y. 2008. Laser photolysis and pulse radiolysis studies on silybin. Radiat. Phys. Chem. 77: 1300–1305.

Fukuto, J. M. and Ignarro, L. J. 1997. In viv o aspects of nitric oxide chemistry: Does peroxynitrite play a major role in c ytotoxicity. Acc. Chem. Res . 30: 149–152.

Furtmuller , P. G., Arnhold, J., Jantschko, W., Zederbauer, M., Jakopitsch, C., and Obinger, C. 2005. Standard reduction potentials of all couples of the peroxidase c ycle. J . Inorg. Chem. 99: 1220–1229.

Getof f, N. O. 2000. Pulse radiolyisis studies of β-carotene in oxygenated DMSO solution. Radiat. Res . 154: 692–696.

Goldman, A. 1995. Melatonin, a re view. Brit. J . Clin. Pharmacol. 19: 258–260.

Goldstein, S. and Czapski, G. 1995. The reaction of NO with O 2 − and HO 2 : A pulse radiolysis study. Free Radic. Biol. Med. 19: 505–510.

Goldstein, S. and Merenyi, G. 2008. The chemistry of peroxynitrite: Implications for biological activity. Methods Enzymol. 436: 49–61.

Goldstein, S., Squadrito, G. L., Pryor, W. A., and Czapski, G. 1996. Direct and indirect oxidation by peroxynitrite neither in volving the h ydroxyl radicals. F ree Radic. Biol. Med. 21: 965–974.

Goldstein, S., Samuni, A., and Russo, A. 2003a. Reaction of cyclic nitroxides with nitrogen dioxide: The intermediacy of oxoammonium cations. J . Am. Chem. Soc. 125: 8364–8370.

Goldstein, S., Merenyi, G., Russo, A., and Samuni, A. 2003b. The role of oxoammonium cation in the Sodmimic acti vity of c yclic nitroxides. J . Am. Chem. Soc. 125: 789–795.

Goldstein, S., Samuni, A., and Merenyi, G. 2004. Reaction of NO, peroxynitrite and carbonate radicals with nitroxide and their oxonium cations. Chem. Res. Toxicol. 17: 250–257.

Goldstein, S., Czapski, G., and Heller, A. 2005. Osmium tetroxide, used in the treatment of arthritic joints, is a fast mimic of superoxide dismutase. F ree Radic. Biol. Med. 38: 839–845.

Goldstein, S., Samuni, A., Hideg, K., and Merenyi, G. 2006. Structure-activity relationship of cyclic nitroxides as SOD mimics and scavengers of nitrogendioxide and carbonate radicals. J. Phys. Chem. A 110: 3679–3685.

Gorman, A. A., Hamblett, V. S., Srinivasan, V. S., and Wood, P. D. 1994. Curcumin derived transients: A pulsed laser and pulse radiolysis study . Photoc hem. Photobiol. 59: 389–398.

Guha, S. N. and Priyadarsini, K. I. 2000. Kinetic and redox characteristics of phenoxyl radicals of eugenol and isoeugenol: A pulse radiolysis study . Int. J . Chem. Kinetics 32: 17–23.

Halliwell, B. 1990. Ho w to characterize a biological antioxidant? F ree Radic. Res. Commun. 9: 1–32.

Halliwell, B. and Gutteridge, J. M. C. 1993. Free Radicals in Biology and Medicine. Oxford, U.K.: Clarendon Press.

Heinonen, O. P. and Albanes, D. 1994. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smok ers. Ne w Eng. J. Med. 330: 1029–1035.

Hill, T. J., Land, E. J., McGarve y, D. J., Schalch, W., Tinkler , J. H., and Truscott, T. G. 1995. Interactions between carotenoids and the CCl 3 O 2 ·radical. J. Am. Chem. Soc. 117: 8322–8326.

Hirano, T., Hirobe, M., Kobayashi, K., Odani, A., Yamauchi, O., Ohsawa, M., Satow, Y., and Nagano, T. 2000. Mechanism of superoxide dismutase-like activity of Fe(II) and Fe(III) complexes of tetrakisN,N,N’,N’(2-pyridylmethyl)ethylenediamine. Chem. Pharm. Bull . 48: 223–230. Jacob, C., Giles, G. I., Giles, N. M., and Sies, H. 2003. Sulfur and selenium: The role of oxidation state in protein structure and function. Ang ew. Chem. Int. Ed. 42: 4742–4758.

J onsson, M. 1996. Thermochemical properties of peroxides and peroxyl radicals. J. Phys. Chem. 100: 6814–6818.

Jore, D., Ferradini, C., and Patterson, L. K. 1986. Gamma and pulse radiolytic study of the antioxidant activity of vitamin E. Radiat. Phys. Chem . 28: 557–558.

Joshi, R., Adhikari, S., Patro, B. S., Chattopadhyay, S., and Mukherjee, T. 2001. Free radical scavenging behaviour of folic acid: Evidence for possible antioxidant acti vity. F ree Radic. Biol. Med. 30: 1390–1399.

Joshi, R., Kumar, M. S., Satyamoorthy, K., Unnikrisnan, M. K., and Mukherjee, T. 2005a. Free radical reactions and antioxidant activities of sesamol: Pulse radiolytic and biochemical studies. J. Agric. Food Chem. 53: 2696–2703.

Joshi, R., Kumar, S., Unnikrishnan, M. K., and Mukherjee, T. 2005b. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: Mechanistic aspects and antioxidant activity. Free Radic. Res. 39: 1163–1172.

Jo vanovic, S. V., Steenken, S., Tosic, M., Morjanovic, B., and Simic, M. G. 1994. Flav onoids as antioxidants. J. Am. Chem. Soc. 116: 4846–4851.

Jo vanovic, S. V., Hara, Y., Steenken, S., and Simic, M. G. 1995. Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study . J . Am. Chem. Soc. 117: 9881–9888.

Jo vanovic, S. V., Steenken, S., Hara, Y., and Simic, M. G. 1996. Reduction potentials of ¡a vonoid and model phenoxyl radicals. Which ring in ¡a vonoids is responsible for antioxidant activity? J. Chem Soc. Perkin Trans. 2 (11): 2497–2504.

Jo vanovic, S. V., Boone, C. W., Steenken, S., Trinog a, M., and Kaske y, R. B. 2001. How curcumin works preferentially with w ater soluble antioxidants. J . Am. Chem. Soc. 123: 3064–3068.

Kapoor , S. and Priyadarsini, K. I. 2001. Protection of radiation-induced protein damage by curcumin. Biophys. Chem. 92: 119–126.

Kapoor , S., Mukherjee, T., Kagiya, T. V., and Nair, C. K. K. 2002. Redox reactions of tocopherol monoglucoside in aqueous solutions: A pulse radiolysis study . J . Radiat. Res. 43: 99–106.

Khopde, S. M., Priyadarsini, K. I., Mukherjee, T., Kulkarni, P. B., Satav , J. G., and Bhattacharya, R. K. 1998. Does β -carotene protect membrane lipids from peroxidation? F ree Radic. Biol. Med. 25: 66–71.

Khopde, S. M., Priyadarsini, K. I., Venkatesan, P., and Rao, M. N. A. 1999. Free radical scav enging ability and antioxidant ef �ciency of curcumin and its substituted analogue. Biophys. Chem . 80: 85–91.

Klug, D., Rabani, J., and Fridovich, I. 1973. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J . Biol. Chem. 247: 2645–2649.

K obayashi, K., Harada, Y., and Hayashi, K. 1991. Kinetic behavior of the monodehydroascorbate radical studied by pulse radiolysis. Bioc hemistry 30: 8310–8315.

K ohen, R. and Nyska, A. 2002. Oxidation of biological systems: Oxidativ e stress phenomena, antioxidants, redox reactions and methods of quanti�cation. T oxicol. Pathol. 30: 620–650.

K ono, Y., Kobayashi, K., Tagawa, S., Adachi, K., Ueda, A., Sawa, Y., and Shibata,, H. 1997. Antioxidant activity of polyphenolics in diets. Rate constants of reactions of chlorogenic acid and caffeic acid with reactiv e species of oxygen and nitrogen. Bioc him. Biophys. Acta 1335: 335–342.

K oppenol, W. H. 1994. Thermodynamic consideration on the formation of reactive species from hypochloride. FEBS Lett. 347: 5–8.

K oppenol, W. H. 1998. The basic chemistry of nitrogen monoxide and peroxynitrite. Free Radic. Biol. Med. 25: 385–391.

K unwar, A., Mishra, B., Barik, A., Kumbhare, L. B., Jain, V. K., and Priyadarsini, K. I. 2007. 3,3’-Diselenodipropionic acid, an ef�cient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH induced hemolysis. Chem. Res. Toxicol. 20: 1482–1487.

Li, F. and Fang, X. 1998. Pulse radiolysis of epicatechin in aqueous solution. Radiat. Phys. Chem. 52: 405–408.

Li, Y.-M., Han, Z.-H., Jiang, S.-H., Jiang, Y., Yao, S.-D., and Zhu, D.-Y. 2000. Fast repairing of oxidized OH radical adducts of dAMP and dGMP by phenylpropanoid glycosides from Scrophalaria ningpoensis Hemsl. Acta Pharmacolo gica Sinica 21: 1125–1128.

Lin, W., Navaratnam, S., Yao, S., and Lin, N. 1998. Antixoidant principles of hydroxycinnamic acid derivatives and a phen yl propanoid glucoside. A pulse radiolysis study . Rad. Phys. Chem . 53: 425–430.

Lu, C. and Liu, Y. 2002. Interactions of lipoic acid radical cations with vitamins C and E analogue and hydroxycinnamic acid deri vatives. Ar ch. Biochem. Biophys. 406: 78–84.

Mahal, H. S. and Mukherjee, T. 2006. Scavenging of reactive oxygen radicals by resveratrol: Antioxidant effect. Res. Chem. Intermed . 32: 59–71.

Mahal, H. S., Sharma, H. S., and Mukherjee, T. 1999. Antioxidant properties of melatonin. Fr ee Radic. Biol. Med. 26: 557–565.

Marfak, A., Trouillas, P., Allais, D. P., Calliste, C. A., Cook-Moreau, J., and Duroux, J. L. 2004. Reactivity of ¡avonoids with 1-h ydroxyethyl radical: A γ -radiolysis study Bioc him. Biophys. Acta 1670: 28–39.

Maroz, A., Kelso, G. F., Smith, R. A. J., Ware, D. C., and Anderson, R. F. 2008. Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II)-pentaazamacrocycle compounds as superoxide dismutase mimetics. J . Phys. Chem. A., 112: 4929–4935.

Mats, J. M., Segura, J. A., Alonso, F. J., and Marquez, J. 2008. Intracellular redox status and oxidative stress: Implications for cell proliferation, apoptosis, and carcinogenesis. Ar ch. Toxicol. 82: 273–299.

Mercero, J. M., Matxain, J. M., Lopez, X., Fowler, J. E., and Ugalde, J. M. 2002. Methoxyphenols-antioxidant principles in food plants and spices: Pulse radiolysis, EPR spectroscopy, and density functional theory calculations. Int. J . Quantum Chem. 90: 969–979.

Miao, J. L., Wang, W. F., Pan, J. X., Li, C. Y., Lu, R. Q., and Yao, S. D. 2001a. The scavenging reactions of nitrogen dioxide radical and carbonate radical by tea polyphenol derivatives: A pulse radiolysis study. Rad. Phys. Chem. 60: 163–168.

Miao, J. L., Wang, W., Pan, J., Han, Z., and Yao, S. 2001b. Pulse radiolysis study on the mechanisms of reactions of CCl3OO2 radical with quercetin, rutin and epigallocatechin gallate. Sci. China Ser. B: Chem. 44: 353–359.

Mishra, B., Priyadarsini, K. I., Sudheer Kumar , M., Unnikrishnan, M. K., and Mohan, H. 2003. Effect of o-glycosilation on the antioxidant activity and free radical reactions of a plant ¡a vonoid chrysoeriol. Bioorg . Med. Chem. 11: 2677–2685.

M ishra, B. , Pr iyadarsini, K. I. , Bh ide, M. K. , Ka dam, R. , an d Mo han, H. 20 04. Re actions of su peroxide ra dicals wi th cu rcumin: Pr obable me chanisms by op tical sp ectroscopy an d EP R. Fr ee Radic. Res. 38 : 35 5–362.

Mishra, B., Priyadarsini, K. I., Sudheerkumar, M., Unnikrishhnan, M. K., and Mohan, H. 2006a. Pulse radiolysis studies of mangiferin: A C-glycosyl xanthone isolated from Mangifera indica. Rad. Phys. Chem. 75: 70–77.

Mishra, B., Priyadarsini, K. I., and Harimohan. 2006b. Effect of pH on one-electron oxidation chemistry of org anoselenium compounds in aqueous solutions. J . Phys. Chem. 110: 1894–1900.

Mishra, B., Sharma, A., Naumov , S., and Priyadarsini, K. I. 2009. Nov el reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine. J . Phys. Chem. B 113: 7709–7715.

Molina-Heredia, F. P., Houee-Levin, C., Berthomieu, C., Touati, D., Treme y, E., Fa vaudon, V. Adam, V., and Niviere, V. 2006. Detoxi�cation of superoxide without production of H2O2: Antioxidant activity of superoxide reductase comple xed with ferroc yanide. Pr oc. Natl. Acad. Sci. USA 103: 14750–14755.

Moorth y, P. N. and Hayon, E. 1976. One-electron redox reactions of water -soluble vitamins. II. Pterin and folic acid. J . Org. Chem. 41: 1607–1613.

Mortensen, A., Skibsted, L. H., Sampson, J., Rce-Evans, C., and Everett, S. A. 1997. Comparativ e mechanism and rates of free radical sca venging by carotenoid antioixdants. FEBS Lett . 418: 91–97.

Mvula, E., Scuchmann, M. N., and von Sonntag, C. 2001. Reactions of phenol-OH adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J. Chem. Soc. Perkin Trans. 2: 264–268.

Neta, P. and Huie, R. E. 1988. Rate constants for reactions of inorg anic radicals in aqueous solutions. J. Phys. Chem. Ref. Data 17: 1027–1284.

N eta, P. , Hu ie, R. E. , an d Ro ss, A. 19 90. Ra te co nstants fo r re actions of pe roxyl ra dicals in ¡u id so lutions. J. Phys. Chem. Ref. Data 19: 413–513.

Ni viere, V., Asso, M., Weill, C. O., Lombard, M., Guigliarelli, B., Favaudon, V., and Houee-Levin, C. 2004. Superoxide reductase from Desulfoarculus baarsii: Identi�cation of protonation steps in the enzymatic mechanism. Bioc hemistry 43: 808–818.

O’Neill, P. and Chapman, P. W. 1985. Potential repair of free radical adducts of dGMP and dG by a series of reductants pulse radiolytic study . Int. J . Radiat. Biol. 47: 71–80.

O’Neill, P. and Wardman, P. 2009. Radiation chemistry comes before radiation biology. Int. J. Radiat. Biol. 85: 9–25.

P acker, J. E., Slater, T. F., and Wilson, R. L. 1979. Direct observation of a free radical interaction between vitamin E and vitamin C. Natur e 278: 737–738.

P app, L. V., Lu, J., Holmgren, A., and Khanna, K. K. 2007. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal . 9: 775–793.

P atro, B. S., Adhikari, S., Mukherjee, T., and Chattopadhyay , S. 2005. Possible role of hydroxyl radicals in the oxidative de gradation of folic acid. Bioor g. Med. Chem. Lett. 15: 67–71.

Priyadarsini, K. I. 1997. Free radical reactions of curcumin in membrane models. Fr ee Radic. Biol. Med. 23: 838–843.

Priyadarsini, K. I. 2000. Characteristic chemical reactions of nitric oxide. Proc. Natl. Acad. Sci. India 70: 339–352.

Priyadarsini, K. I., Guha, S. N., and Rao, M. N. A. 1998. Physico-chemical properties and anti-oxidant activity of methoxy phenols. F ree Radic. Biol. Med. 24: 933.

Priyadarsini K. I., Khopde S. M., Kumar S. S., and Mohan H. 2002. Free radical studies of ellagic acid, a natural phenolic antioxidant. J . Agric. Food Chem. 50: 2200–2206.

Priyadarsini, K. I., Maity, D. K., Naik, G. H., Sudheer Kumar, M., Unnikrishnan, M. K., Satav, J. G., and Mohan, H. 2003. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant acti vity of curcumin. F ree Radic. Biol. Med. 35: 475–484.

Pryor , W. A. 1989. Vitamin E: The status of current research suggestions for future studies. Ann. N. Y. Acad. Sci. 570: 400–405.

Pryor , W. A., Stahl, W., and Rock, C. L. 2000. Beta-carotene from biochemistry to clinical trials. Nutr. Rev. 58: 53–59.

Richter , H. W. 1998. Radiation chemistry: Principles and applications. In Photochemistry and Radiation Chemistry, J. F. Wishart and D. G. Nocera (eds.), pp. 5–33. Washington, DC: American Chemical Society.

R oberts, J. E. , Hu , D. , an d Wi shart, J. F. 19 88. Pu lse ra diolysis st udies of me latonin an d ch loromelatonin. J. Photochem. Photobiol. B: Biol. 42 : P1 25–P132.

Samuni, A., Goldstein, S., Russo, A., Mitchell, J. B., Krishna, M. C., and Neta, P. 2002. Kinetics and Mechanism of OH-radical and OH-adduct radical reactions of nitroxides with their hydroxyl amines. J. Am. Chem. Soc. 124: 8719–8724.

Santus, R., Patterson, L. K., Filipe, P., Morlire, P., Hug, G. L., Fernandes, A., and Mazire, J. C. 2001. Redox reactions of the urate radical/urate couple with the superoxide radical anion, the tryptophan neutral radical and selected ¡ avonoids in neutral aqueous solutions F ree Radic. Res. 35: 129–136.

Schafer , F. Q. and Buettner, G. R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disul�de/glutathione couple. F ree Radic. Biol. Med. 30: 1191–1212.

Schoneich, C. 2003. Methionine oxidation by reactiv e oxygen species: Reaction mechanisms and relev ance to Alzheimer’s disease. Bioc him. Biophys. Acta 1703: 111–119.

Schuler , R. H. 1977. Oxidation of ascorbate anion by electron transfer to phenoxyl radicals. Radiat. Res . 69: 417–433.

Shi, H. and Noguchi, N. 2000. Introducing natural antioxidants. In Antioxidants in Food, J. Pokorn y, N. Yanishlie va, and M. Gordon (eds.), pp. 147–158. Washington, DC: CRC Press.

Shishodia, S., Sethi, G., and Aggarw al, B. B. 2005. Curcumin: Getting back to the roots. Ann. N. Y. Acad. Sci. 1056: 206–217.

Sies, H. 1997. Oxidati ve stress: Oxidants and antioxidants. Exp. Physiol . 82: 291–295.

Singh, U., Barik, A., and Priyadarsini, K. I. 2009. Reactions of hydroxyl radical with bergenin, a natural poly phenol studied by pulse radiolysis. Bioor g. Med. Chem. 17: 6008–6014.

Solar , S., Solar, W., and Getoff, N. 1984. Reactivity of OH with tyrosine in aqueous solution studied by pulse radiolysis. J . Phys. Chem. 88: 2091–2095.

Sonntag, C. V. 1987. The Chemical Basis of Radiation Biolo gy. London, U.K.: Taylor & Francis.

Stasica, P., Ulanski, P., and Rosiak, J. M. 1998. Reactions of melatonin with radicals in deoxygenated aqueous solutions. J . Radioanal. Nucl. Chem. 232: 107–113.

Stojano vic, S. and Brede, O. 2002. Elementary reactions of the antioxidant action of trans-stilbene derivatives: Resveratrol, pinosylvin and 4-h ydroxystilbene. Phys. Chem. Chem. Phys . 4: 757–764.

Stojano vic, S., Sprinz, H., and Brede, O. 2001. Ef�cienc y and mechanism of the antioxidant action of transresveratrol and its analogues in the radical liposome oxidation. Ar ch. Biochem. Biophys. 391: 79–89.

T ak, J. K. and Park, J. W. 2009. The use of ebselen for radioprotection in cultured cells and mice. Free Radic. Biol. Med. 46: 1177–1185.

T amba, M. and Torreggiani, A. 2004. Radiation induced effects in the electron beam irradiation of dietary ¡avonoids. Radiat. Phys. Chem . 71: 21–25.

T amba, M., Torregiani, A., and Tubertini, O. 1995. Thiyl and thiyl-peroxyl radicals produced from the irradiation of antioxidant thiol compounds. Radiat. Phys. Chem . 46: 569–574.

T orreggiani, A., Trinchero, A., Tamba, M., and Taddei, P. 2005. Raman and pulse radiolysis studies of the antioxidant properties of quercetin: Cu(II) chelation and oxidizing radical scavenging. J. Raman Spectrosc. 36: 380–388.

V ajragupta, O., Boonchoong, P., Sumanont, Y., Watanabe, H., Wongkrajang, Y., and Kammasud, N. 2003. Manganese-based complex es of radical scav engers as neuroprotectiv e agents. Bioorg . Med. Chem. 11: 2329–2337.

Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., and Mazur, M. 2006. Free radicals, metals and antioxidants in oxidati ve stress induced cancer . Chem.-Biol. Inter act. 160: 1–40.

V anAcker, S. A. B. E., Koymans, L. M. H., and Bast, A. 1993. Molecular pharmacology of vitamin E, structural aspects of antioxidant acti vity. F ree Radic. Biol. Med., 15: 311–328.

W ardman, P. 1989. Reduction potentials of one-electron couples involving free radicals in aqueous solutions. J. Phys. Chem. Ref. Data 18: 1637–1755.

W eiss, J. F. and Landauer, M. R. 2003. Protection against radiation by antioxidant nutrients and phytochemicals. T oxicology 189: 1–20.

W interbourn, C. C. 2008. Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol. 4: 278–286.

Y en, G. C., Duh, P. D., and Tsai, H. L. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. F ood Chem. 79: 307–313.

Zhang, R., Goldstein, S., and Samuni, A. 1999. Kinetics of superoxide induced exchange and nitroxide antioxidant and their oxidized and reduced forms. F ree Radic. Biol. Med. 26: 1245–1252.

Zhao, C., Shi, Y., Wang, W., Lin, W., Fan, B., Jia, Z., Yao, S., and Zheng, R. 2001. Fast repair of the radical cations of dCMP and poly C by quercetin and rutin. Muta genesis 16: 271–275.

Z hao, C. , Sh i, Y. , Wa ng, W. , Li n, W. , Fa n, B. , Ji a, Z. , Ya o, S. , an d Zh eng, R. 20 02. Fa st re pair ac tivities of qu ercetin an d ru tin to ward dG MP hy droxyl ra dical ad ducts. Ra diat. Phys. Chem. 63 : 13 7–142.

Zhao, C., Shi, Y., Wang, W., Jia, Z., Yao, S., Fan, B., and Zheng, R. 2003. Fast repair of deoxythymidine radical anions by tw o polyphenols: Rutin and quercetin. Bioc hem. Pharmacol. 65: 1967–1971.

Zielonka, J., Gebicki, J., and Grynkiewicz, G. 2003. Radical scav enging properties of genistein. Fr ee Radic. Biol. Med. 35: 958–965. 23 Chapter 23. Computational Human Phantoms and Their Applications to Radiation Dosimetry

Cristy, M. 1976. Mathematical phantoms representing children of various ages. ORNL/NUREG/TM-5336, Oak Ridge National Laboratory , Oak Ridge, TN.

Dogdas, B., David, S., Chatziioannou, A. F., and Leahy, R. M. 2007. Digimouse: A 3D whole body mouse atlas from CT and cryosection data. Phys . Med . Biol . 52: 577–587.

Ferrari, A., Pelliccioni, M., and Pillon, M. 1997. Fluence to effective dose and effective dose equivalent conversion coef �cients for electrons from 5 MeV to 10 GeV. Radiat . Pr ot. Dosimetry 69: 97–104.

Funabiki, J., Terabe, M., Zankl, M., Koga, S., and Saito, K. 2000. An user code with voxel geometry and a voxel phantom generation system. In KEK Pr oceedings 2000-20, Tsukuba, Japan, pp. 56–63.

Funabiki, J., Saitoh, H., Sato, O., Takagi, S., and Saito, K. 2001. An EGS4 Monte Carlo user code for radiation therapy planning. In KEK Pr oceedings 2001-22, Tsukuba, Japan, pp. 80–86.

ICRP (International Commission on Radiological Protection). 1975. Report of the Task Group on Reference Man. Publication 23.

ICRP (International Commission on Radiological Protection). 1977. The 1977 Recommendation of the International Commission on Radiological Protection, Publication 26.

ICRP (International Commission on Radiological Protection). 1991. The 1990 Recommendation of the International Commission on Radiological Protection, Publication 60.

ICRP (International Commission on Radiological Protection). 1996. Conversion coef�cients for use in radiological protection ag ainst e xternal radiation. Publication 74.

ICRP (International Commission on Radiological Protection). 2003. Basic anatomical and physiological data for use in radiological protection: Reference v alues, Publication 89.

ICRP (International Commission on Radiological Protection). 2007. The 2007 Recommendation of the International Commission on Radiological Protection, Publication 103.

ICRP (International Commission of Radiological Protection). 2009. Adult reference computational phantoms. Publication 110.

ICRU (International Commission on Radiation Units and Measurements). 1976. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. ICRU Report 24, ICRU, Bethesda, MD.

ICR U (International Commission on Radiation Units and Measurements). 1992. Phantoms and computational models in therap y, diagnosis and protection, ICR U Report 48. ICR U, Bethesda, MD.

Johnson, W. and Robertson, D. 2008. Whole Frog Project. http://froggy .lbl.gov/

Kai, M. 1985. Estimation of embryonic and fetal doses from accidentally released radioactive plumes. Radiat. Prot. Dosimetry 2: 91–94.

K err, G. D., Hwang, J. M. L., and Jones, R. M. 1976. A mathematical model of a phantom developed for use in calculation of radiation dose to the body and major internal organs of a Japanese adult. ORNL/TM-5536, Oak Ridge National Laboratory , Oak Ridge, TN.

Kinase, S. 20 08. Vo xel-based fr og ph antom fo r in ternal do se ev aluation. J. Nu cl. Sc i. Te chnol. 45 : 10 49–1052.

Kinase, S. and Saito, K. 2007. Evaluation of self-dose S values for positron emitters in vox el phantoms. Radiat. Prot . Dosim etry 127: 197–200.

Kinase, S., Zankl, M., Kuw abara, J., Sato, K., Noguchi, H., Funabiki, J., and Saito, K. 2003. Evaluation of speci�c absorbed fraction in vox el phantoms using Monte Carlo simulation. Radiat. Prot . Dosimetry 105: 557–563.

Kinase, S., Zankl, M., Funabiki, J., Noguchi, H., and Saito, K. 2004. Evaluation of S values for beta-ray emitters within the urinary bladder . J . Nucl . Sci . T echnol. Suppl. 4: 136–139.

Kinase, S., Takagi, S., Noguchi, H., and Saito, K. 2007. Application of vox el phantoms and Monte Carlo method to whole-body counter calibration. Radiat . Pr ot. Dosimetry 125: 189–193.

Kinase, S., Takahashi, M., and Saito, K. 2008. Evaluation of self-absorbed doses for the kidneys of a voxel mouse. J . Nucl . Sci . T echnol. (Suppl. 5): 268–270.

Kinase, S., Matsuhashi, S., and Saito, K. 2009. Interspecies scaling of self-org an doses from a vox el mouse to vox el humans. Nucl . T echnol. 168: 1–4.

K obayashi, K. 2004. Photon-induced biological consequences. In Charg ed Particles Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano, (eds.), pp. 471–489. Ne w York: Marcel Dekk er.

Kramer, R. 2005. Effecti ve dose ratios for tomographic and stylized models from external exposure to electrons. In Proceedings of the Monte Carlo Method: Ver satility Unbounded in A Dynamic Computing World Chattanooga, Chattanooga, TN, April 17–21, 2005, on CD-ROM, LaGrange Park, IL: American Nuclear Society .

Kramer, R., Zankl, M., Williams, G., and Drexler , G. 1986. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo Methods. Part I: The male (Adam) and female (Eva) adult mathematical phantoms. GSF-Bericht S-885, GSF—National Research Center for Environment and Health, Neuherber g, German y.

Lee, C., Lee, C., Park, S. H., and Lee, J. K. 2006. Dev elopment of the two Korean tomographic computational phantoms for or gan dosimetry . Med . Phys . 33: 380–390.

Lemosquet, A., De Carlton, L., and Clairand, I. 2003. Vox el anthropomorphic phantoms: Revie w of models used for ionizing radiation dosimetry . Radiopr otection 38: 509–528.

Nelson, W. R., Hirayama, H., and Rogers, D. W. O. 1985. The EGS4 code system. SLAC Report SLAC-265, Stanford Linear Accelerator Center , Stanford Uni versity, Stanford, CA.

N ikjoo, H. and Uehara, S. 2004. Track structure studies of biological systems. In Charged Particles Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.), pp. 491–531. New York: Marcel Dekker.

Ohnishi, S., Odano, N., Nariyama, N., and Saito, K. 2004. Analysis of localised dose distribution in human body by Monte Carlo code system for photon irradiation. Radiat . Pr ot. Dosimetry 111: 65–71.

Pentreath, R. J. 2005. Concept and use of reference animals and plants. In Proceedings of the Protection of the Environment from the Effects of Ionizing Radiation, Stockholm, Sweden, IAEA-CN-109. Vienna, Austria: IAEA, pp. 411–420.

Petoussi, N., Zankl, M., Jacob, P., and Saito, K. 1991. Organ doses for foetuses, babies, children and adults from en vironmental g amma rays. Radiat . Pr ot. Dosim etry 37: 31–41.

Petoussi-Henss, N., Zankle, M., Fill, U., and Regulla, D. 2002. The GSF family of voxel phantoms. Phys. Med. Biol. 47: 89–106.

Pimblott, S. M. and Mozumder, A. 2004. Modeling of physicochemical and chemical processes in the interactions of fast charged particles with matter. In Charged Particles Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.), pp. 75–120. Ne w York: Marcel Dekk er.

Saito, K., Petoussi-Henss, N., Zankl, M., Veit, R., Jacob, P., and Drexler, G. 1990. Calculation of organ doses from environmental gamma rays using human phantoms and Monte Carlo methods. Part I: Monoenergetic sources and natural radionuclides in the ground. GSF-Bericht 2/90, GSF—National Research Center for Environment and Health, Neuherber g, German y.

Saito, K., Petoussi-Henss, N., Zankl, M., Veit, R., Jacob, P., and Drexler, G. 1991. Organ doses as a function of body weight for en vironmental g amma rays. J . Nucl . Sci . T echnol. 28: 627–641.

Saito, K., Petoussi-Henss, N., and Zankl, M. 1998. Calculation of the effective dose and its variation from environmental g amma ray sources. Health Phys . 74: 698–706.

Saito, K., Wittmann, A., Koga, S., Ida, Y., Kamei, T., Funabiki, J., and Zankl, M. 2001. Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiat. Envir on. Biophys. 40: 69–76.

S aito, K. , Ku nieda, E. , Na rita, Y. , De loar, H. M. , Ki mura, H. , Hi rai, M. , Fu jisaki, T. , My ojoyama, A. , an d Sa itoh, H. 20 04. De velopment of th e ac curate do se ca lculation sy stem IM AGINE fo r re motely ai ding ra diotherapy. In KE K Proceedings 2003-15, Ts ukuba, Ja pan, pp . 81–87.

Saito, K., Kunieda, E., Narita, Y., Kimura, H., Hirai, M., Deloar, H. M., Kaneko, K.,Ozaki, M., Fujisaki, T., Myojoyama, A., and Saitoh, H. 2006. Dose calculation system for remotely supporting radiotherapy . Radiat. Pr ot. Dosimetry 116: 190–195.

Saito, K., Kog a, S., Ida, Y., Kamei, T., and Funabiki, J. 2008. Construction of a vox el phantom based on CT data for a Japanese female adult and its use for calculation of organ doses from external electrons. Jpn. J. Health Phys . 43: 122–130.

Saito, K., Sato, K., Endo, A., and Kinase, S. 2009. Recent progress on Japanese vox el phantoms and related techniques at J AEA. Nucl . T echnol. 168: 213–219.

Sato, K. and Endo, A. 2008, Analysis of effects of posture on org an doses by internal photon emitters using vox el phantoms. Phys . Med . Biol . 53: 4555–4572.

S ato, K. No guchi, H. , Em oto, Y. , Ko ga, S. , an d Sa ito, K. 20 05. De velopment of a Ja panese ad ult fe male vo xel ph antom. In 20 05 Annual meeting of Atomic Energy Society of Japan, Hi ratsuka, Ja pan, Ma rch 29 –31, 20 05.

Sato, K., Noguchi, H., Emoto, Y., Kog a, S., and Saito, K. 2007a. Japanese adult male vox el phantom constructed on the basis of CT images. Radiat . Pr ot. Dosimetry 123: 337–344.

Sato, K., Noguchi, H., Endo, A., Emoto, Y., Koga, S., and Saito, K. 2007b. Development of a voxel phantom of Japanese adult male in upright posture. Radiat . Pr ot. Dosimetry 127: 205–208.

Sato, K., Endo, A., and Saito, K. 2008. Dose conv ersion coef�cients calculated using a series of adult Japanese voxel phantoms against external photon exposure. JAEA-Data/Code 2008-016, Japan Atomic Energy Agency , Japan.

Sato, K., Noguchi, H., Emoto, Y., Kog a, S., and Saito, K. 2009. Dev elopment of a Japanese adult female vox el phantom. J . Nucl . Sci . T echnol. 46: 907–913.

Schlattl, H., Zankl, M., and Petoussi-Henss, N. 2007. Org an dose conv ersion coef�cients for vox el models of the reference male and female from idealized photon e xposures. Phys . Med . Biol . 52: 2123–2145.

Sn yder, W. S., Fisher, H. L., Ford, M. R., and Warner, G. G. 1969. Estimate of absorbed fractions for monoener getic photon sources uniformly distributed in various org ans of a heterogeneous phantom, MIRD Pamphlet No. 5. J Nucl . Med . 10 (Suppl. 3): 7.

Ste wart, R. D., Tanner, J. E., and Leonowich, J. A. 1993. An extended tabulation of effective dose equivalent from neutrons incident on a male and anthropomorphic phantom. Health Phys . 65: 405–413.

T akahashi, F., Yamaguchi, Y., Iwasaki, M., Miyazawa, C., Hamada, T., and Saito, K. 2002. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry. J. Nucl. Sci. Technol. 39: 964–971.

Takahashi, F., Yamaguchi, Y., Iwasaki, M., Miyazawa, C., Hamada, T., Funabiki, J., and Saito, K. 2003. Analyses of absorbed dose to tooth enamel against external photon exposure, Radiat. Prot. Dosimetry 103: 125–130.

T anaka, G. and Kawamura, H. 1996. Anatomical and physiological characteristics for Asian Reference Man. NIRS-M-115, National Institute of Radiological Sciences, Hitachinaka, Japan.

Ulano vsky, A., Wieser, A., Zankl, M., and Jacob, P. 2005. Photon dose conversion coef�cients for human teeth in standard irradiation geometries. Health Phys . 89: 645–659.

Veit, R., Zankl, M., Petoussi, N., Mannweiler, E., Williams, G., and Drexler, G. 1989. Tomographic anthropomorphic models. Part I: Construction technique and description of models of an 8 week old baby and a 7 year old child. GSF-Bericht 3/89, GSF—National Research Center for Environment and Health, Neuherberg, German y.

Xu, X. G. 2008. Consortium of Computational Human Phantoms. http://www .virtualphantoms.org/

Watanabe, R. and Saito, K. 2002. Monte Carlo simulation of strand-break induction on plasmid DNA in aqueous solution by monoener getic electrons. Radiat . En viron. Biophys . 41: 207–215.

W atanabe, R., Yokoya, A., and Saito, K. 2000. Modeling of production process of DNA damage by irradiation with monochromatic X-rays around the K-edge of phosphorus. In Proceedings of 10th International Congress of the International Radiation Protection Association, Hiroshima, Japan, May 14–19, 2000.

Yamaguchi, Y. 1992. A computer code to calculate photon external doses using age-speci�c phantoms. Hoken Butsuri 27: 305–312.

Zaidi, H. and Xu, X. G. 2007. Computational anthropomorphic models of the human anatomy: The path to realistic Monte Carlo modeling in radiological sciences. Annu . Re v. Biomed . Eng . 9: 471–500.

Zankl, M., Veit, R., Williams, G., Schneider, K., Fendel, H., Petoussi, N., and Drexler , G. 1988. The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat. En viron. Biophys . 27: 153–164.

Zankl, M., Drexler , G., Petoussi-Henss, N., and Saito, K. 1997. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part VII: Org an doses due to parallel and environmental exposure geometries. GSF-Bericht 8/97, GSF—National Research Center for Environment and Health, Neuherber g, German y.

Zhang, B. Q., Ma, J. Z., Liu, L. Y., and Cheng, J. P. 2007. CNMAN: A Chinese adult male voxel phantom constructed from color photographs of a visible anatomical data set. Radiat. Prot. Dosimetry 124: 13 0–136. 24 Chapter 24. Cancer Therapy with Heavy-Ion Beams

Akakura, K., Tsujii, H., Morita, S., Tsuji, H., Yagishita, T., Isaka, S., Ito, H., Akaza, H., Hata, M., Fujime, M., Harada, M., and Shimazaki, J. 2004. Phase I/II clinical trials of carbon ion therapy for prostate cancer. Prostate 58: 252–258.

A lonso, J. R. 1993. Synchrotron: The American experience. In Hadrontherapy in Oncology, U. Amaldi and B. Larsson (eds.), pp. 266–281. Amsterdam, the Netherlands: Elsevier.

Amaldi, U. and Kraft, G. 2007. European developments in radiotherapy with beams of large radiobiological effectiveness. J . Radiat. Res. 48: A27–A41.

Blakely, E. A., Ngo, F. Q., Curtis, S. B., and Tobias, C. A. 1984. Heavy ion radiotherapy: Cellular studies. Adv. Radiat. Biol. 11: 295–390.

Chu, W. T., Ludewigt, B. A., and Renner, T. R. 1993. Instrumentation for treatment of cancer using proton and light-ion beams. Re v. Sci. Instrum. 64: 2055–2122.

Eickhof f, H., Haberer, Th., Schlitt, B., and Weinrich, U. 2004. HICAT—The German hospital-based light ion cancer therap y project. In Pr oceedings of the Ninth EPAC, Lucerne, Switzerland, pp. 290–294.

Furuka wa, T., Inaniwa, T., Sato, S., Tomitani, T., Minohara, S., Noda, K., and Kanai, T. 2007. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med. Phys. 34: 1085–1097.

Furukawa, T., Inaniwa, T., Sato, S., Iwata, Y., Fujimoto, T., Minohara, S., Noda, K., and Kanai, T. 2008a. De sign st udy of a ro tating ga ntry fo r th e HI MAC ne w tr eatment fa cility. Nu cl. Instrum. Meth. B 26 6: 2186–2189.

Furukawa, T., Inaniwa, T., Sato, S., Saotome, N., Takei, Y., Iwata, Y., Nagano, A., Mori, S., Minohara, S., Shirai, T., Murakami, T., Takada, E., Noda K., and Kanai, T. 2008b. Development of scanning system at HIMAC. In Pr oceedings of the 11th EPAC, Genoa, Italy , pp. 1794–1796.

F utami, Y., Kanai, T., Fujita, M., Tomura, H., Higashi, A., Matsufuji, N., Miyahara, N., Endo, M., and Kawachi, K. 1999. Broad-beam three-dimensional irradiation system for heavy-ion radiotherapy at HIMAC. Nucl. Instrum. Meth. A 430: 143–153.

Goldhaber , A. S. 1974. Statistical models of fragmentation process. Phys. Lett. B 53: 306–308.

Haberer , Th., Becher, W., Shardt, D., and Kraft, G. 1993. Magnetic scanning system for heavy ion therapy. Nucl. Instrum. Meth. A 330: 296–305.

H irao, Y., Ogawa, H., Yamada, S., Sato, Y., Yamada, T., Sato, K., Itano, A., Kanazawa, M., Noda, K., Kawachi, K., Endo, M., Kanai, T., Kohno, T., Sudou, M., Minohara, S., Kitagawa, A., Soga, F., Takada, E., Watanabe, S., Endo, K., Kumada, M., and Matsumoto, S. 1992. Heavy ion synchrotron for medical use. Nucl. Phys. A 538: 541c–550c.

Imai, R., Kamada, T., Tsuji, H., Tsujii, H., Tsuburai, Y., and Tatezaki, S. 2006. Cervical spine osteosarcoma treated with carbon ion radiotherap y. Lancet Oncol . 7: 1034–1035.

Inaniw a, T., Furukaw a, T., Tomitani, T., Sato, S., Noda, K., and Kanai, T. 2007a. Optimization for fast-scanning irradiation in particle therap y. Med. Phys . 34: 3302–3311.

Inaniw a, T., Furukaw a, T., Matsufuji, N., Kohno, T., Sato, S., Noda, K., and Kanai, T. 2007b. Clinical ion beams: Semi-analytical calculation of their quality . Phys. Med. Biol . 52: 7261–7279.

Inaniw a, T., Furukaw a, T., Sato, S., Tomitani, T., Kobayashi, M., Minohara, S., Noda, K., and Kanai, T. 2008. Dev elopment of treatment planning for scanning irradiation at HIMAC. Nucl. Instrum. Meth. B 266: 2194–2198.

Ishikawa, H., Tsuji, H., Kamada, T., Yanagi, T., Mizoe, J., Kanai, T., Morita, S., Wakatsuki, M., Shimazaki, J., and Tsujii, H. 2006. Carbon ion radiation therapy for prostate cancer. Results of a prospective phase II study. Radiother . Oncol. 81: 57–64.

Kamada, T., Tsujii, H., Tsuji, H., Yanagi, T., Mizoe, J., Miyamoto, T., Kato, H., Yamada, S., Morita, S., Yoshika wa, K., Kandatsu, S., and Tateishi, A. 2002. Ef�cac y and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J . Clin. Oncol. 22: 4472–4477.

Kameoka, S., Amako, K., Iwai, G., Murakami, K., Sasaki, T., Toshito, T., Yamashita, T., Aso, T., Kimura, A., Kanai, T., Komori, M., Tak ei, Y., Yonai, S., Tashiro, M., Koik egami, H., Tomita, H., and Koi, T. 2008. Dosimetric ev aluation of nuclear interaction models in the Geant4 Monte Carlo simulation toolkit for carbon-ion radiotherap y. Radiol. Phys. Tech. 1: 183–187.

Kanai, T., Kaw achi, K., Kumamoto, Y., Oga wa, H., Yamada, T., Matsuzaw a, H., and Inada, T. 1980. Spot scanning system for proton radiotherap y. Med. Phys . 7: 365–369.

Kanai, T., Kaw achi, K., Matsuzaw a, H., and Inada, T. 1983. Broad beam three dimensional irradiation for proton radiotherap y. Med. Phys . 10: 344–346.

Kanai, T., Furusawa, Y., Fukutsu, K., Itsukaichi, H., Eguchi-Kasai, K., and Ohara, H. 1997. Irradiation of mixed beam and designing of spread-out Bragg peak for hea vy-ion radiotherap y. Radiat. Res . 147: 78–85.

K anai, T. , Ka nematsu, N. , Mi nohara, S. , Ko mori, M. , To rikoshi, M. , As akura, H. , Ik eda, N. , Un o, T. , an d Ta kei, T. 2006. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking me thod. Me d. Phys. 33 : 29 89–2997.

Kanematsu, N., Endo, M., Futami, Y., and Kanai, T. 2002. Treatment planning for the layer-stacking irradiation system for three-dimensional conformal hea vy-ion radiotherap y. Med. Phys . 29: 2823–2829.

Kato, H. 2004. Clinical study of carbon ion radiotherapy for hepatocellular carcinoma. In Hepatocellular Carcinoma Screening, Dia gnosis, and Mana gement, NIH Confer ence, Bethesda, MD, pp. 195–196.

Kato, H., Tsujii, H., Miyamoto, T., Mizoe, J., Kamada, T., Tsuji, H., Yamada, S., Kandatsu, S., Yoshikawa, K., Obata, T., Ezawa, H., Morita, S., Tomizawa, M., Morimoto, N., Fujita, J., and Ohto, M. 2004. Results of the �rst prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int. J. Radiat. Oncol. Biol. Phys. 59: 1468–1476.

Kato, H., Yamada, S., Yasuda, S., Maeda, Y., Kamada, T., Mizoe, J., Ohto, M., and Tsujii, H. 2005a. Phase II study of short-course carbon ion radiotherapy (52.8GyE/4-fraction/1-week) for hepatocellular carcinoma. Hepatolo gy 42 (Suppl. 1): 381A.

K ato, H., Yamada, S., Yasuda, S., Yamaguchi, K., Kitabayashi, H., Kamada, T., Mizoe, J., Ohto M., and Tsujii, H. 2005b. Tw o-fraction carbon ion radiotherapy for hepatocellular carcinoma. Preliminary results of a phase I/II clinical trial. J . Clin. Oncol. 23 (Suppl. S): 338S.

K omori, M., Furukaw a, T., Kanai, T., and Noda, K. 2004. Optimization of spiral wobbler system for heavy-ion radiotherapy . Jpn. J . Appl. Phys. 43: 6463–6467.

Lawrence, T. S., Petrelli, N. J., Li, B. D., and Galvin, J. M. 2007. Think globally, act locally. J. Clin. Oncol. 25: 924–930.

L eoehrer, P., Arececi, R., Glatstein, E., Gordon, M., Hanna, N., Morrow, M., and Thigpen, T. (eds.). 2006. The Year Book of Oncology 2006, pp. 368–370. Philadelphia, PA: Elsevier/Mosby.

Lomax, A. 1999. Intensity modulation methods for proton radiotherap y. Phys. Med. Biol . 44: 185–205.

M atsufuji, N., Komori, M., Sasaki, H., Akiu, K., Ogawa, M., Fukumura, A., Urakabe, E., Inaniwa, T., Nishio, T., Kohno, T., and Kanai, T. 2005. Spatial fragment distribution from a therapeutic pencil-like carbon beam in w ater. Phys. Med. Biol . 50: 3393–3403.

Minohara, S., Kanai, T., Endo, M., Noda, K., and Kanazawa, M. 2000. Respiration gated irradiation system for heavy-ion radiotherap y. Int. J . Radiat. Oncol. Biol. Phys. 47: 1097–1103.

Miyamoto, T., Yamamoto, N., Nishimura, H., Koto, M., Tsujii, H., Mizoe, J., Kamada, T., Kato, H., Yamada, S., Morita, S., Yoshikawa, K., Kandatsu, S., and Fujisawa, T. 2003. Carbon ion radiotherapy for stage I nonsmall cell lung cancer . Radiother . Oncol. 66: 127–140.

Miyamoto, T., Baba, M., Yamamoto, N., Koto, M., Suga wara, T., Yashiro, T., Kadono, K., Ezaw a, H., Tsujii, H., Mizoe, J., Yoshika wa, K., Kandatsu, S., and Fujisaw a, T. 2007. Curativ e treatment of stage I non-small cell lung cancer with carbon beams using a hypo-fractionated regimen. Int. J . Radiat. Oncol. Biol. Phys. 67: 750–758.

M izoe, J. , Ts ujii, H. , Ka mada, T. , Ma tsuoka, Y. , Ts uji, H. , Os aka, Y. , Ha segawa, A. , Ya mamoto, N. , Eb ihara, S., and Konno, A. 2004. Dose escalation study of carbon ion radiotherapy for locally advanced head and neck cancer . Int. J . Radiat. Oncol. Biol. Phys. 60: 358–364.

Molière, G. 1948. Theorie der Streuung Schneller Geladener Teilchen. Mehrfach-und Vielf achstreuung Z Naturforsch. 3a: 78–97.

Munzenrider , J. E. and Liebsch, N. J. 1999. Proton therapy for tumors of the skull base. Strahlenther Onkol. 175(Suppl. 2): 57–63.

Noda, K., Kanazaw a, M., Itano, A., Takada, E., Torik oshi, M., Araki, N., Yoshiza wa, J., Sato, K., Yamada, S., Oga wa, H., Itoh, H., Noda, A., Tomiza wa, M., and Yoshiza wa, M. 1996. Slow beam extraction by a transv erse RF �eld with AM and FM. Nucl. Instrum. Meth. A 374: 269–277.

N oda, K. , Fu rukawa, T. , Fu jisawa, T. , Iw ata, Y. , Ka nai, T. , Ka nazawa, M. , Ki tagawa, A. , Ko mori, M. , Mi nohara, S., Murakami, T., Muramatsu, M., Sato, S., Tak ei, Y., Tashiro, M., Torik oshi, M., Yamada, S., and Yusa, K. 2007. Ne w accelerator f acility for carbon-ion cancer -therapy. J . Radiat. Res. 48: A43–A54.

Nose, H., Kase, Y., Matsufuji, N., and Kanai, T. 2009. Field size effect of radiation quality in carbon therapy using passi ve method. Med. Phys . 36: 870–875.

P edroni, E. , Ba cher, R. , Bl attmann, H. , Bo ehringer, T. , Co ray, A. , Lo max, A. , Li n, S. , Mu nkel, G. , Sc heib, S., Schneider, U., and Tourovsky, A. 1995. The 200-MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization. Med. Phys . 22: 37–53.

Rossi, S. 2006. Dev elopments in proton and light-ion therapy . In Proceedings of the 10th EPAC, Edinbur gh, U.K., pp. 3631–3635.

S ato, S. , Fu rukawa, T. , an d No da, K. 20 07. Dy namic in tensity co ntrol sy stem wi th RF -knockout sl ow-extraction at HI MAC sy nchrotron. Nu cl. Instrum. Meth. A 57 4: 22 6–231.

Schulz-Ertner, D. and Tsujii, H. 2007. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 10: 953–964.

T obias, C. A., Anger, H. O., and Lawrence, J. H. 1952. Radiological use of high energy deuterons and alpha particles. Am. J . Roentgenol. Radium. Ther. Nucl. Med. 67: 1–27.

T orikoshi, M., Monohara, S., Kanematsu, N., Komori, M., Kanazaw a, M., Noda, K., Miyahara, N., Itoh, H., Endo, M., and Kanai, T. 2007. Irradiation system for HIMA C. J . Radiat. Res. 48: A15–A25.

Tsuji, H., Yanagi, T., Ishikawa, H., Kamada, T., Mizoe, J., Kana, T., Morita, S., and Tsujii, H. 2005. Hypofractionated radiotherapy with carbon beams for prostate cancer. J. Radiat. Oncol. Biol. Phys. 32: 1153–1160.

Urakabe, E., Kanai, T ., Kanazawa, M., Kitagawa, A., Noda, K., T omitani, T ., Suda, M., Iseki, Y., Hanawa, K., Sato, K., Shinbo, M., Mizuno, H., Hirata, Y., Futami, Y., Iwashita, Y., and Noda, A. 2001. Spot scanning using radioacti ve 11C beams for hea vy-ion therap y. Jpn. J . Appl. Phys. 40: 2540–2548.

W ilson, R. R. 1946. Radiological use of f ast protons. Radiolo gy 47: 487–491.

W ong, M., Schimmerling, W., Phillips, M. H., Ludewigt, B. A., Landis, D. A., Walton, J. T., and Curtis, S. B. 1990. The multiple Coulomb scattering of v ery hea vy char ged particles. Med. Phys . 17: 163–171.

Y onai, S., Kanematsu, N., Komori, M., Kanai, T., Takei, Y., Takahashi, O., Isobe, Y., Tashiro, M., Koikegami, H., and Tomita, H. 2008. Evaluation of beam wobbling methods for heavy-ion radiotherapy . Med. Phys . 35: 927–938. 25 Chapter 25. Nanoscale Charge Dynamics and Nanostructure Formation in Polymers

Abkowitz, M. A., Knier, F. E., Yuh, H. J., Weagley, R. J., and Stolka, M. 1987. Electronic transport in amorphous silicon backbone polymers. Sol. Stat. Commun. 62: 547–550.

Abko witz, M. A., Rice, M. J., and Stolka, M. 1990. Electronic transport in silicon backbone polymers. Philos. Mag. B 61: 25–64.

Acharya, A., Seki, S., Saeki, A., Koizumi, Y., and Tagawa, S. 2005a. Study of transport properties in fullerenedoped polysilane �lms using ¡ash photolysis time-resolved microwave technique. Chem. Phys. Lett. 404: 356–360.

Acharya, A., Seki, S., Koizumi, Y., Saeki, A., and Taga wa, S. 2005b. Photogeneration of charge carriers and their transport properties in poly[bis(p-n-butylphen yl)silane]. J. Phys. Chem. B 109: 20174–20179.

Adhikary, A., Khanduri, D., and Sevilla, M. D. 2009. Direct observation of the hole protonation state and hole localization site in DNA-oligomers. J. Am. Chem. Soc. 131: 8614–8619.

Alig, R. C., Bloom, S., and Struck, C. W. 1980. Scattering by ionization and phonon emission in semiconductors. Phys. Rev . B 22: 5565–5582.

Amaya, T., Seki, S., Moriuchi, T., Nakamoto, K., Nakata, T., Sakane, H., Saeki, A., Tagawa, S., and Hirao, T. 2009. Anisotropic electron transport properties in sumanene crystal. J. Am. Chem. Soc. 131: 408–409.

Ban, H., Sukegawa, K., and Tagawa, S. 1987. Pulse radiolysis study on organopolysilane radical anions. Macromolecules 20: 1775–1778.

Barnes, J., Bernhard, W. A., and Mercer, K. R. 1991. Distribution of electron trapping in DNA-protonation of one-electron reduced cytosine. Radiat Res 126: 104–107.

Baude, P. F., Ender, D. A., Haase, M. A., Kelley, T. W., Muyres, D. V., and Theiss, S. D. 2003. Pentacene-based radio-frequency identi�cation circuitry. Appl. Phys. Lett. 82: 3964–3966.

Becker , D., Adhikary, A., and Sevilla, M. D. 2007. The role of charge and spin migration in DNA radiation damage. In Charge Migration in DNA: Physics, Chemistry and Biology Perspectives, T. Chakraborty (ed.), pp. 139–175. Berlin/Heidelberg/Ne w York: Springer-V erlag.

Bernhard, W. A. and Close, D. M. 2004. Charged Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozunder and Y. Hatano (eds.), pp. 431–470. New York/Basel: Marcel Dekker , Inc.

Biondi, M. A. 1951. Measurement of the electron density in ionized gases by microwave techniques. Rev. Sci. Instrum. 22: 500–502.

Biondi, M. A. and Brown, S. C. 1949. Measurements of ambipolar diffusion in helium. Phys. Rev . 75: 1700–1705.

Candeias, L. P. and Steenken, S. 1993. Electron-transfer in di(deoxy)nucleoside phosphates in aqueous solution-rapid migration of oxidative damage (via adenine) to guanine. J. Am. Chem. Soc. 115: 2437–2440.

Candeias, L. P., Wildeman, J., Hadziioannou, G., and Warman, J. M. 2000. Pulse radiolysis–optical absorption studies on the triplet states of p-phenylenevinylene oligomers in solution. J. Phys. Chem. B 104: 8366–8371.

Charlesby, A. 1952. Cross-linking of polyeth ylene by pile radiation. Pr oc. R. Soc. (Lond.) A215: 187–214.

Charlesby , A. 1954. The cross-linking and degradation of paraf�n chains by high-energy radiation. Proc. R. Soc. Lond. Ser. A 222: 60–74.

Charlesby , A. and Pinner, S. H. 1959. Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Pr oc. R. Soc. Lond. Ser. A 249: 367–386.

Chatterjee, A. and Magee, J. L. 1980. Radiation chemistry of heavy-particle tracks. 2. Fricke dosimeter system. J. Phys. Chem. 84: 3537–3543.

Cotts, P. M., Miller, R. D., and Sooriyakumaran, R. 1990. Con�gurational properties of a polysilane. In Silicon Based Polymer Science, p. 397. Washington, DC: American Chemical Society .

Cotts, P. M., Ferline, S., Dagli, G., and Pearson, D. S. 1991. Solution properties of poly(di-n-hexylsilane): An estimate of its unperturbed dimensions. Macr omolecules 24: 6730–6735. de Haas, M. P., Warman, J. M., Infelta, P. P., and Hummel, A. 1975. The direct observation of a highly mobile positiv e ion in nanosecond pulse irradiated liquid c yclohexane. Chem. Phys. Lett . 31: 382–386.

Dole, M., Keeling, C. D., and Rose, D. G. 1954. The pile irradiation of polyethylene. J. Am. Chem. Soc. 76: 4304–4311.

Douhal, A., Kim, S. K., and Zew ail, A. H. 1995. Femtosecond molecular dynamics of tautomerization in model base pairs. Natur e 378: 260–263.

Feng, X., Marcon, V., Pisula, W., Hansen, M. R., Kirkpatrick, J., Grozema, F., Andrienko, D., Kremer, K., and Müllen, K. 2009. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater . 8: 421–426.

Fessenden, R. W. and Hitachi, A. 1987. A study of the dielectric relaxation behavior of photoinduced transient species. J . Phys. Chem. 91: 3456–3462.

Fessenden, R. W., Carton, P. M., Paul, H., and Shimamori, H. 1979. Detection of transient species by measurement of dielectric loss. J . Phys. Chem. 83: 1676–677.

Fessenden, R. W., Carton, P. M., Shimamori, H., and Scaiano, J. C. 1982. Measurement of the dipole moments of excited states and photochemical transients by microw ave dielectric absorption. J. Phys. Chem. 86: 3803–3811.

Fujiki, M. 1994. Ideal exciton spectra in singleand double-screw-sense helical phlysilanes. J. Am. Chem. Soc. 116: 6017.

Fujiki, M. 1996. A correlation between global conformation of polysilane and UV absorption characteristics. J. Am. Chem. Soc. 118: 7424.

Fujino, M. 1987. Photoconducti vity in or ganopolysilanes. Chem. Phys. Lett . 136: 451–453.

Gill, D., Jagur-Grodzinsk y, J., and Swarc, M. 1964. Chemistry of radical-ions. Electron-transfer reactions: –DD–+dimethyl anthracene and –DD–+p yrene. T rans. Faraday Soc. 60: 1424–1431. Goldmann, C., Krellner, C., Pernstich, K. P., Haas, S., Gundlach, D. J., and Batlogg, B. 2006. Determination of the interface trap density of rubrene single-crystal �eld-effect transistors and comparison to the bulk trap density. J . Appl. Phys. 99: 034507-1–034507-8.

Grozema, F. C., Savenije, T. J., Vermeulen, J. W., Siebbeles, L. D. A., Warman, J. M., Meisel, A., Neher, D., Nothofer, H. G., and Scherf, U. 2001. Electrodeless measurement of the in-plane anisotropy in the photoconductivity of an aligned poly¡uorene �lm. Adv . Mater. 13: 1627–1630.

Gu, J. D., Xie, Y. M., and Schaefer, H. F. 2005. Structural and energetic characterization of a DNA nucleo side pair and its anion: Deoxyriboadenosine (da)–deoxyribothymidine (dt). J. Phys. Chem. B 109: 13067–13075.

Hisaki, I., Sakamoto, Y., Shigemitsu, H., Tohnai, N., Miyata, M., Seki, S., Saeki, A., and Tagawa, S. 2008. Superstructure-dependent optical and electrical properties of an unusual face-to-face, π-stacked, onedimensional assembly of dehydrobenzo[12]annulene in the crystalline state. Chem. Eur. J. 14: 4178–4187.

Hissung, A. and von Sonntag, C. 1979. The reaction of solvated electrons with cytosine, 5-methyl cytosine and 2’-deoxycytidine in aqueous solution the reaction of the electron adduct intermediates with water, p-nitroacetophenone and oxygen a pulse spectroscopic and pulse conductometric study. Int. J . Radiat. Biol. 35: 449–458.

Hoofman, R. J. O. M., de Hass, M. P., Siebbeles, L. D. A., and Warman, J. M. 1998a. Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene). Nature 392: 54–56.

Hoofman, R. J. O. M., Siebbeles, L. D. A., de Haas, M. P., and Hummel, A. 1998b. Anisotropy of the chargecarrier mobility in polydiacetylene crystals. J . Chem. Phys. 109: 1885.

Ichika wa, T., Yamada, Y., Kumagai, J., and Fujiki, M. 1999a. Suppression of the Anderson localization of charge carriers on polysilane quantum wire. Chem. Phys. Lett . 306: 275–279.

Ichika wa, T., Sumita, M., and Kumagai, J. 1999b. Relation between the helicity and the ESR g-anisotropy of σ-conjugated quantum wires. Chem. Phys. Lett . 307: 81.

Imahori, H., Ueda, M., Kang, S., Hayashi, H., Hayashi, S., Kaji, H., Seki, S., Saeki, A., Tagawa, S., Umeyama, T., Matano, Y., Yoshida, K., Isoda, S., Shiro, M., Tkachenko, N. V., and Lemmetyinen, H. 2007. Effects of porphyrin substituents on �lm structure and photoelectrochemical properties of porphyrin/fullerene composite clusters electrophoretically deposited on nanostructured SnO 2 electrodes. Chem. Eur. J. 13: 10182–10193.

Imamura, S. 1979. Chloromethylated polystyrene as a dry etching-resistant negative resist for sub-micron technology. J . Electrochem. Soc. 126: 1628–1630.

Imamura, S., Tamamura, T., Harada, K., and Sugawara, S. 1982. High-performance electron negative resist, chlorinated polystyrene – A study on molecular -parameters. J . Appl. Polym. Sci. 27: 937–949.

Inokuti, M. 1960. Molecular size distribution and gelation of irradiated copolymers. J. Chem. Phys. 33: 1607–1615.

Ishii, H., Yuyama, A., Norioka, S., Seki, K., Hasegawa, S., Fujino, M., Isaka, H., Fujiki, M., and Matsumoto, N. 1995. Photoelectron spectroscopy of polysilanes, polygermanes and related compounds. Synth. Met. 69: 595–596.

Itagaki, H., Horie, K., Mita, I., Washio, M., Tag awa, S., and Tabata, Y. 1983. Intramolecular excimer formation of oligostyrenes from dimer to tridecamer—The measurements of rate constants for excimer formation, singlet ener gy migration and relaxation of internal-rotation. J . Chem. Phys. 79: 3996–4005.

Itag aki, H., Horie, K., Mita, I., Washio, M., Tag awa, S., Tabata, Y., Sato, H., and Tanaka, Y. 1987. Local molecular-motion of polystyrene model compounds measured by using picosecond pulse-radiolysis 1. Diastereoisomeric styrene dimmers—Multicomponent ¡uorescence decay curves, concentrationdependence, and alk yl end-group ef fect on e xcimer formation. Macr omolecules 20: 2774–2782.

Itag aki, H., Washio, M., Washio, M., and Tagawa, S. 1992. Rates for intramolecular excimer formation of poly(alpha-methylstyrene) measured by using picosecond pulse-radiolysis. P olym. Bull. 28: 197–202.

Kajzar , F., Messier, J., and Rosilio, C. 1986. Nonlinear optical properties of thin �lms of polysilane. J. Appl. Phys. 60: 3040.

Kamoshida, Y., Koshida, M., Yoshimoto, H., Harita, K., and Harada, K. 1983. Application of chlorinated polymethylstyrene, CPMS, to electron-beam lithograph y. J . Vac. Sci. Technol. B1: 1156–1159

Ka waguchi, T., Seki, S., Okamoto, K., Saeki, A., Yoshida, Y., and Tagawa, S. 2003. Pulse radiolysis study of radical cations of polysilanes. Chem. Phys. Lett . 374: 353–357.

K epler, R. G., Zeigler, J. M., Harrah, L. A., and Kurtz, S. R. 1987. Photocarrier generation and transport in σ-bonded polysilanes. Phys. Re v. B 35: 2818.

Kido, J., Kimura, M., and Nagai, K. 1995. Multilayer white light-emitting org anic electroluminescent device. Science 267: 1332–1334.

K obayashi, K. and Tagawa, S. 2003. Direct observation of guanine radical cation deprotonation in duplex DNA using pulse radiolysis. J . Am. Chem. Soc. 125: 10213–10218.

K obayashi, K., Yamag ami, R., and Tag awa, S. 2008. Effect of base sequence and deprotonation of guanine cation radical in DN A. J . Phys. Chem. B 112: 10752–10757.

K ocherzhenko, A. A., Patwardhan, S., Grozema, F. C., Anderson, H. L., and Siebbeles, L. D. A. 2009. Mechanism of charge transport along zinc porphyrin-based molecular wires. J. Am. Chem. Soc. 131: 5522–5529.

Koe, J. R., Powell, D. R., Buffy, J. J., Hayase, S., and West R., 1998. Perchloropolysilane: X-ray structure, solid-state 29 Si NMR spectroscopy, and reactions of [SiCl 2 ] n . Angew. Chem. Int. Ed. 37: 1441.

Koe, J. R., Fujiki, M., Nakashima, H., and Motonaga, M. 2000. Temperature-dependent helix–helix transition of an optically acti ve poly(diarylsilylene). Chem. Commun . 389–390.

K oe, J. R., Fujiki, M., Motonaga, M., and Nakashima, H. 2001. Cooperativ e helical order in optically activ e poly(diarylsilylenes). Macr omolecules 34: 1082–1089.

K umada, M. and Tamao, K. 1968. Aliphatic or ganopolysilanes. Adv . Organomet. Chem. 6: 80.

K umagai, J., Yoshida, H., and Ichikawa, T. 1995. Electronic structure of oliosilane and polysilane radical cations as studied by electron spin resonance and electronic absorption spectroscopy. J. Phys. Chem. 99: 7965.

Le Motais, B. C. and Jonah, C. D. 1989. Picosecond pulse-radiolysis studies of the primary processes in hydrocarbon radiation-chemistry . Radiat. Phys. Chem . 33: 505–517.

Lee, Y. A., Durandin, A., Dedon, P. C., Geacintov, N. E., and Sha�rovich, V. 2008. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: Relationship between kinetics and distribution of alkali-labile lesions. J. Phys. Chem. B 112: 1834–1844.

Li, W. S., Yamamoto, Y., Fukushima, T., Saeki, A., Seki, S., Tagawa, S., Masunaga, H., Sasaki, S., Takata, M., and Aida, T. 2008. Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: Photoconductive liquid crystalline oligothiophene-C 60 dyads. J. Am. Chem. Soc. 130: 8886–8887.

Maeda, K., Seki, S., Tagawa, S., and Shibata, H. 2001. Radiation effects on branching polysilanes. Radiat. Phys. Chem. 60: 461–466.

Magee, J. L. and Chatterjee, A. 1980. Radiation chemistry of heavy-particle tracks. 1. General considerations. J. Phys. Chem. 84: 3529–3536.

Matsui, Y., Nishida, K., Seki, S., Yoshida, Y., Tagawa, S., Yamada, K., Imahori, H., and Sakata, A. 2002a. Direct observation of intra-molecular electron transfer from excess electrons in σ-conjugated main chain to porphyrin side chain in polysilanes having tetraphenylporph yrin side chain by pulse radiolysis technique. Organometallics 21: 5144.

Matsui, Y., Seki, S., and Tag awa, S. 2002b. Direct observation of intra-molecular energy migration in σ-conjugated polymer by femto-second laser ¡ ash photolysis. Chem. Phys. Lett . 357: 346–350.

Morita, M., Tanaka, A., Imamura, S., Tamamura, T., and Kogure, O. 1983. High-resolution double-layer resist system using ne w silicone based ne gative resist (SNR). Jpn. J . Appl. Phys. Part 2(22): L659–L660.

Morita, M., Imamura, S., Tanaka, A., and Tamamura, T. 1984. A new silicone-based negative resist (SNR) for 2-layer resist system. J . Electrochem. Soc. 131: 2402–2406.

Moto yanagi, J., Yamamoto, Y., Saeki, A., Alam, M. A., Kimoto, A., Kosaka, A., Fukushima, T., Seki, S., Tagawa, S., and Aida, T. 2009. Unusual side-chain effects on charge-carrier lifetime in discotic liquid crystals. Chem. Asian J. 4: 876–880.

Myn y, K., Steudel, S., Vicca, P., Genoe, J., and Heremans, P. 2008. An integrated double half-wave organic Schottky diode recti�er on foil operating at 13.56 mHz. Appl. Phys. Lett . 93: 093305-1–093305-3.

Nag ashima, K., Yanagida, T., Tanaka, H., Seki, S., Saeki, A., Tagawa, S., and Kawai, T. 2008. Effect of the heterointerface on transport properties of in situ formed mgo/titanate heterostructured nano wires. J . Am. Chem. Soc. 130: 5378–5382.

Ohnishi, Y., Saeki, A., Seki, S., and Tagawa, S. 2009. Conformational relaxation of sigma-conjugated polymer radical anion on picosecond scale. J . Chem. Phys. 130: 204907.

Okamoto, K., Koza wa, T., Yoshida, Y., and Tag awa, S. 2001. Study on intermediate species of polystyrene by using pulse radiolysis. Radiat. Phys. Chem . 60: 417–422.

Okamoto, K., Saeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2003. Subpicosecond pulse radiolysis study of geminate ion recombination in liquid benzene. Chem. Lett . 32: 834–835.

Okamoto, K., Koza wa, T., Miki, M., Yoshida, Y., and Tag awa, S. 2006. Pulse radiolysis of polystyrene in cyclohexane – Effect of carbon tetrachloride on kinetic dynamics of dimmer radical cation. Chem. Phys. Lett. 426: 306–310.

Okamoto, K., Koza wa, T., Saeki, A., Yoshida, Y., and Tag awa, S. 2007. Subpicosecond pulse radiolysis in liquid methyl-substituted benzene deri vatives. Radiat. Phys. Chem . 76: 818–826.

Okamoto, K., Kozawa, T., Natsuda, K., Seki, S., and Tagawa, S. 2008. Formation of intramolecular poly(4hydroxystyrene) dimer radical cation. J . Phys. Chem. 112: 9275–9280.

Okamoto, K., Tanaka, M., Kozawa, T., and Tagawa, S. 2009. Dynamics of radical cation of poly(4hydroxystyrene) and its copolymer for extreme ultraviolet and electron beam resists. Jpn. J. Appl. Phys. Part 2 48: 06FC06.

Olejniczak, K., Rosiak, J., and Charlesby, A. 1991. Gel/dose curves for polymers undergoing simultaneous crosslinking and scission. Radiat. Phys. Chem . 37: 499–504.

Pieter , A. C., Sweelssen, J., Koetse, M. M., Savenije, T. J., and Siebbeles, L. D. A. 2007. Formation and decay of charge carriers in bulk heterojunctions of MDMO-PPV or P3HT with new n-type conjugated polymers. J . Phys. Chem. C 111: 4452–4457.

P itt, C. G. 1977. Conjugative properties of polysilanes and catenated σ-systems. In Homoatomic Rings, Chains, and Macromolecules of Main Group Elements, A. L. Rheingold (ed.). Amsterdam, the Netherlands: Elsevier.

Podzorov, V., Menard, E., Borissov , A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E. 2004. Intrinsic charge transport on the surf ace of or ganic semiconductors. Phys. Re v. Lett. 93: 086602-1–086602-4.

Pollard, W. B. and Luco vsky, G. 1982. Phonons in polysilane allo ys. Phys. Re v. B 26: 3172–3180.

Prins, P., Grozema, F. C., Schins, J. M., Patil, S., Scherf, U., and Siebbeles, L. D. A. 2006. High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys. Rev. Lett. 96: 146601-1–146601-4.

Rice, M. 1979. Char ged pi-phase kinks in lightly doped polyacetylene. Phys. Lett . 71A: 152.

Rice, M. J. and Phillpot, S. R. 1987. Polarons and bipolarons in a model tetrahedrally bonded homopolymer. Phys. Rev. Lett. 58: 937–940.

S aeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2002. Study on radiation-induced reaction in microscopic region for basic understanding of electron beam patterning in lithographic process (II)— Relation between resist space resolution and space distribution of ionic species. Jpn. J. Appl. Phys. 41: 4213–4216.

Saeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2004. Adjacent effect on positive charge transfer from radical cation of n-dodecane to scavenger studied by picosecond pulse radiolysis, statistical model, and Monte Carlo simulation. J . Phys .Chem. A 108: 1475–1481.

Saeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2005a. Multi spur effect on decay kinetics of geminate ion recombination using Monte Carlo technique. Nucl. Instrum. Meth. B 234: 285–290.

Saeki, A., Seki, S., Koizumi, Y., Sunagawa, T., Ushida, K., and Tagawa, S. 2005b. Increase in the mobility of photogenerated positi ve char ge carriers in polythiophene. J . Phys .Chem. B 109: 10015–10019.

Saeki, A., Seki, S., Sunaga wa, T., Ushida, K., and Tag awa, S. 2006a. Charge-carrier dynamics in polythiophene �lms studied by in-situ measurement of ¡ash-photolysis time-resolved microw ave conductivity (FP-TRMC) and transient optical spectroscop y (T OS). Philos. Ma g. 86: 1261–1276.

Saeki, A., Seki, S., and Tag awa, S. 2006b. Electrodeless measurement of charge carrier mobility in pentacene by micro wave and optical spectroscop y techniques. J . Appl. Phys. 100: 023703–023708.

Saeki, A., Seki, S., Koizumi, Y., and Tag awa, S. 2007. Dynamics of photogenerated charge carrier and morphology dependence in polythiophene �lms studied by in situ time-resolved microw ave conductivity and transient absorption spectroscop y. J . Photochem. Photobiol. A 186: 158–165.

Saeki, A., Ohsaki, S., Seki, S., and Tagawa, S. 2008a. Electrodeless determination of charge carrier mobility in poly(3-hexylthiophene) �lms incorporating perylenediimide as photoconductivity sensitizer and spectroscopic probe. J . Phys. Chem. C 112: 16643–16650.

Saeki, A., Seki, S., Tak enobu, T., Iwasa, Y., and Tag awa, S. 2008b. Mobility and dynamics of charge carriers in rubrene single crystals studied by ¡ash-photolysis microw ave conductivity and optical spectroscopy . Adv. Mater . 20: 920–923.

Sagstuen, E., Hole, E. O., Nelson, W. H., and Close, D. M. 1992. Protonation state of radiation-produced cytosine anions and cations in the solid state: EPR/ENDOR of cytosine monohydrate single crystals x-irradiated at 10 K. J . Phys. Chem. 96: 8269–8276.

Saito, O. 1958. Effects of high energy radiation on polymers II. End-linking and gel fraction. J. Phys. Soc. Jpn. 13: 1451–1464.

Saito, I., Nakamura, T., Nakatani, K., Yoshioka, Y., Yamaguchi, K., and Sugiyama, H. 1998. Mapping of the hot spots for DNA damage by one-electron oxidation: Ef�cac y of GG doublets and GGG triplets as a trap in long-range hole migration. J . Am. Chem. Soc 120: 12686–12687.

Sakurai, T., Shi, K., Sato, H., Tashiro, K., Osuka, A., Saeki, A., Seki, S., Tagawa, S., Sasaki, S., Masunaga, H., Osaka, K., Takata, M., and Aida, T. 2008. Prominent electron transport property observed for triply fused metalloporphyrin dimer: Directed columnar liquid crystalline assembly by amphiphilic molecular design. J . Am. Chem. Soc. 130: 13812–13813.

Sariciftci, N. S., Smilowitz, L., Heeger , A. J., and Wudl, F. 1992. Photoinduced electron transfer from a conducting polymer to b uckminsterfullerene. Science 258: 1474–1476.

Sauer , M. C. and Jonah, C. D. 1980. Kinetics of solute e xcited-state formation in the pulse-radiolysis of liquid alkanes—Comparison between theory and e xperiment. J . Phys. Chem. 84: 2539–2544.

Schreiber , M. and Abe, S. 1993. The effect of disorder on optical spectra of conjugated polymers. Synth. Met. 55–57: 50–55.

Schuster , G. B. and Landman, U. 2004. The mechanism of long-distance radical cation transport in duplex DNA: Ion-gated hopping of polaron like distorsion. In Long Range Charge Transfer in DNA. I and II, Topics in Current Chemistry, G. B. Shuster (ed.), pp. 139–161. Berlin/Heidelber g, German y: Springer -Verlag.

Seki, K., Mori, T., Inokuchi, H., and Murano, K. 1988. Electronic structure of poly(dimethylsilane) and polysilane studied by XPS, UPS, and band calculation, Bull. Chem. Soc. Jpn . 61: 351–358.

Seki, S., Shibata, H., Ban, H., Ishigure, K., and Tagawa, S. 1996a. Radiation effects of ion beams on poly(methylphenylsilane). Radiat. Phys. Chem . 48: 539–544. Seki, S., Tag awa, S., Ishigure, K., Cromack, K. R., and Trifunac, A. D. 1996b. Observation of silyl radical in γ-radiolysis of solid poly(dimeth ylsilane). Radiat. Phys. Chem . 47: 217–219.

Seki, S., Kanzaki, K., Yoshida, Y., Shibata, H., Asai, K., Tag awa, S., and Ishigure, K. 1997. Positiv e-negative inv ersion of silicon based resist materials: Poly(di-n-hexylsilane) for ion beam irradiation. Jpn. J . Appl. Phys. 36: 5361–5364.

Seki, S., Cromack, K. R., Trifunac, A. D., Yoshida, Y., Tagawa, S., Asai, K., and Ishigure, K. 1998. Radical stability of aryl substituted polysilanes with linear and planar silicon skeleton structures. J. Phys. Chem. B 102: 8367–8371.

Seki, S., Yoshida, Y., Tagawa, S., and Asai, K. 1999a. Electronic structure of radical anions and cations of polysilanes with structural defects. Macr omolecules 32: 1080–1086.

Seki, S., Maeda, K., Kunimi, Y., Tagawa, S., Yoshida, Y., Kudoh, H., Sugimoto, M., Morita, Y., Seguchi, T., Iwai, T., Shibata, H., Asai, K., and Ishigure, K. 1999b. Ion beam induced crosslinking reactions in poly(di-n-hexylsilane). J . Phys. Chem. B 103: 3043–3408.

Seki, S., Kunimi, Y., Nishida, K., Aramaki, K., and Tagawa, S. 2000. Optical properties of pyrrolyl-substituted polysilanes. J . Organomet. Chem. 611: 62–68.

Seki, S., Yoshida, Y., and Tagawa, S. 2001a. Charged radicals of polysilane derivatives studied by pulse radiolysis. Radiat. Phys. Chem . 60: 411–415.

Seki, S., Kunimi, Y., Nishida, K., Yoshida, Y., and Tagawa, S. 2001b. Electronic state of radical anions on poly(methyln-propylsilane) studied by lo w temperature pulse radiolysis. J . Phys. Chem. B 105: 900.

Seki, S., Maeda, K., Tag awa, S., Kudoh, H., Sugimoto, M., Morita, Y., and Shibata, H. 2001c. Formation of quantum wires along ion projectiles in Si backbone polymers. Adv . Mater. 13: 1663–1665.

Seki, S., Matsui, Y., Yoshida, Y., Tag awa, S., Koe, J. R., and Fujiki, M. 2002. Dynamics of charge carriers on poly[bis(p-alkylphen yl)silane]s by electron beam pulse radiolysis. J . Phys. Chem. B 106: 6849–6852.

Seki, S., Tsukuda, S., Yoshida, Y., Koza wa, T., Tag awa, S., Sugimoto, M., and Tanaka, M. 2003. Jpn. J . Appl. Phys. 43: 4159.

Seki, S., Koizumi, Y., Kaw aguchi, T., Habara, H., and Tag awa, S. 2004a. Dynamics of positiv e charge carriers on Si chains of polysilanes. J . Am. Chem. Soc. 126: 3521–3528.

Seki, S., Tsukuda, S., Maeda, K., Matsui, Y., Saeki, A., and Tagawa, S. 2004b. Inhomogeneous distribution of crosslinks in ion tracks in polystyrene and polysilanes. Phys. Re v. B 70: 144203.

Seki, S., Acharya, A., Koizumi, Y., Saeki, A., Tag awa, S., and Mochida, K. 2005a. Mobilities of charge carriers in dendrite and linear oligogermanes by ¡ash photolysis time-resolved microw ave conductivity technique. Chem. Lett . 34: 1690–1691.

Seki, S., Tsukuda, S., Maeda, K., Tag awa, S., Shibata, H., Sugimoto, M., Jimbo, K., Hashitomi, I., and Koyama, A. 2005b. Effects of backbone con�guration of polysilanes on nanoscale structures formed by single-particle nanof abrication technique. Macr omolecules 38: 10164–10170.

Seki, S., Tsukuda, S., Tag awa, S., and Sugimoto, M. 2006. Correlation between width roughness of nanowires and backbone conformation of polymer materials. Macr omolecules 39: 7446–7450.

Seki, S., Saeki, A., Acharya, A., Koizumi, Y., Tag awa, S., and Mochida, K. 2008. Intra-molecular mobility of charge carriers along oligogermane backbones studied by ¡ash photolysis time-resolved microwave conducti vity and transient optical spectroscop y techniques. Radiat. Phys. Chem . 77: 1323–1327.

Shao, F., O’Neill, M. A., and Barton, J. K. 2004. Long damage to cytosines in duplex DNA. Proc. Natl. Acad. Sci. USA 101: 17914–17919.

Sheats, J. R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D., and Stocking, A. 1996. Or ganic electroluminescent de vices. Science 273: 884–888.

S himamori, H. and Hatano, Y. 1977. Thermal electron attachment to O 2 in the presence of various compounds as studied by a microwave cavity technique combined with pulse radiolysis. Chem. Phys. 21: 187–201.

Shimamori, H. and Sunagawa, T. 1997. Electron energy loss rates in gaseous argon determined from transient microwave conducti vity. J . Chem. Phys. 106: 4481–4490.

Shiraishi, H., Taniguchi, Y., Horigome, S., and Nonogaki, S. 1980. Iodinated polystyrene—An ion-millable negative resist. P olym. Eng. Sci. 20: 1054–1057.

Shukla, P., Cotts, P. M., Miller, R. D., Russel, T. P., Smith, B. A., Wallraff, G. M., Baier, M., and Thiyagarajan, P. 1991. Conformational transition studies of organosilane polymers by light and neutron scattering. Macromolecules 24: 5606–5613.

Sirringhaus, H., Tessler, N., and Friend, R. H. 1998. Integrated optoelectronic devices based on conjugated polymers. Science 280: 1741–1744.

Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwing, P., and de Leeuw, D. M. 1999. Two-dimensional charge transport in self-or ganized, high-mobility conjug ated polymers. Natur e 401: 685–688.

Steenk en, S. 1989. Purine-bases, nucleosides, and nucleotides-aqueous solution redox chemistry and transformation reactions of their radical cations and e-and OH adducts. Chem. Re v. 89: 503–520.

Steenk en, S. 1997. Electron transfer in DNA? Competition by ultra-fast proton transfer. Biol. Chem. 378: 1293–1297.

Steenken, S. and Javanovic, S. V. 1997. How easily oxidizable is DNA? One-electron reduction potentials adenosine and guanosine radicals in aqueous solution. J . Am. Chem. Soc. 119: 617–618.

Steenk en, S., Telo, J. P., Novais, H. M., and Candeias, L. P. 1992. One-electron reduction potentials of pyrimidine-bases, nucleosides, and nucleotides in aqueous-solution-consequences for DNA redox chemistry. J. Am. Chem. Soc. 114: 4701–4709.

Ste gman, J. and Cronkright, W. 1970. Formation of Wurster’s blue in benzene at 25 deg. J. Am. Chem. Soc. 92: 6736–6743. Sundar, V. C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R. L., Someya, T., Gershenson, M. E., and Rogers, J. A. 2004. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 303: 1644–1646.

Suzuki, E. and Hatano, Y. 1986a. Electron thermalization processes in rare gases with the Ramsauer minimum. J. Chem. Phys. 84: 4915–4918.

Suzuki, E. and Hatano, Y. 1986b. Electron thermalization processes in a He–Kr bicomponent system and a Ne pure system. J . Chem. Phys. 85: 5341–5344.

S uzuki, H. , Me yer, H. , Ho shino, S. , an d Ha arer, D. 19 96. Ch arge ca rrier an d ex citon dy namics in po lysilane-based mu ltilayer li ght-emitting di odes as mo nitored wi th el ectroluminescence. J. Lumin. 66 –67: 42 3–428.

Tabata, Y., Tag awa, S., and Washio, M. 1984. Pulse-radiolysis studies on the mechanism of the high-sensitivity of chlorometh ylated polystyrene as an electron ne gative resist. A CS Symp. Ser. 255: 151–163.

T abata, Y., Tag awa, S., Washio, M., and Hayashi, N. 1985. Study on sensitized degradation and crosslinking of polymers by means of picosecond pulse-radiolysis. Radiat. Phys. Chem . 25: 305–316.

T achibana, H., Kaw abata, Y., Koshihara, S., and Tokura, Y. 1990. Exciton states of polysilanes as inv estigated by electro-absorption spectra. Sol. State Commun . 75: 5–9.

T agawa, S. 1986. Pulse-radiolysis and laser photolysis studies on radiation-resistance and sensitivity of polystyrene and related polymers. Radiat. Phys. Chem . 27: 455–459.

T agawa, S. 1987. Main reactions of chlorine-containing and silicon-containing electron and deep-UV (excimer laser) ne gative resists. A CS Symp. Ser. 346: 37–45.

T agawa, S. 1991a. Pulse radiolysis studies of polymers. A CS Symp. Ser. 475: 2–30.

T agawa, S., 1991b. Pulse radiolysis studies on polymers. In: CRC Handbook of Radiation Chemistry, Y. Tabata, Y. Ito, and S. T agawa (eds.). Boca Raton, FL: CRC Press. T agawa, S. 1993. Radiation ef fects of ion beams on polymers. Adv . Polym. Sci. 105: 99–116.

T agawa, S. and Schnabel, W. 1980a. Laser ¡ash-photolysis studies on excited single-states of benzene, toluene, para-xylene, polystyrene, and poly-alpha-meth ylstyrene. Chem. Phys. Lett . 75: 120–122.

T agawa, S. and Schnabel, W. 1980b. On the mechanism of the photolysis of polystyrene in chloroform solution—Laser ¡ ash-photolysis studies. Macr omol. Chem., Rapid Commun. 1: 345–350.

T agawa, S. and Schnabel, W. 1983. On the kinetics of polymer degradation. 10. Laser ¡ash-photolysis of poly-alpha-methylstyrene in chloroform solution. P olym. Photochem. 3: 203–209.

T agawa, S., Arai, S., Kira, A., Arai, S., Imamura, M., Tabata, Y., and Oshima, K. 1972. Pulse radiolysis study of polymerization of vin ylcarbazole in benzonitrile solutions. P olym. Sci. C10: 295–299.

T agawa, S., Tabata, Y., Arai, S., and Imamura, M. 1974. Solvent effects on both transient optical-spectra and products in ra diation-induced po lymerization an d di merization of vi nylcarbazole. J. Polym. Sci. C1 2: 54 5–548.

Tagawa, S., Washio, M., and Tabata, Y. 1979. Picosecond time-resolved ¡uorescence studies of poly(nvinylcarbazole) using a pulse-radiolysis technique. Chem. Phys. Lett . 68: 276–281.

T agawa, S., Schnabel, W., Washio, M., and Tabata, Y. 1981. Picosecond pulse-radiolysis and laser ¡ashphotolysis studies on polymer degradation of polystyrene and poly-alpha-methylstyrene. Radiat. Phys. Chem. 18: 1087–1095.

T agawa, S., Washio, M., Kobayashi, H., Katsumura, Y., and Tabata, Y. 1983. Picosecond pulse-radiolysis studies on geminate ion recombination in saturated-h ydrocarbon. Radiat. Phys. Chem . 21: 45–52.

T agawa, S., Nakashima, N., and Yoshihara, K. 1984. Absorption-spectrum of the triplet-state and the dynamics of intramolecular motion of polystyrene. Macr omolecules 17: 1167–1169. T agawa, S., Hayashi, N., Yoshida, Y., Washio, M., and Tabata, Y. 1989. Pulse-radiolysis studies on liquid alkanes and related polymers. Radiat. Phys. Chem . 34: 503–511.

T agawa, S., Kashiwagi, M., Kamada, T., Sekiguchi, M., Hosobuchi, K., Tominaga, H., Ooka, N., and Makuuchi, K. 2002. Economic scale of utilization of radiation (I) Industry comparison between Japan and the USA. J. Nucl. Sci. Technol. 39: 1002–1007.

T agawa, S., Seki, S., and Koza wa, T. 2004. Charged particle and photon-induced reactions in polymers. In Charg ed Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications, A. Mozumder and Y. Hatano (eds.), pp. 551–578. Ne w York: Marcel Dekk er.

Takenobu, T., Takahashi, T., Takeya, J., and Iwasa, Y. 2007. Effect of metal electrodes on rubrene single-crystal transistors. Appl. Phys. Lett . 90: 013507-1–013507-3.

T akeya, J., Nishikawa, T., Takenobu, T., Kobayashi, S., Iwasa, Y., Mitani, T., Goldmann, C., Krellner, C., and Batlogg, B. 2004. Effects of polarized organosilane self-assembled monolayers on organic single-crystal �eld-effect transistors. Appl. Phys. Lett . 85: 5078–5080.

T akeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., and Iwasa, Y. 2007. In-crystal and surface charge transport of electric-�eld-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98: 196804-1–196804-4.

Thomas, J. K., Johnson, K., Klippert, T., and Lowers, R. 1968. Nanosecond pulse radiolysis studies of reaction of ions in c yclohexane solutions. J . Chem. Phys. 48: 1608.

T refonas, P., West, R., and Miller, R. D. 1985. Polysilane high polymers: Mechanism of photodegradation. J. Am. Chem. Soc. 107: 2737.

Tsukuda, S., Seki, S., Saeki, A., Koza wa, T., Tag awa, S., Sugimoto, M., Idesaki, A., and Tanaka, S. 2004a. Precise control of nanowire formation based on polysilane for photoelectronic device application. Jpn. J. Appl. Phys. 43: 3810.

Tsukuda, S., Seki, S., Tag awa, S., Sugimoto, M., Idesaki, A., Tanaka, S., and Ohshima, A. 2004b. Fabrication of nano-wires using high-ener gy ion beams. J . Phys. Chem. B 108: 3407.

Tsukuda, S., Seki, S., Sugimoto, M., and Tag awa, S. 2005a. Nanowires with controlled sizes formed by single ion track reactions in polymers. Appl. Phys. Lett . 87: 233119.

Tsukuda, S., Seki, S., Sugimoto, M., and Tag awa, S. 2005b. Formation of nanowires based on π-conjug ated polymers by high-ener gy ion beam irradiation. Jpn. J . Appl. Phys. 44: 5839–5842.

Tsukuda, S., Seki, S., Sugimoto, M., and Tagawa, S. 2006. Customized morphologies of self-condensed multisegment polymer nano wires. J . Phys. Chem. B 110: 19319–19322.

Umemoto, Y., Ie, Y., Saeki, A., Seki, S., Tag awa, S., and Aso, Y. 2008. Electroneg ative oligothiophenes fully annelated with hexa¡uoroc yclopentene: Synthesis, properties, and intrinsic electron mobility. Org . Lett. 10: 1095–1098. v an de Craats, A. M., Warman, J. M., de Haas, M. P., Adam, D., Simmerer, J., Haarer, D., and Schuhmacher, P. 1996. The mobility of charge carriers in all four phases of the columnar discotic material hexakis(he ylthio) triphenylene: Combined TOF and PR-TRMC results. Adv . Mater. 8: 823–826. v an den Ende, C. A. M., Nyikos, L., Warman, J. M., and Hummel, A. 1980. Geminate ion decay kinetics in nanosecond pulse irradiated cyclohe xane solutions studied by optical and microw ave-absorption. Radiat. Phys. Chem. 15: 273–281. v an den Ende, C. A. M., Luthjens, L. H., Warman, J. M., and Hummel, A. 1982. Geminate ion recombination in irradiated liquid CCl 4 . Radiat. Phys. Chem. 19: 455–466.

Voityuk, A. A., Jortner, J., Bixon, M., and Rõsch, N. 2000. Energetics of hole transfer in DNA. Chem. Phys. Lett. 324: 430–434.

W arman, J. M. and Fessenden, R. W. 1968. Three body electron by nitrous oxide. J. Chem. Phys. 49: 4718–4719.

Warman, J. M., Fessenden, R. W., and Bakale, G. 1972. Dissociativ e attachment of thermal electrons to N 2 O and subsequent electron detachment. J . Chem. Phys. 57: 2702–2711.

W arman, J. M., de Haas, M. P., Grätzel, M., and Infelta, P. P. 1984. Microwave probing of electronic processes in small particle suspensions. Natur e 310: 306–308.

W arman, J. M., Gelinck, G. H., and de Haas, M. P. 2002. The mobility and relaxation kinetics of charge carriers in molecular materials studied by means of pulse-radiolysis time-resolved microwave conductivity: Dialkoxy-substituted phen ylene-vinylene polymers. J . Phys.: Condens. Matter 14: 9935–9954.

W arman, J. M., de Haas, M. P., Dicker, G., Grozema, F. C., Piris, J., and Debije, M. G. 2004. Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity: π -Bond-conjugated polymers v ersus π – π -stacked discotics. Chem. Mater . 16: 4600–4609.

W arman, J. M., Piris, L., Pisula, W., Kastler, M., Wasserfallen, D., and Müllen, K. 2005. Charge recombination via intercolumnar electron tunneling through the lipid-like mantle of discotic hexa-alkyl-hexa-perihexabenzocoronenes. J . Am. Chem. Soc. 127: 14257–14262.

W ashio, M., Tagawa, S., and Tabata, Y. 1981. Pulse-radiolysis studies on poly(n-vinylcarbazole) cation. Polym. J. 13: 935–938.

W ashio, M., Tag awa, S., and Tabata, Y. 1983. Pulse-radiolysis of polystyrene and benzene in cyclohe xane, chloroform and carbon-tetrachloride. Radiat. Phys. Chem . 21: 239–243.

W est, R. 1986. The polysilane high polymers. J . Organomet. Chem. 300: 327–346.

Y amagami, R., Kobayashi, K., Saeki, A., Seki, S., and Tagawa, S. 2006. Photogenerated hole mobility in DNA measured by time-resolv ed micro wave conducti vity. J . Am. Chem. Soc. 128: 2212–2213.

Yamagami, R., Kobayashi, K., and Tagawa, S. 2008. Formation of spectral intermediate G-C and A-T anion complex in duple x DN A studied by pulse radiolysis. J . Am. Chem. Soc. 130: 14772–14777.

Y amakawa, H., Abe, F., and Einaga, Y. 1994. Second virial coef�cient of oligoand polystyrenes near the θ temperature. More on the coil-to-glob ule transition. Macr omolecules 27: 5704–5712.

Y amamoto, H., Kozawa, T., Nakano, A., Okamoto, T., Tagawa, S., Ando, T., Sato, M., and Komano, H. 2005a. Reaction mechanisms of brominated chemically ampli�ed resists. Jpn. J . Appl. Phys. 44: L842–L844.

Y amamoto, H., Kozawa, T., Nakano, A., Okamoto, T., Tagawa, S., Ando, T., Sato, M., and Komano, H. 2005b. Study on acid generation from polymer . J . Vac. Sci. Technol. B 23: 2728–2732.

Y amamoto, Y., Fukushima, T., Suna, Y., Ishii, N., Saeki, A., Seki, S., Tagawa, S., Taniguchi, M., Kawai, T., and Aida, T. 2006a. Photoconducti ve coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314: 1761–1764.

Y amamoto, Y., Fukushima, T., Jin, W., Kosaka, A., Hara, T., Nakamura, T., Saeki, A., Seki, S., Tagawa, S., and Aida, T. 2006b. A glass hook allows �shing of hexa-peri-hexabenzocoronene graphitic nanotubes: fabrication of a macroscopic �ber with anisotropic electrical conduction. Adv . Mater. 18: 1297–1300.

Y amamoto, H., Koza wa, T., Tag awa, S., Ohmori, K., Sato, M., and Komano, H. 2007a. Single-component chemically ampli�ed resist based on dehalogenation of polymer . Jpn. J . Appl. Phys. 46: L648–L650.

Y amamoto, Y., Fukushima, T., Saeki, A., Seki, S., Tag awa, S., Ishii, N., and Aida, T. 2007b. Molecular engineering of coaxial donor-acceptor heterojunction by coassembly of two different hexabenzocoronenes: Graphitic nanotubes with enhanced photoconducting properties. J . Am. Chem. Soc. 129: 9276–9277.

Y amamoto, H., Koza wa, T., Saeki A., Tag awa, S., Mimura, T., Yuka wa, H., and Onodera, J. 2009. Reactivity of halogenated resist polymer with lo w-energy electrons. Jpn. J . Appl. Phys. 48: 06FC09.

Y anagisawa, K., Kume, T., Makuuchi, K., Tag awa, S., Chino, M., Inoue, T., Tak ehisa, M., Hagiwara, M., and Shimizu, M. 2002. An economic index regarding market creation of products obtained from utilization of radiation and nuclear energy (IV) – Comparison between Japan and the USA. J. Nuclear Sci. Technol. 39: 1120–1124.

Y oshida, Y., Tag awa, S., Kobayashi, H., and Tabata, Y. 1987. Study of geminate ion recombination in a solute solvent system by using picosecond pulse-radiolysis. Radiat. Phys. Chem . 30: 83-87.

Y oshioka, Y., Kitaga wa, Y., Takano, Y., Yamaguchi, K., Nakamura, T., and Saito, I. 1999. Experimental and theoretical studies on the selectivity of GGG triplets tow ard one-electron oxidation in B-form DNA. J. Am. Chem. Soc . 121: 8712–8719.

Y u, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger , A. J. 1995. Polymer photov oltaic cells: Enhanced ef�ciencies via a netw ork of internal donor -acceptor heterojunctions. Science 270: 1789–1791.

Zezin, A. A., Feldman, V. I., and Sukhov , F. F. 1995. Effect of electron scav engers on the formation of paramagnetic species upon radiolysis of polystyrene and its low-molecular-weight analogs. High Energy Chem. 29: 154–158.

Zhang, G. H. and Thomas, J. K. 1996. Energy transfer via ionic processes in polymer �lms irradiated by 0.4 meV electrons. J . Phys. Chem. 100: 11438–1145. 26 Chapter 26. Radiation Chemistry of Resist Materials and Processes in Lithography

Ablaza, S. L., Cameron, J. F., Xu, G., and Yueh, W. 2000. The effect of photoacid generator structure on deep ultraviolet resist performance. J . Vac. Sci. Technol. B 18: 2543–2550.

Aktary , M., Stepanova, M., and Dew, S. K. 2006. Simulation of the spatial distribution and molecular weight of polymethylmethacrylate fragments in electron beam lithography exposures. J. Vac. Sci. Technol. B 24: 768–779.

Aldrich, J. E., Bronskill, M. J., Wolff, R. K., and Hunt, J. W. 1971. Picosecond pulse radiolysis. 3. Reaction rates and reduction in yields of h ydrated electrons. J . Chem. Phys. 55: 530–536.

Aoai, T., Umehara, A., Kamiya, A., Matsuda, N., and Aotani, Y. 1989. Application of silicon polymer as positi ve photosensiti ve material. P olym. Eng. Sci. 29: 887–890.

Baciocchi, E., Delgiacco, T., and Elisei, F. 1993. Proton-transfer reactions of alkylaromatic cation radicals. The effect of alpha-substituents on the kinetic acidity of p-methoxytoluene cation radicals. J. Am. Chem. Soc. 115: 12290–12295.

B artczak, W. M. and Hummel, A. 1987. Computer-simulation of ion recombination in irradiated nonpolar liquids. J. Chem. Phys. 87: 5222–5228.

Bartczak, W. M. and Hummel, A. 1993. Computer-simulation study of spatial-distribution of the ions and electrons in tracks of high-energy electrons and the effect on the charge recombination. J. Phys. Chem. 97: 1253–1255.

Bartczak, W. M., Tachiya, M., and Hummel, A. 1990. Triplet formation in the ion recombination in irradiated liquids. Int. J . Radiat. Appl. Instrum., P art C 36: 195–198.

Bethe, H. A. 1930. The theory of the passage of rapid neutron radiation through matter. Ann. Phys. 5: 325–400.

Bordwell, F. G. and Cheng, J.-P. 1991. Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations. J . Am. Chem. Soc. 113: 1736–1743.

Brainard, R., Higgins, C., Hassanein, E., Matyi, R., and Wuest, A. 2008. Film quantum yields of ultrahigh PAG EUV photoresists. J . Photopolym. Sci. Technol. 21: 457–464.

Brede, O., Orthner, H., Zubarev, V., and Hermann, R. 1996. Radical cations of sterically hindered phenols as intermediates in radiation-induced electron transfer processes. J . Phys. Chem. 100: 7097–7105.

Buck, R. P. and Wagoner, D. E. 1980. Selective anodic oxidation of p-alkylaryl ethers—pathways and products. J. Electroanal. Chem. 115: 89–113.

Buhr , G., Dammel, R., and Lindley, C. 1989. Nonionic photoacid generating compounds. Polym. Mater. Sci. Eng. 61: 269.

Cameron, J. F., Chan, N., Moore, K., and Pohlers, G. 2001. Comparison of acid generating ef�ciencies in 248 and 193 nm photoresists. Pr oc. SPIE 4345: 106–118.

Chang, T. H. P . 1975. Proximity ef fect in electron-beam lithograph y. J . Vac. Sci. Technol. 12: 1271–1275.

Chapiro, A. 1962. Radiation Chemistry of P olymeric Systems. Ne w York: Wiley, p. 515.

Chen, W. and Ahmed, H. 1993. Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymeth ylmethacrylate resist. Appl. Phys. Lett . 62: 1499–1501.

Cherno vitz, A. C. and Jonah, C. D. 1988. Isotopic dependence of recombination kinetics in water. J. Phys. Chem. 92: 5946–5950.

Clif ford, P., Green, N. J. B., and Pilling, M. J. 1982. Stochastic-model based on pair distribution-functions for reaction in a radiation-induced spur containing one-type of radical. J . Phys. Chem. 86: 1318–1321.

Cumming, D. R. S., Thoms, S., Beaumont, S. P., and Wea ver, J. M. R. 1996. Fabrication of 3 nm wires using 100 keV electron beam lithography and poly(methyl methacrylate) resist. Appl. Phys. Lett. 68: 322–324.

De ktar, J. L. an d Ha cker N. P. 19 90a. Ph otochemistry of tr iarylsulfonium sa lts. J. Am. Chem. Soc. 11 2: 60 04–6015.

Dektar, J. L. and Hack er, N. P . 1990b . Photochemistry of diaryliodonium salts. J . Org. Chem. 55: 639–647.

Dentinger , P., Cardinale, G., Henderson, C., Fisher, A., and Ray-Chaudhuri, A. 2000. Photoresist �lm thickness for e xtreme ultra violet lithograph y. Pr oc. SPIE 3997: 588–599.

Dill, F. H., Hornberger, W. P., Hauge, P. S., and Shaw, J. M. 1975. Characterization of positive photoresist. IEEE Trans. Electron Devices 22: 445–452.

Dixon, W. T. and Murphy , D. 1976. Determination of the acidity constants of some phenol radical cations by means of electron spin resonance. J . Chem. Soc., Faraday Trans. 2 72: 1221–1230.

Dixon, W. T. and Murphy , D. 1978. Determination of acid dissociation constants of some phenol radical cations. J . Chem. Soc., Faraday Trans. 2 74: 432–439.

F orbes, W. F. and Sulliv an, P. D. 1966. The use of aluminum chloride-nitromethane for the production of cation radicals. J . Am. Chem. Soc. 88: 2862–2863.

F ox, R. B., Isaacs, L. G., and Stokes, S. 1963. Photolytic degradation of poly(methyl methacrylate). J. Polym. Sci. A 1: 1079–1086.

Gadosy , T. A., Shukla, D., and Johnston, L. J. 1999. Generation, characterization, and deprotonation of phenol radical cations. J . Phys. Chem. A 103: 8834–8839.

Gallatin, G. M. 2005. Resist blur and line edge roughness. Pr oc. SPIE 5754: 38–52.

Ganapathi, M. R., Hermann, R., Naumov , S., and Brede, O. 2000. Free electron transfer from sev eral phenols to radical cations of non-polar solv ents. Phys. Chem. Chem. Phys . 2: 4947–4955.

Ganapathi, M. R., Naumov , S., Hermann, R., and Brede, O. 2001. Nucleophilic effects on the deprotonation of phenol radical cations. Chem. Phys. Lett . 337: 335–340.

Geusk ens, G. and David, C. 1973. Identi�cation of free radicals produced by the radiolysis of poly(methyl methacrylate) and poly(meth yl acrylate) at 77°K. Makr omol. Chem. 165: 273–280.

Goulet, T., Mattei, I., and Jay-Gerin, J. P. 1990. A description of random-walks with collision anisotropy and with a nonconstant mean free-path. Can. J . Phys. 68: 912–917.

Green, N. J. B., Pilling, M. J., Pimblott, S. M., and Clifford, P. 1989. Stochastic-models of diffusion-controlled ionic reactions in radiation-induced spurs. 2. Lo w-permittivity solv ents. J . Phys. Chem. 93: 8025–8031.

Gupta, A., Liang, R., Tsay, F. D., and Moacanin, J. 1980. Characterization of a dissociative excited state in the solid state: Photochemistry of poly(methyl methacrylate). Photochemical processes in polymeric systems. 5. Macr omolecules 13: 1696–1700.

Hack er, N. P. and Welsh, K. M. 1991. Photochemistry of triphenylsulfonium salts in poly[4-[(tert-butoxycarbonyl)oxy]styrene]: Evidence for a dual photoinitiation process. Macr omolecules 24: 2137–2139.

Hack er, N. P., Hofer, D. C., and Welsh, K. M. 1992. Photochemical and photophysical studies on chemically ampli�ed resists. J . Photopolym. Sci. Technol. 5: 35–46.

Hamill, W. H. 1969. A model for radiolysis of w ater. J . Phys. Chem. 73: 1341–1349.

Ha wryluk, R. J., Hawryluk, A. M., and Smith, H. I. 1974. Energy dissipation in a thin polymer �lm by electronbeam scattering. J . Appl. Phys. 45: 2551–2566.

Hirose, R., Koza wa, T., Tag awa, S., Kai, T., and Shimokaw a, T. 2007. Dependence of absorption coef�cient and acid generation ef�cienc y on acid generator concentration in chemically ampli�ed resist for extreme ultraviolet lithograph y. Jpn. J . Appl. Phys. 46: L979–L981.

Hirose, R., Kozawa, T., Tagawa, S., Kai, T., and Shimokawa, T. 2008a. Dependence of acid generation ef�ciency on molecular structures of acid generators upon exposure to extreme ultraviolet radiation. Appl. Phys. Express 1: 027004.

Hirose, R., Kozawa, T., Tagawa, S., Shimizu, D., Kai, T., and Shimokawa, T. 2008b. Difference between acid generation mechanisms in poly(hydroxystyrene)and polyacrylate-based chemically ampli�ed resists upon e xposure to e xtreme ultra violet radiation. Jpn. J . Appl. Phys. 47: 7125–7127.

Holcman, J. and Sehested, K. 1976. Anisole radical cation reactions in aqueous solution. J. Phys. Chem. 80: 1642–1644.

Holton, D. M. and Murphy, D. 1979. Determination of acid dissociation constants of some phenol radical cations. P art 2. J . Chem. Soc., Faraday Trans. 2 75: 1637–1642.

Houlihan, F. M., Shugard, A., Gooden, R., and Reichmanis, E. 1988. Nitrobenzyl ester chemistry for polymer processes in volving chemical ampli�cation. Macr omolecules 21: 2001–2006.

Hunt, J. W. and Chase, W. J. 1977. Temperature and solvent dependence of electron scavenging ef�ciency in polar liquids: Water and alcohols. Can. J . Chem. 55: 2080–2087.

Ichika wa, T. and Yoshida, H. 1990. Mechanism of radiation-induced degradation of poly(methyl methacrylate) as studied by ESR and electron spin echo methods. J . Polym. Sci. A 28: 1185–1196.

Inokuti, M. 1975. Ionization yields in g ases under electron-irradiation. Radiat. Res . 64: 6–22.

Itani, T. 2009. Recent status and future direction of EUV resist technology . Micr oelectron. Eng. 86: 207–212.

Ito, H. 2005. Chemical ampli�cation resists for microlithography . In Microlitho graphy/Molecular Imprinting. Advances in Polymer Science Series. Vol. 172, pp. 37–245. Berlin/Heidelber g, German y: Springer .

Ito, H. and Willson, C. G. 1983. Chemical ampli�cation in the design of dry dev eloping resist materials. Polym. Eng . Sci. 23: 1012–1018.

Ito, O., Akiho, S., and Iino, M. 1989. Kinetic study for reactions of nitrate radical ( NO 3 ) with substituted toluenes in acetonitrile solution. J . Org. Chem. 54: 2436–2440.

Jay-Gerin, J. P., Goulet, T., and Billard, I. 1993. On the correlation between electron-mobility, free-ion yield, and electron thermalization distance in nonpolar dielectric liquids. Can. J . Chem. 71: 287–293.

Jonah, C. D., Miller, J. R., and Matheson, M. S. 1977. Reaction of precursor of hydrated electron with electron scav engers. J . Phys. Chem. 81: 1618–1622.

Jonah, C. D., Bartels, D. M., and Chernovitz, A. C. 1989. Primary processes in the radiation-chemistry of water . Int. J. Radiat. Appl. Instrum., Part C 34: 145–156.

Jonsson, M., Lind, J., Reitberger , T., Eriksen, T. E., and Merenyi, G. 1993. Redox chemistry of substituted benzenes: The one-electron reduction potentials of methoxy-substituted benzene radical cations. J. Phys. Chem. 97: 11278–11282.

K esper, K., Diehl, F., Simon, J. G. G., Specht, H., and Schweig, A. 1991. Resonant two-photon ionization of phenol in methylene chloride doped solid argon using 248 nm KrF laser and 254 nm Hg lamp radiation, a comparative study. The UV/VIS absorption spectrum of phenol radical cation. Chem. Phys. 153: 511–517.

Kim, B.-S., Lee, H.-S., Wi, J.-S., Jin, K.-B., and Kim, K.-B. 2005. Sensitivity characteristics of positiv e and negative resists at 200 kV electron-beam lithograph y. Jpn. J . Appl. Phys. 44: L95–L97.

K imura, M., Kowari, K., Inokuti, M., Bronic, I. K., Srdoc, D., and Obelic, B. 1991. Theoretical-study of W values in hydrocarbon gases. Radiat. Res. 125: 237–242.

Koba, F., Yamashita, H., and Arimoto, H. 2005. Highly accurate proximity effect correction for 100 kV electron projection lithograph y. Jpn. J . Appl. Phys. 44: 5590–5594.

K ozawa, T. and Tag awa, S. 2006. Resolution blur of latent acid image and acid generation ef�cienc y of chemically ampli�ed resists for electron beam lithograph y. J . Appl. Phys. 99: 054509.

K ozawa, T. and Tag awa, S. 2008. Side wall degradation of chemically ampli�ed resists based on poly (4-hydroxystyrene) for e xtreme ultra violet lithograph y. Jpn. J . Appl. Phys. 47: 7822–7826.

K ozawa, T. , Yo shida, Y. , Ue saka, M. , an d Ta gawa, S. 19 92. Ra diation-induced ac id ge neration re actions in chemically ampli�ed resists for electron beam and x-ray lithography. Jpn. J. Appl. Phys. 31: 43 01–4306.

Kozawa, T., Nagahara, S., Yoshida, Y., Tagawa, S., Watanabe, T., and Yamashita, Y. 1997. Radiation-induced reactions of chemically ampli�ed x-ray and electron beam resists based on deprotection of t-butoxycarbonyl groups. J . Vac. Sci. Technol. B 15: 2582–2586.

K ozawa, T., Mizutani, Y., Miki, M., Yamamoto, T., Suemine, S., Yoshida, Y., and Tagawa, S. 2000. Development of subpicosecond pulse radiolysis system. Nucl. Instrum. Methods Phys. Res. Sect. A 440: 251–254.

K ozawa, T., Saeki, A., Yoshida, Y., and Tag awa, S. 2002. Study on radiation-induced reaction in microscopic region for basic understanding of electron beam patterning in lithographic process (I). Jpn. J. Appl. Phys. 41: 4208–4212.

Kozawa, T., Saeki, A., Nakano, A., Yoshida, Y., and Tagawa, S. 2003. Relation between spatial resolution and reaction mechanism of chemically ampli�ed resists for electron beam lithography. J. Vac. Sci. Technol. B 21: 3149–3152.

K ozawa, T., Saeki, A., and Tagawa, S. 2004. Modeling and simulation of chemically ampli�ed electron beam, x-ray, and EUV resist processes. J . Vac. Sci. Technol. B 22: 3489–3492.

K ozawa, T., Yamamoto, H., Saeki, A., and Tagawa, S. 2005. Proton and anion distribution and line edge roughness of chemically ampli�ed electron beam resist. J . Vac. Sci. Technol. B 23: 2716–2720.

K ozawa, T., Tagawa, S., Oizumi, H., and Nishiyama, I. 2006a. Acid generation ef�ciency in a model system of chemically ampli�ed e xtreme ultra violet resist. J . Vac. Sci. Technol. B 24: L27–L30.

K ozawa, T., Shigaki, T., Okamoto, K., Saeki, A., Tagawa, S., Kai, T., and Shimokawa, T. 2006b. Analysis of acid yield generated in chemically ampli�ed electron beam resist. J. Vac. Sci. Technol. B 24: 3055–3060.

Kozawa, T., Tagawa, S., Kai, T., and Shimokawa, T. 2007a. Sensitization distance and acid generation ef�ciency in a model system of chemically ampli�ed electron beam resist with methacrylate backbone polymer. J . Photopolym. Sci. Technol. 20: 577–580.

K ozawa, T., Tag awa, S., and Shell, M. 2007b. Theoretical study on relationship between acid generation ef�cienc y and acid generator concentration in chemically ampli�ed extreme ultraviolet resists. Jpn. J . Appl. Phys. 46: L1143–L1145.

K ozawa, T., Tag awa, S., Cao, H. B., Deng, H., and Leeson, M. J. 2007c. Acid distribution in chemically ampli�ed e xtreme ultra violet resist. J . Vac. Sci. Technol. B 25: 2481–2485.

K ozawa, T., Okamoto, K., Nakamura, J., and Tag awa, S. 2008a. Feasibility study on high-sensitivity chemically ampli�ed resist by polymer absorption enhancement in extreme ultraviolet lithography . Appl. Phys. Expr ess 1: 067012.

K ozawa, T., Tagawa, S., Santillan, J. J., Toriumi, M., and Itani, T. 2008b. Effects of rate constant for deprotection on latent image formation in chemically ampli�ed extreme ultraviolet resists. Jpn. J. Appl. Phys. 47: 4926–4931.

Koza wa, T., Tag awa, S., Santillan, J. J., Toriumi, M., and Itani, T. 2008c. Feasibility study of chemically ampli�ed e xtreme ultra violet resists for 22 nm f abrication. Jpn. J . Appl. Phys. 47: 4465–4468.

K ozawa, T., Tag awa, S., and Shell, M. 2008d. Resolution degradation caused by multispur effect in chemically ampli�ed e xtreme ultra violet resists. J . Appl. Phys. 103: 084306.

K ozawa, T., Okamoto, K., Saeki, A., and Tag awa, S. 2009. Difference of spur distribution in chemically ampli�ed resists upon exposure to electron beam and extreme ultraviolet radiation. Jpn. J . Appl. Phys. 48: 056508.

Lam, K. Y. and Hunt, J. W. 1975. Picosecond pulse-radiolysis. 6. Fast electron reactions in concentrated solutions of sca vengers in w ater and alcohols. Int. J . Radiat. Phys. Chem. 7: 317–338.

Land, E. J. and Ebert, M. 1967. Pulse radiolysis studies of aqueous phenol – water elimination from dihydroxyc yclohexadienyl radicals to form phenoxyl. T rans. Faraday Soc. 63: 1181–1190.

Land, E. J. and Porter, G. 1963. Primary photochemical processes in aromatic molecules. Part 7.—Spectra and kinetics of some phenoxyl deri vatives. T rans. Faraday Soc. 59: 2016–2026.

Land, E. J., Porter, G., and Strachan, E. 1961. Primary photochemical processes in aromatic molecules. 6. Absorption spectra and acidity constants of phenoxyl radicals. T rans. Faraday Soc. 57: 1885–1893.

Le wis, M. A. and Jonah, C. D. 1986. Evidence for 2 electron-states in salvation and scav enging processes in alcohols. J . Phys. Chem. 90: 5367–5372.

Li, D. and Brisson, J. 1998. Hydrogen bonds in poly(methyl methacrylate) poly(4-vinyl phenol) blends: 1. Quantitativ e analysis using FTIR spectroscop y. P olymer 39: 793–800.

Lias, S. G., Liebman, J. F., and Levin, R. D. 1984. Evaluated gas-phase basicities and proton af�nities of molecules: Heats of formation of protonated molecules. J . Phys. Chem. Ref. Data 13: 695–808.

Maruyama, K., Furuta, H., and Osuka, A. 1986. Cidnp study on porphyrin-photosensitized reactions with phenol and quinone: Dimerization of 4-methoxyphenol and cross coupling of benzoquinone to porphyrins covalently link ed with phenol group. T etrahedron 42: 6149–6155.

Masuda, S., Kawanishi, Y., Hirano, S., Kamimura, S., Mizutani, K., Yasunami, S., and Kawabe, Y. 2006. The material design to reduce outgassing in acetal based chemically ampli�ed resist for EUV lithography. Proc. SPIE 6153: 615342.

McMillan, J. A., Johnson, S., and MacDonald, N. C. 1989. Simulation of electron-beam exposure of submicron patterns. J . Vac. Sci. Technol. B 7: 1540–1545.

M ozumder, A. 2002. Free-ion yield and electron mobility in liquid hydrocarbons: A consistent correlation. J. Phys. Chem. A 10 6: 70 62–7067.

Murata, K., Kyser , D. F., and Ting, C. H. 1981. Monte Carlo simulation of fast secondary-electron production in electron-beam resists. J . Appl. Phys. 52: 4396–4405.

Nagahara, S., Sakurai, Y., Wakita, M., Yamamoto, Y., Tagawa, S., Komura, M., Yano, E., and Okazaki, S. 2000. Methods to improve radiation sensitivity of chemically ampli�ed resists by using chain reactions of acid generation. Pr oc. SPIE 3999: 386–394.

Nakano, A., Okamoto, K., Kozawa, T., and Tawaga, S. 2004a. Pulse radiolysis study on proton and charge transfer reactions in solid poly(meth yl methacrylate). Jpn. J . Appl. Phys. 43: 4363–4367.

Nakano, A., Okamoto, K., Kozawa, T., and Tagawa, S. 2004b. Effects of ester groups on proton generation and diffusion in polymethacrylate matrices. Jpn. J . Appl. Phys. 43: 3981–3983.

Nakano, A., Okamoto, K., Yamamoto, Y., Kozawa, T., Tagawa, S., Kai, T., and Nemoto, H. 2005. Dependence of acid yield on acid generator in chemically ampli�ed resist for post-optical lithography. Jpn. J. Appl. Phys. 44: 5832–5835.

Nakano, A., Kozawa, T., Tagawa, S., Szreder, T., Wishart, J. F., Kai, T., and Shimokawa, T., 2006a. Reactivity of acid generators for chemically ampli�ed resists with low-energy electrons. Jpn. J. Appl. Phys. 45: L197–L200.

Nakano, A., Koza wa, T., Okamoto, K., Tag awa, S., Kai, T., and Shimokaw a, T. 2006b. Acid generation mechanism of poly(4-hydroxystyrene)-based chemically ampli�ed resists for post-optical lithography: Acid yield and deprotonation behavior of poly(4-hydroxystyrene) and poly(4-methoxystyrene). Jpn. J . Appl. Phys. 45: 6866–6871.

Natsuda, K., Koza wa, T., Saeki, A., Tag awa, S., Kai, T., and Shimokaw a, T. 2008. Study of the reaction of acid generators with epithermal and thermalized electrons. Jpn. J . Appl. Phys. 47: 4932–4935.

Natsuda, K., Koza wa, T., Okamoto, K., Saeki, A., and Tag awa, S. 2009. Correlation between C 37 parameters and acid yields in chemically ampli�ed resists upon exposure to 75 keV electron beam. Jpn. J. Appl. Phys. 48: 06FC05.

Og asawara, M., Tanaka, M., and Yoshida, H. 1987. Reaction of solvated electron with poly(methyl methacrylate) and substituted poly(methyl methacrylate) in hexamethylphosphoramide studied by pulse radiolysis. J . Phys. Chem. 91: 937–941.

Oizumi, H., Tanaka, Y., Kumise, T., Shiono, D., Hirayama, T., Hada, H., Onodera, J., Yamaguchi, A., and Nishiyama, I. 2007. Evaluation of new molecular resist for EUV lithography . J. Photopolym. Sci. Technol. 20: 403–410.

Okamoto, K., Saeki, A., Koza wa, T., Yoshida, Y., and Tag awa, S. 2003. Subpicosecond pulse radiolysis study of geminate ion recombination in liquid benzene. Chem. Lett . 32: 834–835.

Okamoto, K., Koza wa, T., Saeki, A., Yoshida, Y., and Tag awa, S. 2007. Subpicosecond pulse radiolysis in liquid methyl-substituted benzene deri vatives. Radiat. Phys. Chem . 76: 818–826.

O’Neill, P., Steenken, S., and Schulte-Frohlinde, D. 1975. Formation of radical cations of methoxylated benzenes by reaction with hydroxyl radicals, thallium(2+), silver(2+), and peroxysulfate (SO4 − ) in aqueous solution. Optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study. J. Phys. Chem. 79: 2773–2779.

Onsager , L. 1938. Initial recombination of ions. Phys. Re v. 54: 554–557.

Ortica, F., Scaiano, J. C., Pohlers, G., Cameron, J. F., and Zampini, A. 2000. Laser ¡ash photolysis study of two aromatic N-oxyimidosulfonate photoacid generators. Chem. Mater . 12: 414–420.

P arikh, M. and Kyser, D. F. 1979. Energy deposition functions in electron resist �lms on substrates. J. Appl. Phys. 50: 1104–1111.

Pohlers, G., Scaiano, J. C., and Sinta, R. 1997. A novel photometric method for the determination of photoacid generation ef�ciencies using benzothiazole and xanthene dyes as acid sensors. Chem. Mater. 9: 3222–3230.

Porter, G. and Wright, F. J. 1955. Primary photochemical processes in aromatic molecules. 3. Absorption spectra of benzyl, anilino, phenoxy and related free radicals. T rans. Faraday Soc. 51: 1469–1475.

Raner , K. D., Lusztyk, J., and Ingold, K. U. 1989. Ultraviolet visible spectra of halogen molecule/arene and halogen atom/arene π -molecular comple xes. J . Phys. Chem. 83: 564–570.

Rassolo v, V. A. and Mozumder, A. 2001. Monte Carlo simulation of electron thermalization distribution in liquid hydrocarbons: Effects of inverse collisions and of an external electric �eld. J. Phys. Chem. B 105: 1430–1437.

Rishton, S. A. and Kern, D. P. 1987. Point exposure distribution measurements for proximity correction in electron-beam lithograph y on a sub-100 nm scale. J . Vac. Sci. Technol. B 5: 135–141.

R onlan, A., Coleman, J., Hammerich, O., and Parker, V. D. 1974. Anodic oxidation of methoxybiphenyls: Effect of the biphenyl linkage on aromatic cation radical and dication stability. J. Am. Chem. Soc. 96: 845–849.

Ryan, J. M., Hoole, A. C. F., and Broers, A. N. 1995. A study of the effect of ultrasonic agitation during development of poly(methylmethacrylate) for ultrahigh resolution electron-beam lithography. J. Vac. Sci. Technol. B 13: 3035–3039.

Saeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2002. Study on radiation-induced reaction in microscopic region for basic understanding of electron beam patterning in lithographic process (II). Jpn. J. Appl. Phys. 41: 4213–4216.

Saeki, A., Kozawa, T., Yoshida, Y., and Tagawa, S. 2005. Multi spur effect on decay kinetics of geminate ion recombination using Monte Carlo technique. Nucl. Instrum. Methods Phys. Res. Sect. B 234: 285–290.

Saeki, A., Kozawa, T., Tagawa, S., and Cao, H. B. 2006. Line edge roughness of a latent image in post-optical lithography. Nanotec hnology 17: 1543–1546.

Saeki, A., Kozawa, T., Ohnishi, Y., and Tagawa, S. 2007. Reactivity between biphenyl and precursor of solvated electrons in tetrahydrofuran measured by picosecond pulse radiolysis in near-ultraviolet, visible, and infrared. J . Phys. Chem. A 111: 1229–1235.

Saito, N. and Suzuki, I. H. 2001. Photon W-value for Ar in the sub-keV x-ray region. Radiat. Phys. Chem. 60: 291–296.

Sakai, W., Tsuchida, A., Yamamoto, M., and Yamauchi, J. 1995. Main chain scission reaction of poly(methyl methacrylate) caused by tw o-photon ionization of dopant. J . Polym. Sci. A 33: 1969–1978.

Sakamizu, T., Yamaguchi, H., Shiraishi, H., Murai, F., and Ueno, T. 1993. Dev elopment of positiv e electronbeam resist for 50 kV electron-beam direct-writing lithograph y. J . Vac. Sci. Technol. B 11: 2812–2817.

Schlesener , C. J. and Kochi, J. K. 1984. Stoichiometry and kinetics of p-methoxytoluene oxidation by electron transfer: Mechanistic dichotomy between side chain and nuclear substitution. J. Org. Chem. 49: 3142–3150.

Shimizu, R., Ikuta, T., Everhart, T. E., and Dev ore, W. J. 1975. Experimental and theoretical-study of energy dissipation pro�les of k eV electrons in polymeth ylmethacrylate. J . Appl. Phys. 46: 1581–1584.

Shimizu, D., Maruyama, K., Saitou, A., Kai, T., Shimokaw a, T., Fujiwara, K., Kikuchi, Y., and Nishiyama, I. 2007. Progress in EUV resist de velopment. J . Photopolym. Sci. Technol. 20: 423–428.

Shoute, L. C. T. and Neta, P. 1990. Bromine atom complexes with bromoalkanes: Their formation in the pulse radiolysis of di-, tri-, and tetrabromomethane and their reactivity with org anic reductants. J. Phys. Chem. 94: 2447–2453.

Siebbeles, L. D. A., Bartczak, W. M., Terrissol, M., and Hummel, A. 1997. Computer simulation of the ion escape from high-ener gy electron tracks in nonpolar liquids. J . Phys. Chem. A 101: 1619–1627.

Singh, L., Ludovice, P. J., and Henderson, C. L. 2005. The effect of �lm thickness on the dissolution rate and hydrogen bonding beha vior of photoresist polymer thin �lms. Pr oc. SPIE 5753: 319–328.

Sulli van, P. D. and Brette, N. A. 1975. Temperature-dependent splitting constants in the electron spin resonance spectra of cation radicals. V. Methylidyne protons in some tetrasubstituted benzenes. J. Phys. Chem. 79: 474–479.

Suzuki, I. H. and Saito, N. 1985. Effect of inner-shell excitations on the W-value of propane. Bull. Chem. Soc. Jpn. 58: 3210–3214.

Suzuki, I. H. and Saito, N. 1987. Oscillatory variation near the C-K edge in the photon W-v alue of ethylene. Bull. Chem. Soc. Jpn. 60: 2989–2992.

T abata, M., Nilsson, G., Lund, A., and Sohma, J., 1983. Ionic species in irradiated poly(methyl methacrylate): A pulse radiolysis and ESR study . J . Polym. Sci. Polym. Chem. Ed. 21: 3257–3268.

T abata, Y., Tagawa S., and Washio M. 1984. Pulse-radiolysis studies on the mechanism of the high-sensitivity of chlorometh ylated polystyrene as an electron ne gative resist. A CS Symposium Series 255: 151–163.

T agawa, S. 1986. Pulse-radiolysis and laser photolysis studies on radiation-resistance and sensitivity of polystyrene and related polymers. Radiat. Phys. Chem . 27: 455–459.

T agawa S. 1987. Main reactions of chlorine-containing and silicon-containing electron and deep-UV (excimer laser) ne gative resists. A CS Symposium Series 346: 37–45.

T agawa, S., Arai, S., Kira, A., Imamura, M., Tabata, Y., and Oshima, K. 1972. Pulse radiolysis study of polymerization of vin ylcarbazole in benzonitrile solutions. J . Polym. Sci., Part B 10: 295–297.

T agawa, S., Nagahara, S., Iwamoto, T ., Wakita, M., Kozawa, T ., Yamamoto, Y., Werst, D., and T rifunac, A. D. 2000. Pr oc. SPIE 3999: 204.

T agawa, S., Seki, S., and Kozawa, T. 2004. Charged particle and photon-induced reactions in polymers. In Charged Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.), pp. 551–578. Ne w York: Marcel Dekk er.

Takamuku, S., Komitsu, S., and Toki, S. 1989. Radical cations of anisole derivatives: Novel complexformation. Ra diat. Phys. Chem. 34 : 55 3–559.

Tanaka, M., Yoshida, H., and Ichikawa, T. 1990. Thermal and photo-induced reactions of polymer radicals in γ-irradiated poly(alk yl methacrylate). P olym. J. 22: 835–841.

T anuma, S., Powell, C. J., and Penn, D. R. 1994. Calculations of electron inelastic mean free paths. 5. Data for 14 or ganic-compounds o ver the 50–2000 eV range. Surf . Interface Anal. 21: 165–176.

Tatro, S., Baker, G., Bisht, K., and Harmon, J. 2003. A MALDI, TGA, TG/MS, and DEA study of the irradiation ef fects on PMMA. P olymer 44: 167–176.

Thack eray, J. W., Aqad, E., Cronin, M. F., and Spear-Alfonso, K. 2008. Design of faster high resolution resists: Getting more acid yield from EUV photons. J . Photopolym. Sci. Technol. 21: 415–420.

T orikai, A., Ohno, M., and Fueki, K. 1990. Photodegradation of poly(methyl methacrylate) by monochromatic light: Quantum yield, ef fect of w avelengths, and light intensity . J . Appl. Polym. Sci. 41: 1023–1032.

T ripathi, G. N. R. and Schuler, R. H. 1987. Resonance Raman spectra of p-benzosemiquinone radical and hydroquinone radical cation. J . Phys. Chem. 91: 5881–5885.

Tsuji, S., Kozawa, T., Yamamoto, Y., and Tagawa, S. 2000. Studies on reaction mechanisms of EB resist by pulse radiolysis. J . Photopolym. Sci. Technol. 13: 733–738. v an Beelen, E. S. E., Koblenz, T. A., Ingemann, S., and Hammerum, S. 2004. Experimental and theoretical evaluation of proton af�nities of furan, the methylphenols, and the related anisoles. J. Phys. Chem. A 108: 2787–2793.

W illiams, L. E., Callcott, T. A., Ashley , J. C., and Anderson, V. E. 1989. Interactions of electrons with poly(methyl-methacrylate). J . Electron Spectrosc. Relat. Phenom. 49: 323–334.

W ojcik, M., Bartczak, W. M., and Hummel, A. 1992. Computer-simulation of electron scav enging in multipair spurs in dielectric liquids. J . Chem. Phys. 97: 3688–3695.

W olff, R. K., Bronskill, M. J., and Hunt, J. W. 1970. Picosecond pulse radiolysis studies. 2. Reactions of electrons with concentrated sca vengers. J . Chem. Phys. 53: 4211–4217.

W olff, R. K., Aldrich, J. E., Penner, T. L., and Hunt, J. W. 1975. Picosecond pulse-radiolysis. 5. Yield of electrons in irradiated aqueous-solution with high-concentrations of scav enger. J. Phys. Chem. 79: 210–219.

Yamamoto, H., Nakano, A., Okamoto, K., Koza wa, T., and Tag awa, S. 2004a. Polymer screening method for chemically ampli�ed electron beam and x-ray resists. Jpn. J . Appl. Phys. 43: 3971–3973.

Y amamoto, H., Kozawa, T., Nakano, A., Okamoto, K., Yamamoto, Y., Ando, T., Sato, M., Komano, H., and Tag awa, S. 2004b. Proton dynamics in chemically ampli�ed electron beam resists. Jpn. J . Appl. Phys. 43: L848–L850.

Y amashita, K., Kamimura, S., Takahashi, H., and Nishikaw a, N. 2008. A resist material study for LWR and resolution impro vement in EUV lithograph y. J . Photopolym. Sci. Technol. 21: 439–442.

Y asin, S., Hasko, D. G., and Ahmed, H. 2001. Fabrication of <5 nm width lines in poly(methylmethacrylate) resist using a water: Isopropyl alcohol dev eloper and ultrasonically-assisted dev elopment. Appl. Phys. Lett . 78: 2760–2762.

Y oshida, Y., Tag awa, S., Kobayashi, H., and Tabata, Y. 1987. Study of geminate ion recombination in a solute solvent system by using picosecond pulse-radiolysis. Radiat. Phys. Chem . 30: 83–87.

Y oshida, Y., Mizutani, Y., Kozawa, T., Saeki, A., Seki, S., Tagawa, S., and Ushida, K. 2001. Development of laser-synchronized picosecond pulse radiolysis system. Radiat. Phys. Chem . 60: 313–318.

Zweig, A. 1963. Molecular comple xes of methoxybenzenes. J . Phys. Chem. 67: 506–508. 27 Chapter 27. Radiation Processing of Polymers and Its Applications

Abrol, K., Qazi, G. N., and Ghosh, A. K. 2007. Characterization of an anion-exchange porous polypropylene hollow �ber membrane for immobilization of ABL lipase. J . Biotechnol. 128: 838–848.

Aoki, S., Saito, K., Jyo, A., Katakai, A., and Sugo, T. 2001. Phosphoric acid �ber for extremely rapid elimination of hea vy metal ions from w ater. Anal. Sci . 17(Suppl.): i205–i208. PEEK based PEM Operating time (h) V o l t a g e ( V ) 0.2 0.4 0.6 0 200 400 600 800 1000 Nafion 112 Temp.: 95°C 40% RH 80% RH

FIGURE 27.23 Fuel cell performance of PEEK-based PEM.

Awual, Md. R., Urata, S., Jyo, A., Tamada, M., and Katakai, A. 2008. Arsenate removal from water by a weakbase anion e xchange �brous adsorbent. W ater Res. 42: 689–696.

Basuki, F., Seko, N., Tamada, M., Sugo, T., and Kume, T. 2003. Direct synthesis of adsorbent having phosphoric acid with radiation induced graft polymerization. J . Ion Exchange 14 (Suppl.): 209–212.

Bena vente, M. 2008. Adsorption of metallic ions onto chitosan: Equilibrium and kinetic studies, Licentiate thesis, Ro yal Institute of Technology, Stockholm, Sweden.

Bozzi, A. and Chapiro, A. 1988. Synthesis of perm-selective membranes by grafting acrylic acid into airirradiated Te¡on-FEP �lms. Radiat. Phys. Chem . 32: 193–196.

Brack, H.-P. and Scherer, G. G. 1997. Modi�cation and characterization of thin polymer �lms for electrochemical applications. Macr omol. Symp. 126: 25–49.

Briskman, B. A. and Tlebaev, K. B. 2007. Radiation effects on thermal properties of polymers. II. Polytetra¡uoroethylene. High P erform. Polym. 20: 86–114.

Büchi, F. N., Gupta, B., Haas, O., and Shcerer, G. G. 1995a. Study of radiation-grafted FEP-g-polystyrene membranes as polymer electrolytes in fuel cells. Electr ochim. Acta 40: 345–353.

Büchi, F. N., Gupta, B., Haas, O., and Shcerer, G. G. 1995b. Performance of differently cross-linked, partially ¡uorinated proton exchange membranes in polymer electrolyte fuel cells. J. Electrochem. Soc. 142: 3044–3048.

Chapiro, A. 1959. Preparation des copolymers greffes du polytetra¡uoroethylene (Te¡on) par vie radiochimique. J . Polym. Sci. 34: 481–501.

Chapiro, A. 1962. Radiation Chemistry of Polymeric Systems, Chapter XII. New York: Interscience Publishers, John Wile y & Sons.

Charlesby , A. 1981. Crosslinking and de gradation of polymers. Radiat. Phys. Chem . 18: 59–66.

Charlesby , A. and Pinner, S. H. 1959. Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Pr oc. Roy. Soc. A249: 367–386.

Chen, J. H., Asano, M., Yamaki, T., and Yoshida, M. 2006a. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE �lms for DMFC applications. J. Power Sources 158 (1): 69–77.

Chen, J. H., Asano, M., Yamaki, T., and Yoshida, M. 2006b. Improv ement of chemical stability of polymer electrolyte fuel cell membranes by grafting of new substituted styrene monomers into ETFE �lms. J. Mater . Sci. 41 (4): 1289–1292.

C hen, J. , As ano, M. , Ma ekawa, Y. , an d Yo shida, M. 20 08. Fu el ce ll pe rformance of po lyetheretherketonebased po lymer el ectrolyte me mbranes pr epared by a tw o-step gr afting me thod. J. Membr. Sci. 31 9 (1 –2): 1– 4.

Chen, J., Zhai, M., Asano, M., Huang, L., and Maekawa, Y. 2009. Long-term performance of polyetheretherketone-based polymer electrolyte membrane in fuel cells at 95°C. J . Mater. Sci. 44: 3674–3681.

Chmiele wski, A. G. 2006. Worldwide dev elopments in the �eld of radiation processing of materials in the down of 21st century , Nukleonika 51 (1): S3–S9.

C hoi, S. an d Nh o, Y. 19 99. Ad sorption of Co 2+ and Cs 1+ on polyethylene membrane with iminodiacetic acid and sulfonic acid modi�ed by radiation-induced graft copolymerization. J. Appl. Polym. Sci. 71: 999–1006. Choi, S. H. and Nho, Y. C. 2000. Radiation-induced graft polymerization of binary monomer mixture containing acrylonitrile onto polyeth ylene �lms. Radiat. Phys. Chem . 58: 157–168.

Felix, N., Büchi, F. N., Marek, A., and Scherer, G. G. 1995. In situ membrane resistance measurements in polymer electrolyte fuel cells by f ast auxiliary current pulses. J . Electrochem. Soc. 142: 1895–1901.

Fujiw ara, K. 2007. Separation functional �bers by radiation induced graft polymerization and application. Nucl. Instrum. Methods Phys. Res., Sect. B 265: 517–525.

Gubler , L., Prost, N., Gursel, S. A., and Scherer, G. G. 2005a. Proton exchange membranes prepared by radiation grafting of styrene/divinylbenzene onto poly(ethylene-alt-tetra¡uoroethylene) for low temperature fuel cells. Solid State Ionics 176: 2849–2860.

Gubler , L., Gursel, S. A., and Scherer, G. G. 2005b. Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5 (3): 317–335.

Gupta, B. and Scherer, G. G. 1994. Cation exchange membranes by pre-radiation grafting of styrene onto FEP �lms. J . Polym. Sci., Polym. Chem. 32: 1931–1938.

Gupta, B., Büchi, F. N., and Scherer, G. G. 1993a. Proton exchange membranes prepared by radiation grafting of styrene onto FEP �lms. I. Thermal characteristics of copolymer membranes. J. Appl. Polym. Sci. 50: 2129–2134.

Gupta, B., Büchi, F. N., Scherer, G. G., and Chapiro, A. 1993b. Materials research aspects of organic solid proton conductors. Solid State Ionics 61 (1–3): 213–218.

Gupta, B., High�eld, J. G., and Scherer, G. G. 1994. Proton exchange membranes prepared by radiation grafting of styrene onto FEP �lms. II. Mechanical of thermal degradation in copolymer membranes. J. Appl. Polym. Sci. 51: 1659–1666.

Gupta, B., Anjum, N., Jain, R., Revagade, N., and Singh, H. 2004. Development of membranes by radiationinduced graft polymerization of monomers onto polyethylene �lms. J. Macromol. Sci., Polym. Rev. C44 (3): 275–309.

Gursel, S. A., Gubler, L., Gupta, B., and Shcerer, G. G. 2008. Radiation grafted membranes. Adv. Polym. Sci. 215: 157–217.

Haji-Saeid, M., Sampa, M. H., Ramamoorthy, N., Güven, O., and Chmielewski, A. G. 2007. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers. Nucl. Instrum. Methods Phys. Res., Sect. B 265: 51–57.

Hase gawa, S., Suzuki, Y., and Maekawa, Y. 2008. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique. Radiat. Phys. Chem . 77 (5): 617–621.

He gazy, E. A., Ishigaki, I., and Okamoto, J. 1981a. Radiation grafting of acrylic acid onto ¡uorine-containing polymers. I. Kinetic study of preirradiation grafting onto poly(tetra¡uoroethylene). J. Appl. Polym. Sci. 26 (9): 3117–3124.

He gazy, E. A., Ishigaki, I., Rabie, A., Dessouki, A. M., and Okamoto, J. 1981b. Study on radiation grafting of acrylic acid onto ¡uorine-containing polymers. II. Properties of membrane obtained by preirradiation grafting onto poly(tetra¡uoroeth ylene). J . Appl. Polym. Sci. 26 (11): 3871–3883.

Hien, N. Q., Nagasa wa, N., Tham, L. X., Yoshii, F., Dang, V. H., Mitomo, H., Makuuchi, K., and Kume, T. 2000. Growth-promotion of plants with depolymerized alginates by irradiation. Radiat. Phys. Chem. 59: 97–101.

Holtan, S., Zhang, Q., Strand, W. I., and Skjak-Braek, G. 2006. Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI-mass spectrometry . Biomacr omolecules 7: 2108–2121.

Hoshina, H., Seko, N., Ueki, Y., and Tamada, M. 2007. Synthesis of graft adsorbent with N-methyl-D-glucamine for boron adsorption. J . Ion Exchange 18: 236–239.

Hsiue, G. and Huang, W. 1985. Preirradiation grafting of acrylic and methacrylic acid onto polyethylene �lms: Preparation and properties. J . Appl. Polym. Sci. 30: 1023–1033.

Ishig aki, I., Sugo, T., Senoo, K., Okada, T., Okamoto, J., and Machi, S. 1982a. Graft polymerization of acrylic acid onto polyethylene �lm by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and �lm thickness. J . Appl. Polym. Sci. 27: 1033–1041.

Ishig aki, I., Sugo, T., Takayama, T., Okada, T., Okamoto, J., and Machi, S. 1982b. Graft polymerization of acrylic acid onto polyethylene �lm by preirradiation method. II. Effects of oxygen at irradiation, storage time after irradiation, Mohr’ s salt, and eth ylene dichloride. J . Appl. Polym. Sci. 27: 1043–1051.

Jyo, A., Okada, K., Nakao, M., Sugo, T., Tamada, M., and Katakai, A. 2003. Bifunctional phosphonate �ber derived from vinylbiphenyl-grafted polyethylene coated polypropylene �ber for extremely rapid removal of iron (III). J . Ion Exchange 14 (Suppl.): 69–72.

Kabay , N., Katakai, A., Sugo T., and Eg awa, T. 1993. Preparation of �brous adsorbents containing amidoxime groups by radiation-induced grafting and application to uranium recovery from sea water. J. Appl. Polym. Sci. 49: 599–607.

Ka vakli, P. A., Seko, N., Tamada, M., and Güven, O. 2004. A highly ef�cient chelating polymer for the adsorption of uran yl and v anadyl ions at lo w concentrations. Sep. Sci. Technol. 39: 1631–1644.

Kim, M. and Saito, K. 2000. Radiation-induced graft polymerization and sulfonation of glycidyl methacrylate on to porous hollo w-�ber membranes with dif ferent pore sizes. Radiat. Phys. Chem . 57: 167–172.

K umar, M. N. R. 2000. A re view of chitin and chitosan applications. React. Funct. P olym. 46: 1–27.

Lee, K., Choi, S., and Kang, H. 2002. Preparation and characterization of polyvalence membranes modi�ed with four different ion-exchange groups by radiation-induced graft polymerization. J. Chromatogr. A 948: 129–138.

Lee, S. W., Bondar, Y., and Han, D. H. 2008. Synthesis of a cation-exchange fabric with sulfonate groups by radiation-induced graft copolymerization from binary monomer mixtures. React. Funct. Polym. 68: 474–482.

Li, J., Matsuura, A., Kakigi, T., Miura, T., Oshima, A., and Washio, M. 2006. Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting. J. Power Sources 161 (1): 99–105.

Li, D., Chen, J., Zhai, M., Asano, M., Maekaw a, Y., Oku, H., and Yoshida, M. 2009. Hydrocarbon protonconductiv e membranes prepared by radiation-grafting of styrenesulfonate onto aromatic polyamide �lms. Nucl. Instrum. Methods Phys. Res., Sect. B 267: 103–107.

Luan, L. Q., Nagasawa, N., Tamada, M., and Nakanishi, T. M. 2006. Enhancement of plant growth activity of irradiated chitosan by molecular weight fractionation. Radioisotopes 55: 21–27.

Mahmudi, N., Sen, M., Rendevski, S., and Güven, O. 2007. Radiation synthesis of low swelling acrylamide based hydrogels and determination of average molecular weight between cross-links. Nucl. Instrum. Methods Phys. Res., Sect. B 265: 375–378.

Matsuhashi, S. and Kume, T. 1997. Enhancement of antimicrobial activity of chitosan by irradiation. J. Sci. Food Agric. 73: 237–241.

Miani, M., Gianni, R., Liut, G., Rizzo, R., Toffanin, R., and Deleben, F. 2004. Gel beads from novel ionic polysaccharides, Carbohydr . Polym. 55: 163–169.

Mitsumata, T., Suemitsu, Y., Fujii, K., Fujii, T., Taniguchi, T., and Koyama, K. 2003. pH-Response of chitosan, k-carrageenan, carboxymeth yl cellulose sodium salt comple x h ydrogels. P olymer 44: 7103–7111.

N agasawa, N., Kaneda, A., Kanazawa, S., Yagi, T., Mitomo, H., Yoshii, F., and Tamada, M. 2005. Application of poly(lactic acid) modi�ed by radiation crosslinking. Nucl. Instrum. Methods Phys. Res., Sect. B 236: 611–616.

Nasef, M. M. and Heg azy, E. S. A. 2004. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar �lms. Pro g. Polym. Sci. 29 (6): 499–561.

Oshima, A., Tabata, Y., Kudo, H., and Seguchi, T. 1995. Radiation induced crosslinking of polytetra¡uoroethylene. Radiat. Phys. Chem . 45: 269–273.

Oza wa, I., Saito, K., Sugita, K., Sato, K., Akiba, M., and Sugo, T. 2000. High-speed recov ery of germanium in a conv ection-aided mode using functional porous hollow-�ber membranes. J. Chromatogr. A 888: 43–49. Park, J., Enomoto, K., Yamashita, T., Takagi, Y., Todaka, K., and Maekaw a, Y. 2009. Long-liv ed intermediates in radiation-induced reactions of alic yclic polyimides �lms. J . Photopolym. Sci. Technol. 22: 285–287.

Reddy , G., Altaf, Md., Naveena, B. J., Venkateshwar, M., and Kumar, E. V. 2008. Amylolytic bacterial lactic acid fermentation. Biotec hnol. Adv. 26: 22–34.

Rouilly , M. V., Kotz, E. R., Haas, O., Scherer, G. G., and Chapiro, A. 1993. Proton-exchange membranes prepared by simultaneous radiation grafting of styrene onto te¡on-FEP �lms: Synthesis and characterization. J . Membr. Sci. 81 (1–2): 89–95.

Saito, K. and Sugo, T. 2001. High-performance polymeric materials for separation and reaction, prepared by radiation-induced graft polymerization. In Radiation Chemistry: Present Status and Future Trends, C. D. Jonah and M. Rao (eds.), pp. 671–704. Amsterdam, the Netherlands: Else vier.

Saito, K., Tsuneda, S., Kim, M., Kubota, N., Sugita, K., and Sugo, T. 1999. Radiation-induced graft polymerization is the ke y to dev elop high-performance functional materials for protein puri�cation. Radiat. Phys. Chem . 54: 167–172.

Sato, K., Ikeda, S., Iida, M., Oshima, A., Tabata, Y., and Washio, M. 2003. Study on poly-electrolyte membrane of crosslink ed PTFE by radiation-grafting. Nucl. Instrum. Methods Phys. Res., Sect. B 208: 424–428.

Sa wada, S., Yamaki, T., Nishimura, H., Asano, M., Suzuki, A., Terai, T., and Maekaw a, Y. 2008. Water transport properties of crosslink ed-PTFE based electrolyte membranes. Solid State Ionics 179: 1611–1614.

Schierholz, K., Lappan, U., and Lunkwitz, K. 1999. Electron beam irradiation of polytetra¡uoroethylene in air: In vestigations on the thermal beha viour. Nucl. Instrum. Methods Phys. Res., Sect. B 151: 232–237.

Sek o, N., Katakai, A., Hasegawa, S., Tamada, M., Kasai, N., Takada, H., Sugo, T., and Saito, K. 2003. Aquaculture of uranium in seaw ater by fabric-adsorbent submerged system, Nucl. T echnol. 144: 274–278.

Seko, N., Tamada, M., and Yoshii, F. 2005. Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques, Nucl. Instrum. Methods Phys. Res., Sect. B 236: 21–29.

Sek o, N., Bang, L. T., and Tamada, M. 2007. Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate. Nucl. Instrum. Methods Phys. Res., Sect. B 265: 146–149.

Shiraishi, T., Tamada, M., Saito, K., and Sugo, T. 2003. Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graft-polymerization. Radiat. Phys. Chem . 66: 43–47.

Smith S. D. and Alexangratos, S. 2000. Ion-selective polymer-supported reagents. Solvent Extr. Ion Exch. 18: 779–807.

Sun, J., Zhang, Y., Zhong, X., and Zhu, X. 1994. Modi�cation of polytetra¡uoroethylene by radiation, 1. Improvement in high temperature properties and radiation stability . Radiat. Phys. Chem . 44: 655–659.

T amada, M., Seko, N., Kasai, N., and Shimizu, T. 2006. Cost estimation of uranium recovery from seawater with system of braid type adsorbent, T rans. At. Energy Soc. Jpn. 5: 358–363.

T amada, M. K., 2009. Fibrous metal ion adsorbent synthesized by radiation processing. Kob unshi (High Polymers) 58: 397–400.

V ahdat, A., Bahrami, H., Ansari, N., and Ziaie, F. 2007. Radiation grafting of styrene onto polypropylene �bers by a 10 MeV electron beam. Radiat. Phys. Chem . 76: 787–793.

Wach, R. A., Mitomo, H., Nagasawa, N., and Yoshii, F. 2003. Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat. Phys. Chem. 68: 771–779.

W asikiewicz, J. M., Nagasawa, N., Tamada, M., Mitomo, H., and Yoshii, F. 2005a. Adsorption of metal ions by carboxymethylchitin and carboxymethylchitosan hydrogels. Nucl. Instrum. Methods Phys. Res., Sect. B 236: 617–623.

W asikiewicz, J. M., Yoshii, F., Nagasawa, N., Wach, R. A., and Mitomo, H. 2005b. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiat. Phys. Chem. 73: 287–295.

W asikiewicz, J. M., Mitomo, H., Nagasawa, N., Yagi, T., Tamada, M., and Yoshii, F. 2006. Radiation crosslinking of biodegradable carboxymethylchitin and carboxy-methylchitosan. J. Appl. Polym. Sci. 102: 758–767.

Yamaki, T., Asano, M., Maekawa, Y., Morita, Y., Suwa, T., Chen, J. H., Tsubokawa, N., Kobayashi, K., Kubota, H., and Yoshida, M. 2003. Radiation grafting of styrene into crosslinked PTEE �lms and subsequent sulfonation for fuel cell applications. Radiat. Phys. Chem . 67: 403–407.

Zhang, Z., Yu, G., Guan, H., Zhao, X., Du, Y., and Jiang, X. 2004. Preparation and structure elucidation of alginate oligosaccharides de graded by alginate lyase from Vibro sp. 510. Carbohydr . Res. 339: 1475–1481. 28 Chapter 28. UV Molecular Spectroscopy from Electron Impact for Applications to Planetary Atmospheres and Astrophysics

Abgrall, H., Roueff, E., Launay, F., Roncin, J. Y., and Subtil, J. L. 1993a. Table of the Lyman Band system of molecular h ydrogen. Astr on. Astrophys. Suppl. 101: 273–321.

Abgrall, H., Roueff, E., Launay, F., Roncin, J. Y., and Subtil, J. L. 1993b. Table of the Werner Band system of molecular h ydrogen. Astr on. Astrophys. Suppl. 101: 323–362.

Abgrall, H., Roueff, E., Launay, F., Roncin, J. Y., and Subtil, J. L. 1993c. The Lyman and Werner Band systems of molecular h ydrogen. J . Mol. Spectrosc. 157: 512–523.

Abgrall, H., Roueff, E., Launay, F., and Roncin, J. Y. 1994. The B′ 1 Σ u + → X 1 Σ g + and D 1 ∏ u → X 1 Σ g + band systems of molecular h ydrogen, Can. J . Phys. 72: 856–8.

Abgrall, H., Roueff, E., Liu, X., and Shemansky, D. E. 1997. The emission continuum of electron-excited H 2 . Astrophys. J. 481: 557–566.

Abgrall, H., Roueff, E., Liu, X., Shemansky, D., and James, G. 1999. High-resolution far ultraviolet emission spectra of electron-e xcited molecular deuterium. J . Phys. B: At. Mol. Opt. Phys. 32: 3813–3838.

Abgrall, H., Roueff, E., and Drira, I. 2000. Total transition probability of B, C, B′ and D states of molecular hydrogen. Astr on. Astrophys. Suppl. Ser. 141: 297–300.

Aguilar, A., Ajello, J. M., Mangina, R. S., James, G. K., Abgrall, H., and Roueff, E. 2008. The electron excited middle UV to near-IR spectrum of H 2 : Cross sections and transition probabilities. Astrophys. J. Supp. Ser. 177: 388–407.

Ajello, J. M. 1970. Emission cross sections of N 2 in the vacuum ultraviolet by electron impact Source. J. Chem. Phys. 53: 1156–1165.

Ajello, J. M. 2010. High resolution spectra of N 2 . (in preparation). Ajello, J. M. and Shemansky, D. E. 1985. A re-examination of important N 2 cross sections by electron impact with application to the dayglow: The Lyman-Birge Hop�eld band system and NI (119.99 nm). J. Geophys. Res. 90: 9845–9861.

Ajello, J. M. and Shemansky, D. E. 1993. Electron excitation of the H 2 (a 3 Σ g + − 3 Σ g + ) continuum in the vacuum ultraviolet. Astrophys. J . 407: 820–825.

Ajello, J. M. and Ciocca, M. 1996a. Fast nitrogen atoms from dissociative excitation of N 2 by electron impact. J. Geophys. Res. 101: 18953–18960.

Ajello, J. M., Shemansky , D., Kwok, T. L., and Yung, Y. L. 1984. Studies of extreme ultraviolet emission from Rydberg series of H 2 by electron impact. Phys. Rev. 29: 636–653.

Ajello, J. M., Pang, K. D., Franklin, B. O., Howell, S. K., and Bowring, N. J. 1989a. A study of electron impact excitation of NO: The vacuum ultraviolet from 40 to 170 nm. J. Geophys. Res . 94: 9093–9103.

Ajello, J. M., James, G. K., Franklin, B. O., and Shemansky, D. E. 1989b. Medium resolution studies of EUV emission from N 2 by electron impact: Vibrational perturbations and cross sections of the c 4 ′ 1 Σ g + and b′ 1 Σ u + states. Phys. Rev. A. 40: 3524–3556.

Ajello, J. M., James, G. K., Franklin, B., and Howell, S. 1990. Study of electron impact excitation of Argon in the EUV: Emission cross sections of resonance lines of Ar I, Ar II. J. Phys. B: At. Mol. Opt. Phys. 23: 4355–4376.

Ajello, J. M., James, G. K., Kanik, I., and Franklin, B. O. 1992a. The complete UV spectrum of SO 2 by electron impact: Part 1: The vacuum ultraviolet spectrum. J. Geophys. Res . 97: 10473–10500.

Ajello, J. M., James, G. K., and Kanik, I. 1992b. The complete UV spectrum of SO 2 by electron impact: Part 2: The middle ultraviolet spectrum. J. Geophys. Res . 97: 10501–10512.

Ajello, J. M., Ahmed, S., Kanik, I., and Multari, R. 1995a. Kinetic energy distribution of H(2p) atoms from dissociative excitation of H 2 . Phys. Rev. Lett. 75: 3261–3264.

Ajello, J. M., Kanik, I., Ahmed, S. M., and Clarke, J. T. 1995b. The line pro�le of H Lyman-α from dissociative excitation of H 2 with application to Jupiter. J. Geophys. Res. 100: 26411–26420.

Ajello, J. M., Ahmed, S. M., and Liu, X. 1996b. Line pro�le of H-Ly-β from dissociative excitation H 2 . Phys. Rev. 53: 2303–2308.

Ajello, J. M., James, G. K., and Ciocca, M. 1998a. High resolution EUV spectroscopy of N 2 c′ 1 Σ u + ν′ = 3 and 4 lev els by electron impact. J. Phys. B . 31: 2437–2448.

Ajello, J. M., Shemansky, D., Pryor, W., Tobiska, K., Hord, C., Stephens, S., Stewart, A. I., Clarke, J., Simmons, K., Gebben, J., Miller, D., McClintock, W., Barth, C., and Sandel, B. 1998b. Galileo Orbiter ultraviolet observations of Jupiter aurora. J. Geophys. Res . 103: 20125–20148.

Ajello, J., Shemansky, D. E., Pryor, W., Stewart, A. I., Simmons, K., Majeed, T., Waite, H., and Gladstone, G. 2001. Spectroscopic evidence for high altitude aurora from Galileo extreme ultraviolet and Hopkins ultraviolet telescope observations. Icarus 152: 151–171.

Ajello, J., Vatti Palle, V. P., and Osinski, G. 2002a. UV spectroscopy by electron impact for planetary astronomy and astrophysics. In Current Developments in Atomic, Molecular Physics, M. Mohan (ed.), pp. 143–150. New York: Kluwer Academic Press.

Ajello, J. M., Hansen, D., Beegle, L. W., Terrell, C., Kanik, I., James, G., and Makarov, O. 2002b. The middle ultraviolet and visible spectrum of SO 2 by electron impact. J. Geophys. Res. 107: SIA2.1–SIA2.7, doi:10.1029/2001JA000122.

Ajello, J., Pryor, W., Esposito, L., Stewart, I., McClintock, W., Gustin, J., Grodent, D., Gérard, J.-C., and Clarke, J. 2005a. The Cassini Campaign observations of the Jupiter aurora by the ultraviolet imaging spectrograph and the space telescope imaging spectrograph. Icarus 178: 327–345.

Ajello, J., Vatti Palle, P., Abgrall, H., Roueff, E., Bhardwaj, A., and Gustin, G. 2005b. The electron excited UV spectrum of HD: Cross sections and transition probabilities. Astrophys. J . Suppl. 159: 314–330.

Aj ello, J. M., Stevens, M. H., Stewart, I., Larsen, K., Esposito, L., Colwell, J., Mcclintock, W., Holsclaw, G., Gustin, J., and Pryor, W. 2007. Titan airglow spectra from Cassini ultraviolet imaging spectrograph (UVIS): EUV analysis. Geophys. Res. Lett. 34: L24204, doi:10.1029/2007GL031555.

Aj ello, J. M., Aguilar, A., Mangina, R. S., James, G. K., Geissler, P., and Trafton, L. 2008. The middle UV to near IR spectrum of electron excited SO 2 . J. Geophys. Res.-Planets 113: E03002, doi:10.1029/2007je002921.

Avakyan, S. V., Ii’In, R. N., Lavrov, V. M., and Ogurstov, G. N. 1998. Collision Processes and Excitation of UV Emission from Planetary Atmospheric Gases: A Handbook of Cross Sections, pp. 1–342. Amsterdam, the Netherlands: Gordon and Breach Science Publishers.

Bagenal, F., Dowling, T., and McKinnon, W. 2007. Jupiter, The Planet, Satellites and Magnetosphere (Cambridge Planetary Science), pp. 1–684. Cambridge, U.K.: Cambridge Uni versity Press.

Ballester , G. E., Clarke, J. T., Rego, D., Combi, M., Larsen, N., Ajello, J., Strobel, D. F., Schneider, N. M., and McGrath, M. 1996. Characteristics of Io’s far-UV neutral oxygen and sulfur emissions derived from recent HST observ ations. Bull. Am. Astron. Soc. 28: p1156.

Ballester , G. E. 1998. Ultraviolet Astrophysics Beyond the IUE Final Archive, pp. 21–28. Noordwijk, the Netherlands: ESA Publications.

Barth, C. A., Stewart, A. I. F., and Brougher, S. W. 1992. Mars, pp. 1054–1065. Tucson, AZ: University of Arizona Press.

Bee gle, L., Ajello, J. M., James, G. K., Dziczek, D., and Alvarez, M. 1999. The emission spectrum of the CO (A 1 Π-X 1 Σ + ) fourth positive system by electron impact. Astron. Astrophys. 347: 375–390.

Bergin, E., Calvet, N., Sitko, M. L., Abgrall, H., D’Alessio, P., Herczeg, G. J., Roueff, E., Qi, C., Lynch, D. K., Russell, R. W., Brafford, S. M., and Perry, R. B. 2004. New probe of planet forming region in T Tauri Disks. Astr ophys. J. 614: L133–136.

Bishop, J. and Feldman, P. 2003. Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUV-FUV dayside nadir spectral radiance measurements. J . Geophys. Res. 108: 1243, doi:10.1029/2001J A000330.

Bouchez, A. H., Brown, M. E., and Schneider, N. 2000. Eclipse spectroscopy of Io’s atmosphere. Icarus 148: 316–319.

Brinkmann, R. T. and Trajmar, S. 1970. Electron impact excitation of N 2 . Annales de Geophysique 26: 201–207.

Broadfoot, A. L., Belton, M. J. S., Takacs, P. J., Sandel, B. R., Shemansky, E. E., Holberg, J. B., Ajello, J. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, J. L., Blamont, J. E., Strobel, D. F., McConnell, J. C., Dalgarno, A., Goody, R., and McElroy, M. B. 1979. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter . Science 204: 979–982.

B roadfoot, A. L., Sandel, B. R., Shemansky, D. E., McConnell, J. C., Smith, G. R., Holberg, J. B., Atreya, S. K., Donahue, T. M., Strobel, D. F., and Bertaux, J. L. 1981a. Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter . J . Geophys. Res. 86: 8259–8284.

B roadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Smith, G. R., Strobel, D. F., McConnell, J. C., Kumar, S., Hunten, D. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, J. L., Blamont, J. E., Pomphrey, R. B., and Linick, S. 1981b. Extreme UV observations from Voyager 1 encounter of Saturn. Science 212: 206–211.

B roadfoot, A . L., A treya, S. K., Bertaux, J. L., Blamont, J. E., Dessler, A . J., Donahue, T. M., Forrester, W. T., Hall, D. T., Herbert, F., Holberg, J. B., Hunten, D. M., Krasnopolsky , V. A., Linick, S., Lunine, J. I., Mcconnell, J. C., Moos, H. W., Sandel, B. R., Schneider, N. M., Shemansky, D. E., Smith, G. R., Strobel, D. F., and Yelle, R. V. 1989. Ultraviolet spectrometer observations of Neptune and Triton. Science 246: 1459–1466.

Brunger, M. J. and Teubner , P. J. O. 1990. Differential cross sections for electron-impact excitation of the electronic states of N 2 source. Phys. Rev. A 41: 1413–1426.

Bunce, E. J. and Cowley, S. W. H. 2001. Divergence of the equatorial current in the dawn sector of Jupiter’s magnetosphere: Analysis of Pioneer and Voyager magnetic �eld data. Planet. Space Sci. 49: 1089–1113. Budzien, S. A., Feldman, P. D., and Conway, R. R. 1994. Observations of the far ultraviolet airglow by the ultraviolet limb imaging e xperiment on STS-39. J . Geophys. Res. 99: 23275–23287.

Campbell, L., Brunger, M. J., Nolan, A. M., Kelly , L. J., Wedding, A. B., Harrison, J., Teubner , P. J. O., Cartwright, D. C., and McLaughlin, B. 2001. Integral cross sections for electron impact excitation of electronic states of N 2 . J. Phys. B 34: 1185–1199.

Cartwright, D. C. 1978. Vibrational populations of the excited states of N 2 under auroral conditions. J. Geophys. Res. 83: 517–531.

Cartwright, D. C., Chutjian, A., Trajmar, S., and Williams, W. 1977. Electron-impact excitation of electronic states of N 2 : 1. Differential cross-sections at incident energies from 10 to 50 eV. Phys. Rev. A 16: 1013–1040.

Ciocca, M., Ajello, J. M., Liu, X., and Maki, J. 1997a. Kinetic energy distribution of D(2p) atoms from analysis of the D L yman α line pro�le. Phys. Re v. A 56: 1929–1937.

Ciocca, M., Kanik, I., and Ajello, J. M. 1997b. High resolution studies extreme ultraviolet emission from CO. Phys. Rev. A 55: 3547–3556.

Clark e, J. T., Ajello, J., Luhmann, J., Scheider, N., and Kanik, I. 1994. HST UV spectral observations of io passing into eclipse. J . Geophys. Res. 99: 8387–8402.

Clarke J. T., Ballester, G., Trauger, J., Ajello, J., Pryor, W., Tobiska, K., Connerney, J. E. P., Gladstone, G. R., Waite, J. H., Ben Jaffe, L., and Gerard, J.-C. 1998. Hubble space telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission. J. Geophys. Res . 103: 20217–20236.

Cowle y, S. W. H. and Bunce, E. 2001. Origin of the main oval in Jupiter’s coupled magnetosphere-ionospheric system. Planet. Space Sci. 49: 1067–1088.

Crosswhite, H. M. 1972. The Hydrogen Molecule Wavelength Tables of Gerhard Heinrich Dieke, pp. 1–616. New York: Wiley-Interscience.

Dalgarno, A. 1993. The chemistry of astronomical environments. J. Chem. Soc. Faraday Trans. 89: 2111–2117. Dalgarno, A. 1995. Infrared emission from molecular hydrogen. In Physics of the Interstellar Medium and Intergalactic Medium. ASP Conference Series: 80, A. Ferrara, C. F. McKee, C. Heiles, P. R. Shapiro (eds.), pp. 37–44. San Francisco, CA: Astronomical Society of the Paci�c.

Diek e, G. H. 1958. The molecular spectrum of hydrogen and its isotopes. J. Mol. Spectr osc. 2: 494–517.

Dieke, G. H. and Cunningham, S. P. 1965. Bands of D 2 and T 2 Originating from the Lowest Excited 1 Σ g States (1sσ) (2sσ ) 1 Σ g and (2pσ) 21 Σ g *. J. Mol. Spectrosc. 18: 288–320.

Dols, V., Gérard, J.-C., Clarke, J. T., Gustin, J., and Grodent, D. 2000. Diagnostics of the Jovian aurora deduced from ultraviolet spectroscopy: Model and HST/GHRS observations. Icarus 147: 251–266.

Dyudina, U. A., Ingersoll, A. P., and Ewald, S. P. 2007. Aurora at the North Pole of Saturn as seen by Cassini ISS. Eos T rans. AGU 88 (Fall Meet. Suppl. 52): P31A–0188.

Dziczek, D., Ajello, J., James, G., and Hansen, D. 2000. Cascade contribution to the H 2 Lyman Band system from electron impact. Phys. Rev . A 61: 64702–64706.

Eastes, R. W. 2000. Modeling the N 2 Lyman-Birge-Hop�eld bands in the dayglow: Including radiative and collisional cascading between the singlet states. J. Geophys. Res . 105: 18557–18573.

Eastes, R. W. and Dentamaro, A. V. 1996. Collision-induced transitions between the a 1 Π g , a′ 1 Σ u − , w 1 Δ g states of N 2 : Can they effect auroral N 2 Lyman-Birge-Hop�led ban emissions? J. Geophys. Res. 101: 26931–26940.

Esposito, L. W. , Barth, C. A., Colwell, J. E., Lawrence, G. M., McClintock, W. E., Stewart, A. I. F., Keller, H. U., Korth, A., Lauche, H., Festou, M. C., Lane, A. L., Hansen, C. J., Maki, J. N., West, R. A., Jahn, H., Reulke, R., Warlich, K., Shemansky, D. E., and Yung, Y. L. 2004. The Cassini ultraviolet imaging spectrograph inv estigation. Space Sci. Rev . 115: 299–361.

Es posito, L. W., Colwell, J. E., Hallett, J. T., Hansen, C. J., Hendrix, A. R., Keller, H. U., Korth, A., Larsen, K., McC lintock, W. E., Pry or, W. R., Reu lke, R., She mansky, D. E., Ste wart, A. I. F., Wes t, R. A., Aje llo, J. M., and Yung, Y. L. 2005. Ultraviolet imaging spectroscopy shows and active Saturnian system. Science 307: 1251–1255.

Evans, Scott. 2010. Priv ate Communication.

Feldman, P. D., Burgh, E. B., Durrance, S. T., and Davidsen, A. F. 2000. Far ultraviolet spectroscopy of Venus and Mars at 4 Å resolution with the Hopkins ultraviolet telescope on Astro 2. Astrophys. J . 538: 395–400.

Feldman, P., Sahnow, D., Kruk, J., Murphy, E., and Moos, W. 2001. High-resolution spectroscopy of the terrestrial day airglo w with the far ultraviolet spectroscopic explorer . J. Geophys. Res . 106: 8119–8129.

Fischer, F., Stasek, G., and Schmidtke, G. 1980. Identi�cation of auroral EUV emissions. Geophys. Res. Lett. 7: 1003–1006.

Fr eund, R. S. 1972. Radiative lifetime of N 2 (a 1 Π g ) and formation of metastable N 2 . J. Chem. Phys. 56: 4344–4351.

Geissler, P. E., McEwen, A. S., Ip, W., Belton, M. J. S., Johnson, T. V., Smyth W. H., and Ingersoll, A. P. 1999. Galileo imaging of atmospheric emissions from Io. Science 285: 870–874.

Geissler, P., McEwen, A., Porco, C., Strobel, D., Soar, J., Ajello, J., and West, R. 2004. Cassini observations of Io’s Visible Aurora. Icarus 172: 127–140.

Glass-Maujean, M. 1986. Photodissociation of vibrationally excited H 2 by absorption into the continua of B, C, and B′ systems. Phys. Rev . A 33: 342–345.

Glass-Maujean, M., Klumpp, S., Werner, L., Ehresmann, A., and Schmoranzer, H. 2007a. Observation of the oscillating absorption spectrum of a double-well state: The B’’ B 1 Σ u + state of H 2 . J. Phys. B: At. Mol. Opt. Phys. 40: F19.

Glass-Maujean, M., Klumpp, S., Werner, L., Ehresmann, A., and Schmoranzer, H. 2007b. Study of the B’’B 1 Σ u + state of H 2 : Transition probabilities from the ground state, dissociative widths, and Fano parameters. J. Chem. Phys. 126: 144303–144308. Glass-Maujean, M., Klumpp, S., Werner, L., Ehresmann, A., and Schmoranzer, H. 2007c. Transition probabilities from the ground state of the [image omitted] states of H 2 . Mol. Phys. 105: 1535–1542.

Glass-Maujean, M., Klumpp, S., Werner, L., Ehresmann, A., and Schmoranzer, H. 2007d. Cross sections for the ionization continuum of H 2 in the 15.3–17.2 eV energy range. J. Chem. Phys. 126: 094306, doi:10.1063/1.2435345.

Glass-Maujean, M., Klumpp, S., Werner, L., Ehresmann, A., and Schmoranzer, H. 2008. The study of the �fth 1 Σ u + state (5pσ) of H 2 : Transition probabilities from the ground state, natural line widths and predissociation yields. J . Mol. Spectrosc. 249: 51–59.

Glass-Maujean, M., X. Liu, and Shemansky, D. E. 2009. Analysis of electro-impact excitation and emission of the np σ 1 Σ u + and npπ 1 Π u Rydberg Series of H 2 . Astrophys. J. Suppl. 180: 38–53.

Gredel, R., Lepp, S., and Dalgarno, A. 1987. The C/CO ratio in interstellar clouds. Astrophys. J. 323: L137–L139.

Gredel, R., Lepp, S., Dalgarno, A., and Herbst, E. 1989. Cosmic ray induced photodissociation and photoionization rates of interstellar molecules. Astr ophys. J. 347: 289–293.

Gre wing, M., Boksenberg, A., Seaton, M. J., Snijders, M. A. J., Wilson, R., Boggess, A., Bohlin, R. C., Perry, P. M., Schiffer III, I. H., Gondhalekar, P. M., Macchetto, F., Savage, B. D., Jenkins, E. B., Johnson, H. M., Perinotto, M., and Whittet, D. C. B. 1978. IUE observations of the interstellar medium. Nature 275: 394–400.

Grodent, D., Waite, J. H., and Gérard, J. C. 2001. A self-consistent model of the jovian auroral thermal structure. J . Geophys. Res. 106: 12933–12952.

Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W., Gérard, J.-C., and Kim, J. 2003a. Jupiter’s polar auroral emissions. J . Geophys. Res. 108: 1366–1388.

Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W., Gérard, J.-C., and Kim, J. 2003b. Jupiter’s main aurora ov al. J . Geophys. Res. 108: 1389–1396.

Gustin, J., Grodent, D., Gerard, J., and Clarke, C. 2002. Spatially resolved far ultraviolet spectroscopy of the Jovian Aurora. Icarus 157, 91–103.

Gustin, J., Feldman, P. D., Gérard, J.-C., Vidal-Madjar , A., Ben Jaffel, L., Grodent, D., Moos, H. W., Sahnow , D. J., Wea ver, H. A., Wolv en, B. C., Ajello, J. M., Waite, J. H., Roueff, E., and Abgrall, H. 2004. Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications on electron precipitation. Icarus 171: 336–355.

Gustin, J., Gerard, J.-C., Pryor, W., Feldmanc, P. D., Grodent, D., and Holsclaw , G. 2009. Characteristics of Saturn’s polar atmosphere and auroral electrons deriv ed from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus (in press).

Hansen, C., Shemansky , D. E., and Hendrix, A. R. 2005. Cassini UVIS observations of Europa’s oxygen atmosphere and torus. Icarus 176: 305–315.

Hercze g, G., Linsky , J. L., Valenti, J. A., Johns-Krull, C. M., and Wood, B. E. 2002. A high resolution UV sp ectrum of th e pr e-main se quence st ar TW Hy drae. I. Ob servations of H 2 ¡uorescence. Astrophys. J. 572: 310–325.

Hercze g, G., Wood, B. E., Linsky , J. L., Valenti, J. A., and Johns-Krull, C. M. 2004. Far UV spectrum of TW Hydrae : II Models of H 2 ¡uorescence in a disc. Astrophys. J. 607: 369–383.

Hill, T. W. 2001. The Jo vian aurora o val. J . Geophys. Res. 106: 8101–8107.

Hord, C. W., McClintock, W. E., Stewart, A. I. F., Barth, C. A., Esposito, L. W., Thomas, G. E., Sandel, B. R., Hunten, D. M., Broadfoot, A. L., Shemansky, D. E., Ajello, J. M., Lane, A. L., and West, R. A. 1992. The Galileo ultra violet spectrometer e xperiment. Space Sci. Re v. 60: 503–530.

Huber , K. P. and Herzberg, G. 1979. Constants of Diatomic Molecules, pp. 1–716. New York: Van Nostrand Co.

James, G. K., Ajello, J. M., Franklin, B. O., and Shemansky, D. E. 1990. Medium resolution studies of EUV emission from N 2 by electron impact: The effect of predissociation on emission cross sections of the b 1 Π u state. J . Phys. B: At. Mol. Phys. 23: 2055–2082. James, G. K., Slevin, J. A., Shemansky, D. E., McConkey, J. W., Bray, I., Dziczek, D., Kanik, I., and Ajello, J. M. 1997. Optical excitation function of H(1s-2p) by electron impact from threshold to 1.8 keV. Phys. Rev. A 55: 1069–1087.

James, G. K., Slevin, J. A., Dziczek, D., McConkey, J. W., and Bray, I. 1998a. Polarization of H-Lα from atomic H by e-Impact. Phys. Re v. A 57: 1787–1797.

James, G. K., Ajello, J. M., and Pryor, W. R. 1998b. The MUV-visible spectrum of H 2 excited by electron impact. J . Geophys. Res. 103: 20113–20123.

Jasperse, J. R. 1976. Boltzmann-Fokker-Planck model for the electron distribution function in the Earth’s ionosphere. Planet. Space Sci . 24: 33–40.

Johnson, P. V., Kanik, I., Shemansky, D. E., and Liu, X. 2003a. Electron-impact cross sections of atomic oxygen. J . Phys. B: At. Mol. Opt. Phys. 36: 3203–3218.

Johnson, P. V., Kanik, I., Khakoo, M. A., McConkey, J. W., and Tayal, S. S. 2003b. Low energy differential and integral electron-impact cross sections for the 2s 2 2p 4 3 P → 2p 3 3s 3 S o excitation in atomic oxygen. J. Phys. B: At. Mol. Opt. Phys. 36: 4289–4300.

Johnson, P. V., McConkey, J. W., Tayal, S. S., and Kanik, I. 2005a. Collisions of electrons with atomic O-current status. Can. J . Phys. 83: 589–616.

Johnson, P. V., C. P. Malone, I. Kanik, K. Tran, and M. A. Khakoo. 2005b, Integral cross sections for the direct excitation of the A 3 Σ u + , B 3 ∏ g , W 3 ∆ u , B′ 3 Σ u − , a′ 1 Σ u − , a 1 ∏ g , w 1 ∆ u , and C 3 ∏ u electronic states in N 2 by electron impact J . Geophys. Res., 110, A11311.

Jonin, C., Liu, X., Ajello, J. M., James, G. K., and Abgrall, H. 2000. The high resolution EUV spectrum of H 2 by electron impact: Cross sections and predissociation yields. Astr ophys. J. Suppl. 129: 247–256.

Julienne, P. S. and Davis, J. 1976. Cascade and radiation trapping effects on atmospheric atomic oxygen emission e xcited by electron impact. J . Geophys. Res. 81: 1397–1403.

Kanik, I., Ajello, J. M., and James, G. K. 1993. Extreme ultraviolet emission spectrum of CO 2 induced by electron impact at 200 eV. Chem. Phys. Lett . 211: 523–528.

Kanik, I., Ajello, J. M., and James, G. K. 1996. Electron-impact-induced emission cross sections of neon in the extreme ultra violet. J . Phys. B: At. Mol. Opt. Phys. 29: 2355–2366.

Kanik, I., Noren, C., Makarov, O., Vatti Palle, P., Ajello, J., and Shemansky, D. 2003. Electron impact dissociative excitation of O 2 . II. Absolute emission cross sections of OI(130.4 nm) and OI(135.6 nm). J. Geophys. Res. 108: E1151256, doi:10.1029/2000JE001423.

Lepp, S. and Dalgarno, A. 1996. X-ray induced chemistry of interstellar clouds. Astron. Astrophys. 306: L21–L24.

Le pp, S. , St ancil, P. C. , an d Da lgarno, A. 20 02. At omic an d mo lecular pr ocesses in th e ea rly un iverse. J. Phys. B: At. Mol. Opt. Phys. 35: R57–R80.

Le wis, B. R., Gibson, S. T., Zhang, W., Lefebvre-Brion, H., and Robbe, J.-M. 2005. Predissociation mechanisms for the lo west 1 Π u states of N 2 . J. Chem. Phys. 122 (14): 4302.

Liu, W. and Dalg arno, A. 1996. The ultra violet spectrum of the Jo vian aurora. Astr ophys. J. 467: 446–453.

Liu, X., Ahmed, S., Multari, R., James, G., and Ajello, J. M. 1995. High resolution electron impact study of the FUV emission spectrum of molecular h ydrogen. Astr ophys. J. Suppl. 101: 375–399.

Liu, X., Shemansky, D., Ahmed, S., James, G., and Ajello, J. 1998. Excitation Lyman and Werner systems of molecular h ydrogen. J . Geophys. Res. 103: 26739–26758.

Liu, X., Shemansky, D. E., Ajello, J. M., Hansen, D. L., Jonin, C., and James, G. K. 2000. High resolution electron-impact emission spectrum of H 2 II. 760–900 Å. Astrophys. J. Suppl. 129: 267–280.

Liu, X., Shemansky, D., Abgrall, H., Roueff, E., Dziczek, D., Hansen, D., and Ajello, J. 2002. Time-resolved electron impact study of excitation of H 2 singlet-gerade states from cascade emission in the vacuum ultraviolet re gion. Astr ophys. J. Suppl. 138: 229–245.

Liu, X., Shemansky , D. E., Abgrall, H., Roueff, E., Ahmed, S. M., and Ajello, J. M. 2003. Electron impact ex citation of H 2 : Resonance excitation of B 1 Σ u + (J j = 2, v j = 0) and effective excitation function of EF 1 Σ g + . J. Phys. B: At. Mol. Phys. 36: 173–196.

Liu, X., Shemanksy, D. E., Ciocca, M., Kanik, I., and Ajello, J. M. 2005. Analysis of the physical properties of the N 2 c′ 1 Σ u + (0) − X Σ g + (0) transition. Astrophys. J. 623; 579–584.

Liu, X., Shemanksy, D. E., Malone, C., Johnson, P., Ajello, J. M., Kanik, I., Lewis, B., Gibson, S., and Stark, G. 2008. Experimental and coupled channels investigation of the radiative properties of the N 2 c′ 4 1 Σ u + − X Σ g + band system. J. Geophys. Res. 113: A02304, doi:10.1029/2007JA012787.

Majeed, T. and Strickland, D. 1997. New survey of electron impact cross sections for photoelectron and auroral electron ener gy loss calculations. J . Chem. Phys. Chem. Ref. Data 26: 335–349.

Makaro v, O., Kanik, I., Ajello, J. M., and Prahlad, V. 2004. Kinetic energy distributions and line pro�le measurements of dissociation products of water upon electron impact. J. Geophys. Res. 109: A09303, doi:10.1029/2002JA009353.

Malone, C. P., Johnson, P. V., McConkey, J. W., Ajello, J. M., and Kanik, I. 2008. Dissociative excitation of N 2O by electron impact. J . Phys. B: At. Mol. Opt. Phys. 41: 095201, doi:10.1088/0953-4075/41/9/095201.

Mangina, R. S., Ajello, J. M., West, R. A., and Dziczek, D. 2010. High resolution electron impact emission spectra and cross sections for N 2 from 330–1100 nm. Astrophys. J. Supp. (in submission).

Mason, N. J. and Newell, W. R. 1987. Electron impact total excitation cross section of the a 1 Π g state of N 2 . J. Phys. B: At. Mol. Phys. 20: 3913–3921.

Mauk, B. H., B. J. Anderson, and R. M. Thorne. 2002. Magnetosphere-ionosphere coupling at Earth, Jupiter and be yond. In At mospheres in the Solar System: Comparative Aeronomy, Geophysical Mo nograph 130, M. Mendillo, A. Nagy , and J. H. Waite (eds.), pp. 97–114. Washington, DC: AGU.

McConkey, J. W., Malone, C. P., Johnson, P. V., Winstead, C., McKoy, V., and Kanik, I. 2008. Electron impact dissociation of oxygen-containing molecules–A critical re view. Phys. Rep . 466: 1–103.

Meier , R. R. 1991. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 58: 1–185.

Meier, R. R., G. Crowley, D. J. Strickland, A. B. Christensen, L. J. Paxton, D. Morrison, and C. L. Hackert, 2005. First look at the November 20, 2003 super storm with TIMED/GUVI: Comparisons with a thermospheric global circulation model, J . Geophys. Res., 110, A09S41.

Meng, C. I., Rycroft, M. J., and Frank, L. A. 1991. Auroral Physics. Cambridge, U.K.: Cambridge University Press.

Möhlmann, G. R. and de Heer, F. 1976. Emission cross sections of the H 2 (3p 3 Π u →2s 3 Σ + g ) transition for electron impact on H 2 . Chem. Phys. Lett. 43: 240–244.

Moos, H. W., Cash, W. C., Cowie, L., Davidsen, A. F., Dupree, A. K., Feldman, P. D., Friedman, S. D., Green, J. C., Green, R. F., Gry, C., Hutchings, J. B., Jenkins, E. B., Linsky, J. L., Malina, R. F., Michalitsianos, A. G., Savage, B. D., Shull, J. M., Siegmund, O. H. W., Snow, T. P., Sonneborn, G., Vidal-Madjar, A., J. Willis, A., Woodgate, B. E., York, D. G., Ake, T. B., Andersson, B.-G., Andrews, J. P., Barkhouser, R. H., , L., Blair, W. P., Brownsberger, K. R., Cha, A. N., Chayer, P., Conard, S. J., Fullerton, A. W., Gaines, G. A., Grange, R., Gummin, M. A., Hebrard, G., Kriss, G. A., Kruk, J. W., Mark, D., McCarthy, D. K., L. Morbey, C., Murowinski, R., Murphy, E. M., Oegerle, W. R., Ohl, R. G., Oliveira, C., Osterman, S. N., Sahnow, D. J., Saisse, M., Sembach, K. R., Weaver, H. A., Welsh, B. Y., Wilkinson, E., and Zheng, W. 2000. Ov erview of f ar ultra violet spectroscopic e xplorer mission. Astr ophys. J. 538: L1–L6.

Morton, D. C. and Noreau, L. 1994. A compilation of electronic transitions in the CO molecule and the interpretation of some puzzling interstellar absorption features, Astr ophys. J. Supp. 95: 301–312.

Noren, C., Kanik, I., Johnson, P. V., McCartney, P., James, G. K., and Ajello, J. M. 2001a. Electron-impact studies of atomic oxygen: II. Emission cross section measurements of the O I 3 S o → 3 P transition (130.4 nm). J. Phys B: At. Mol. Opt. Phys. 34: 2667–2677.

Noren, C., Kanik, I., Ajello, J. M., McCartney, P., and Makarov, O. P. 2001b. Emission cross section OI (135.6 nm) dissociati ve e xcitation of O 2 . Geophys. Res. Lett. 28: 1379–1382.

Oliversen R. J., Scherb, F., Smyth, W. H., Freed, M. E., Woodward, R. C., Marconi M. L., Retherford, K. D., Lupie, O. L., and Morgan, J. P. 2001. Sunlit Io atmospheric O I 6300 Å emission and the plasma thorus. J. Geophys. Res. 106: 26183–26193.

P axton, L. J. and Meng, C. I. 1999. Auroral imaging and space-based optical remote sensing. APL Technol. Dig. 20: 556–569.

Petersen, C. and Brandt, J. C. 1995. Hubble Vision, Astronomy with the Hubble Space Telescope, pp. 1–272. Cambridge, NY : Cambridge Uni versity Press.

Prange, R., Rego, D., Pallier, L., Jaffel, L. B., Emerich, C., Ajello, J., Clarke, J. T., and Ballester, G. E. 1997. Detection of self-reversed Lyα lines from the Jovian Aurorae with the Hubble Space Telescope. Astrophys. J. Lett. 484: L169–L173.

Pryor , W. R., Ajello, J. M., Tobiska, W. K., Shemansky , D. E., James, G. K., Hord, C. W., Stephans, S. K., West, R. A., Stewart, A. I. F., McClintock, W. E., Simmons, K. E., Hendrix, A. R., and Miller, D. A. 1998. Galileo ultraviolet spectrometer observations of Jupiter’s auroral spectrum from 1600–3200 Å. J. Geophys. Res . 103: 20149–20158.

Raymond, J., Blair, W. P., and Long, K. S. 1997. Hopkins telescope observations of H 2 emission from HH2. Astrophys. J. 489: 314–318

Roncin, J.-Y. and Launay, F. 1994. Atlas of the Vacuum Ultraviolet Emission Spectrum of Molecular Hydrogen. Monographs 4. Ne w York: American Institute of Ph ysics.

Sandel, B. R., Shemansky, D. E., Broadfoot, A. L., Bertaux, J. L., Blamont, J. E., Belton, M. J., Ajello, J. M., Holberg, J. B., Atreya, S. K., Donahue, T. M., Moos, H. W., Strobel, D. F., McConnell, J. C., Dalgarno, A., Goody, R., McElroy, M. B., and Takacs, P. Z. 1979. Extreme ultraviolet observations from Voyager 2 encounter with Jupiter . Science 206: 962–966.

S hemansky, D. E. and Ajello, J. M. 1983. The Saturn spectrum in the EUV-electron excited hydrogen. J. Geophys. Res. 88: 459–464.

Shemansky, D. E., Ajello, J. M., Hall, D. T., and Franklin, B. 1985. Vacuum ultraviolet studies of electron impact on helium: Excitation of He n 1 P o Rydberg series and ionization-excitation of He + nl Rydberg series. Astr ophys. J. 296: 774–783.

Sno w, T. P. 1979. Ultraviolet observations of interstellar molecules and grains from spacelab. Astrophys. Space Sci. 66: 453–466.

Stern, S. A., Slater, D. C., Scherrer, J., Stone, J., Dirks, G., Versteeg, M., Davis, M., Randall Gladstone, G., Parker, J. W., Young, L. A., and Siegmund, O. H. W. 2008. ALICE: The ultraviolet imaging spectrograph aboard the Ne w Horizons Spacecraft Pluto–K uiper Belt Mission. Space Sci. Re v. 140: 155–187.

Ste vens, M. H. 2001. The EUV airglow of Titan: Production and loss of NB 2B c′B 4B (0)-X. J. Geophys. Res. 106: 3685–3689.

Stevens, M. 2002. The extreme ultraviolet airglow of N 2 atmospheres. In Atmospheres in the Solar System: Comparative Aeronomy. Geophysical Monograph, M. Mendillo, A. Nagy, and J. H. Waite (eds.), p. 319. Washington, DC: American Geoph ysical Union.

Ste vens, M. H., Meier, R. R., Conway, R., and Strobel, D. 1994. A resolution of the N 2 c′B 4B (0)-X and problem in the Earth’ s atmosphere. J . Geophys. Res. 99 : 417–433.

Ste vens, M. H., Bishop, J., and Feldman, P. D. 2003. A new view of Titan’s EUV airglow. In DPS Meeting Abstract, 931 pp. Montere y, CA, 35.

Stone, E. J. and Zipf, E. C. 1974. Electron-impact excitation of the 3 S 0 and 5 S 0 states of atomic oxygen. J. Chem. Phys. 60: 4237–4243.

Strickland, D. J., Evans, J. S., and Paxton, L. J. 1995. Satellite remote sensing of thermospheric O/N 2 and solar EUV. 1. Theory. J . Geophys. Res. 100: 12217–12226.

Strickland, D. J., J. Bishop, J. S. Evans, T. Majeed, P. M. Shen, R. J. Cox, R. Link, and Huffman, R. E. 1999, Atmospheric Ultraviolet Radiance Integrated Code (AURIC): Theory, software architecture, inputs, and selected results, J . Quant. Spectrosc. Radiat. Transfer, 62, 689–742.

Strickland, D. J., Meier, R. R., Walterscheid, R. L., Craven, J. D., Christensen, A. B., Paxton, L. J., Morrison, D., and Crowley, G. 2004. Quiet time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow. J . Geophys. Res. 109: A01302, doi:10.1029/2003J A010220.

Strobel, D. F. and Shemansky, D. E. 1982. EUV emission from Titan’s upper atmosphere: Voyager 1 encounter. J. Geophys. Res. 87: 1361–1368.

T awara, H., Itaka wa, Y., Nishimura, H., and Yoshino, M. 1990. J . Phys. Chem. Ref. Data 19: 617–636.

T errell, C. A., Hansen, D. L., and Ajello, J. M. 2004. The middle ultraviolet and visible spectrum of O 2 by electron impact. J . Phys. B 37: 1931–1950.

T rafton, L. M., Moore, C. H., Goldstein, D. B., Varghese, P. L., and Walker, A. C. 2007. Modeling Io’s UV-V Eclipse Aurorae from the Joint HST-Galileo Io Campaign. In Magnetospheres of the Outer Planets, June 25–29 2007, San Antonio, TX, Abstract booklet, p. 115.

T rajmar, S., Register , D. F., and Chutjian, A. 1983. Electron-scattering by molecules: 2. Experimental methods and data. Phys. Rep . 97: 221–356. v an der Burgt, P. J. M., Westerveld, W. B., and Risley, J. S. 1989. Photoemission cross sections for atomic transitions in the extreme ultraviolet due to electron collisions with atoms and molecules. J. Phys. Chem. Ref. Data 18: 1757–1805.

V asavada, A. R., Bouchez, A. H., Ingersoll, A. P., Little, B., and Anger, C. D. 1999. Jupiter’s visible aurora and Io footprint. J . Geophys. Res. 104: 27133–27142.

V atti Palle, P. V., Ajello, J. M., and Bhardwaj, A. 2004. The high resolution spectrum of electron-excited SO 2 . J. Geophys. Res. 10 9: A0 2310, do i: 10 .1029/2003JA009828.

Walter, C. W., Cosby, P. C., and Helm, H. 1994. Predissociation quantum yields of singlet nitrogen. Phys. Re v. A 50: 2930–2936. W ilson, E. H. and Atreya, S. K. 2005. Current states of modeling the photochemisty of Titan’ s mutually dependent atmosphere and ionosphere. J . Geophys. Res. 109: E06002, doi: 10.1029/2003JE002181.

Y oung, J. A., Malone, C. P., Johnson, P. V., Liu, X., Ajello, J. M., and Kanik, I. 2009. Dissociativ e excitation of NO 2 by electron impact. J. Phys. B: At. Mol. Opt. Phys. 42:185201-1–185201-12.

Young, J. A., Malone, C. P., Johnson, P. V., Ajello, J. M., Liu, X., and Kanik, I. 2010. Lyman-Birge-Hop�eld emissions from electron impact e xcited N 2 . J. Phys. B: At. Mol. Opt. Phys. 43:135201-1–135201-16.

Yung, Y. L., Gladstone, G. R., Chang, K. M., Ajello, J. M., and Srivastava, S. K. 1982. H 2 ¡uorescence spectrum from 1200 to 1700 Å by electron impact: Laboratory study and application to Jovian Aurora. Astrophys. J. 254: L65–L70.

Zetner , P. W., Kanik, I., and Trajmar , S. 1998. Electron impact excitation of the a 3 Π, a′ 3 Σ + , d 3 Δ, and A 1 Π states of CO at 10.0, 12.5 and 15.0 eV impact ener gies. J . Phys. B: At. Mol. Opt. Phys. 31: 2395–2414. 29 Chapter 29. Chemical Evolution on Interstellar Grains at Low Temperatures

Adams, N. G. and Smith, D. 1984. A study of the reactions of NH 3 + and ND 3 + with H 2 and D 2 at several temperatures. Int. J . Mass Spectrom. Ion Processes 61:133–139.

Allamandola, L. J., Sandford, S. A., and Valero, G. J. 1988. Photochemical and thermal ev olution of interstellar/ precometary ice analogs. Icarus 76: 225–252.

Beck er, K., Klipping, G., Schonherr, W. D., Schulze, W., and Tolle, V. 1972. Adsorption characteristics of condensed Ar, C 2 H 6 , NH 3 and CO 2 layers with respect to cryopumping. In Proceedings of the Fourth International Cryogenic Engineering Conference, Eindho ven, the Netherlands, pp. 323–326.

Bennett, J. E. and Mile, B. 1973. Studies of radical-molecule reactions using a rotating cryostat. Reactions of hydrogen atoms with or ganic substrates at 77 K. J . Chem. Soc. Faraday Trans. 1 69: 1398–1414.

Bhattacharya, D., Wang, H.-Y., and Willard, J. E. 1981. Trapped hydrogen atoms, deuterium atoms, and methyl radicals in methane and methane-d4 at 5–50 K. Yields from photolysis of HX and from radiolysis; decay mechanisms; reactions with oxygen and carbon monoxide. J . Phys. Chem. 85: 1310–1323.

Blo wers, P., Ford, L., and Masel, R. 1998. Ab Initio calculations of the reactions of hydrogen with methanol: A comparison of the role of bond distortions and Pauli repulsions on the intrinsic barriers for chemical reactions. J . Phys. Chem. A 102: 9267–9277.

Cala way, W. F. and Ewing, G. E. 1975. Vibrational relaxation in liquid nitrogen. Chem. Phys. Lett. 30: 485–489.

Cherigier, L., Czarnetzki, U., Luggenholscher, D., der Gathen, V. S., and Dobele, H. F. 1999. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced ¡uorescence imaging. J . Appl. Phys. 85: 696–702.

Cro visier, J. 1998. Physics and chemistry of comets: Recent results from comets Hyakutake and Hale-Bopp answers to old questions and ne w enigmas. F araday Dis. 109: 437–452.

Cro visier, J., Leech, K., Bockelee-Morv an, D., Brooke, T. Y., Hanner, M. S., Altieri, B., Uwe Keller , H., and Lellouch, E. 1997. The spectrum of comet Hale-Bopp (C/1995 O1) observed with the infrared space observatory at 2.9 astronomical units from the sun. Science 275: 1904–1907.

D ’Hendecourt, L. B. an d Al lamandola, L. J. 19 86. Ti me de pendent ch emistry in de nse mo lecular cl ouds. II I: In frared ba nd cr oss se ctions of mo lecules in th e so lid st ate at 10 K. As tron. Astrophys. Suppl. Ser. 64 : 45 3–467.

Dressler, K., Oehler, O., and Smith, D. A. 1975. Measurement of slow vibrational relaxation and fast vibrational ener gy transfer in solid N 2 . Phys. Rev. Lett. 34: 1364–1367.

Ehrenfreund, P. and Schutte, W. A. 2000. Infrared observations of interstellar ices. In Proceedings of IAU Symposium 197, Seogwipo, South K orea, p. 135.

Fleck, L. E., Feehery, W. F., Plummer, E. W., Ying, Z. C., and Dai, H. L. 1991. Laser-induced polymerization of submonolayer formaldeh yde on silv er (111). J . Phys. Chem. 95: 8428–8430.

Gerakines, P. A., Schutte, W. A., and Ehrenfreund, P. 1996. Ultraviolet processing of interstellar ice analogs. I. Pure ices. Astr on. Astrophys. 312: 289–305.

Goldanskii, V. I., Frank-Kamenetskii, M. D., and Barkalov, I. M. 1973. Quantum low-temperature limit of a chemical reaction rate. Science 182: 1344–1345.

Green, S. and Herbst, E. 1979. Metastable isomers—A new class of interstellar molecules. Astrophys. J. 229: 121–131.

Greenberg, J. M. and Pirronello, V. 1991. Chemistry in Space . Berlin, German y: Springer .

Grim, R. J. A., Greenberg, J. M., de Groot, M. S., Baas, F., Schutte, W. A., and Schmitt, B. 1989. Infrared spectroscopy of astrophysical ices—New insights in the photochemistry. Astron. Astrophys. Suppl. Ser. 79: 161–186.

Hase gawa, T. I., Herbst, E., and Leung, C. M. 1992. Models of gas-grain chemistry in dense interstellar clouds with comple x or ganic molecules. Astr ophys. J. Suppl. Ser. 82: 167–195.

Herbst, E. 1978. What are the products of polyatomic ion-electron dissociative recombination reactions. Astrophys. J. 222: 508–516.

Herbst, E. and Klemperer, W. 1973. The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185: 505–534.

Hiraoka, K. and Sato, T. 2001. Laboratory simulation of tunneling reactions in interstellar ices. Radiat. Phys. Chem. 60: 389–393.

Hiraoka, K., Matsunaga, K., Shoda, T., and Takimoto, H. 1992. Reaction of hydrogen atoms with solid unsaturated h ydrocarbons at 77 K. Chem. Phys. Lett . 197: 292–296.

Hiraoka, K., Yamashita, A., Yachi, Y., Aruga, K., Sato, T., and Muto, H. 1995. Ammonia formation from the reactions of H atoms with N atoms trapped in a solid N 2 matrix at 10–30 K. Astrophys. J. 443: 363–370.

Hiraoka, K., Miyagoshi, T., Takayama, T., Yamamoto, K., and Kihara, Y. 1998. Gas-grain processes for the formation of CH 4 and H 2 O: Reactions of H atoms with C, O, and CO in the solid phase at 12 K. Astrophys. J. 498: 710–715.

Hiraoka, K., Takayama, T., Euchi, A., Handa, H., and Sato, T. 2000. Study of the reactions of H and D atoms with solid C 2 H 2 , C 2 H 4 , and C 2 H 6 at cryogenic temperatures. Astrophys. J. 532: 1029–1037.

Hiraoka, K., Sato, T., Sato, S., Hishiki, S., Suzuki, K., Takahashi, Y., Yokoyama, T., and Kitagawa, S. 2001a. Formation of amorphous silicon by the low-temperature tunneling reaction of H atoms with solid thin �lm of SiH 4 at 10 K. J. Phys. Chem. B 105: 6950–6955.

Hiraoka, K., Sato, T., and Takayama, T. 2001b . Tunneling reactions in interstellar ices. Science 292: 869–870.

H iraoka, K., Sato, T., Sato, S., Sogoshi, N., Yokoyama, T., Takashima, H., and Kitagawa, S. 2002a. Formation of formaldehyde by the tunneling reaction of H with solid CO at 10 K revisited. Astrophys. J. 577: 265–270. Hiraoka, K., Sato, T., Sato, S., Takayama, T., Yokoyama, T., Sogoshi, N., and Kitagawa, S. 2002b. Study on the tunneling reaction of H atoms with a solid thin �lm of C 3 H 6 at 10 K. J. Phys. Chem. B 106: 4974–4978.

Hiraoka, K., Wada, A., Kitagawa, H., Kamo, M., Unagiike, H., Ueno, T., Sugimoto, T., Enoura, T., Sogoshi, N., and Okazaki, S. 2005. The reactions of H and D atoms with thin �lms of formaldehyde and methanol at cryogenic temperatures. Astr ophys. J. 620: 542–551.

Hiraoka, K., Ushiama, S., Enoura, T., Unagiike, H., Mochizuki, N., and Wada, A. 2006. Solid-phase reactions of D with CN to form DNC and DCN at cryogenic temperatures. Astr ophys. J. 643: 917–922.

Hirota, T., Yamamoto, S., Mikami, H., and Ohishi, M. 1998. Abundances of HCN and HNC in dark cloud cores. Astrophys. J. 503: 717–728.

Hornekaer , L., Baurichter, A., Petrunin, V. V., Field, D., and Luntz, A. C. 2003. Importance of surface morphology in interstellar H 2 formation. Science 302: 1943–1946.

Hudson, R. L. and Moore, M. H. 1999. Laboratory studies of the formation of methanol and other organic molecules by water + carbon monoxide radiolysis: relevance to comets, icy satellites, and interstellar ices. Icarus 140: 451–461.

H uebner, W. F., Boice, D. C., and Sharp, C. M. 1987. Polyoxymethylene in comet halley. Astrophys. J. 320: L149–L152.

Ikezoe, Y., Matsuoka, S., Takebe, M., and Viggiano, A. 1987. Gas Phase Ion-Molecule Reaction Rate Constants through 1986. Tok yo, Japan: Maruzen.

Irvine, W. M., Bockelee-Morv an, D., Lis, D. C., Matthews, H. E., Biv er, N., Crovisier , J., Davies, J. K., Dent, W. R. F., Gautier, D., Godfrey , P. D., Keene, J., Lov ell, A. J., Owen, T. C., Phillips, T. G., Rauer, H., Schloerb, F. P., Senay, M., and Young, K. 1996. Spectroscopic evidence for interstellar ices in comet Hyakutake. Natur e 383: 418–420.

Irvine, W. M., Dickens, J. E., Lovell, A. J., Schloerb, F. P., Senay, M., Bergin, E. A., Jewitt, D., and Matthews, H. E. 1998. Chemistry in cometary comae. F araday Disc. 109: 475–492.

Jodk owski, J. T., Rayez, M.-T., Rayez, J.-C., Berces, T., and Dobe, S. 1999. Theoretical study of the kinetics of the hydrogen abstraction from methanol. 3. Reaction of methanol with hydrogen atom, methyl, and hydroxyl radicals. J . Phys. Chem. A 103: 3750–3765.

Johnson, R. E. 1990. Energetic Charged-Particle Interactions with Atmospheres and Surfaces. Berlin, Germany: Springer-Verlag.

Kaiser, R. I. and Roessler, K. 1998. Theoretical and laboratory studies on the interaction of cosmic-ray particles with interstellar ices. III. Suprathermal chemistry-induced formation of hydrocarbon molecules in solid methane (CH 4 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). Astrophys. J. 503: 959–975.

Knyazev, V. D. and Slagle, I. R. 1996. Experimental and theoretical study of the C 2 H 3 H + C 2 H 2 reaction. Tunneling and the shape of f alloff curv es. J . Phys. Chem. 100: 16899–16911.

Kn yazev, V. D., Bencsura, A., Stoliarov, S. I., and Slagle, I. R. 1996. Kinetics of the C 2 H 3 + H 2 H +C 2 H 4 and CH 3 + H 2 H + CH 4 reactions. J. Phys. Chem. 100: 11346–11354.

Lanzerotti, L. J. and Johnson, R. E. 1986. Astrophysical implications of ions incident on insulators. In Ion Beam Modi±cation of Insulators, P. Mazzoldi and G. W. Arnold (eds.), pp. 631–644. Amsterdam, the Netherlands: Else vier.

Lias, S. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G. 1988. Gas-phase ion and neutral thermochemistry . J . Phys. Chem. Ref. Data 17(Suppl. 1): 1–861.

M ason, C. G., Gehrz, R. D., Jones, T. J., Mergen, J., Williams, D., Tokunaga, A. T., Brooke, T. Y., Weaver, H. A., Crovisier , J., and Bock elee-Morvan, D. 1996. Comet C/1996 B2 (Hyakutak e). IA U Circ. 6378: 1

Millar , T. J. and Williams, D. A. 1993. Dust and Chemistry in Astronomy. Bristol, U.K.: CRC Press.

Miyazaki, T. 1991. Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K. Radiat. Phys. Chem . 37: 635–642.

Moore, M. H. and Hudson, R. L. 1998. Infrared study of ion-irradiated water-ice mixtures with hydrocarbons relev ant to comets. Icarus 135: 518–527.

M umma, M. J., DiSanti, M. A., Russo, N. D., Fomenkova, M., Magee-Sauer, K., Kaminski, C. D., and Xie, D. X. 1996. Detection of abundant ethane and methane, along with carbon monoxide and water , in comet C/1996 B2 Hyakutak e: Evidence for interstellar origin. Science 272: 1310–1314.

Oehler , O., Smith, D. A., and Dressler, K. 1977. Luminescence spectra of solid nitrogen excited by electron impact. J . Chem. Phys. 66: 2097–2107.

Pirronello, V., Biham, O., Manico, J., Roser, J. E., and Vidali, G. 2000. Laboratory studies of molecular hydrogen formation on surfaces of astrophysical interest. In Molecular Hydrogen in Space, F. Combes and G.P.D. F orêts (eds.), pp. 71–84. Cambridge, U.K.: Cambridge Uni versity Press.

Prasad, S. S., Tarafdar, S. P., Villere, K. R., and Huntress, W. T., Jr. 1987. Chemical evolution of molecular clouds. In Interstellar Processes, D. J. Hollenbach and H. A. Thronson (eds.), pp. 631–666. Dordrecht, the Netherlands: Reidel.

Roser, J. E., Manico, G., Pirronello, V., and Vidali, G. 2002. Formation of molecular hydrogen on amorphous water ice: In¡uence of morphology and ultra violet e xposure. Astr ophys. J. 581: 276–284.

Roser , J. E., Swords, S., Vidali, G., Manico, G., and Pirronello, V. 2003. Measurement of the kinetic energy of hydrogen molecules desorbing from amorphous w ater ice. Astr ophys. J. Lett. 596: L55-L58.

Schutte, W. A., Allamandola, L. J., and Sandford, S. A. 1993. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104: 118–137.

Sen, A. D., Anicich, V. G., and Federman, S. R. 1992. Formaldehyde reactions in dark clouds. Astrophys. J. 391: 141–143.

Shalabiea, O. M. and Greenberg, J. M. 1994. Two key processes in dust/gas chemical modelling: Photoprocessing of grain mantles and e xplosive desorption. Astr on. Astrophys. 290: 266–278.

Sn yder, R. J. and Hollis, J. M. 1976. HCN, X-ogen /HCO + /, and U90.66 emission spectra from L134 (interstellar molecules). Astr ophys. J. Lett. 204: L139-L142.

Sosa, C. and Schlegel, H. B. 1986. Ab initio calculations on the barrier height for the hydrogen addition to ethylene and formaldeh yde. The importance of spin projection. Int. J . Quantum Chem. 29: 1001–1015.

T akahashi, J., Masuda, K., and Nagaoka, M. 1999. Product energy distribution of molecular hydrogen formed on ic y mantles of interstellar dust. Astr ophys. J. 520: 724–731.

T akayanagi, T. and Sato, S. 1990. The bending-corrected-rotating-linear-model calculations of the rate constants for the H+H 2 reaction and its isotopic variants at low temperatures: The effect of van der Waals well. J . Chem. Phys. 92: 2862–2868.

T aketsugu, T., Tajima, A., Ishii, K., and Hirano, T. 2004. Ab initio direct trajectory simulation with nonadiabatic transitions of the dissociative recombination reaction HCNH + + e − → HNC/HCN + H. Astrophys. J. 608: 323–329.

Talbi, D., Ellinger, Y., and Herbst, E. 1996. On the HCN/HNC abundance ratio: A theoretical study of the H + CNH ↔ HCN + H exchange reactions. Astron. Astrophys. 314: 688–692.

Tielens, A. G. G. M. 1989. Dust in dense clouds. In IAU Symposium 135, Interstellar Dust, L. A. Allamandola and A. G. G. M. Tielens (eds.), Santa Clara, CA, pp. 239–262. Dordrecht, the Netherlands: Kluwer .

Tielens, A. G. G. M., Tokunaga, A. T., Geballe, T. R., and Baas, F. 1991. Interstellar solid CO: Polar and nonpolar interstellar ices. Astr ophys. J. 381: 181–199.

V an Ijzendoorn, L. J., Allamandola, L. J., Baas, F., and Greenberg, J. M. 1983. Visible spectroscopy of matrix isolated HCO: The 2 A″(Π)←X 2 A’ transition. J. Chem. Phys. 78: 7019–7028.

Villa, J., Corchado, J. C., Gonzalez-Lafont, A., Lluch, J. M., and Truhlar , D. G. 1998a. Explanation of deuterium and muonium kinetic isotope effects for hydrogen atom addition to an ole�n. J. Am. Chem. Soc. 120: 12141–12142. V illa, J., Gonzalez-Lafont, A., Lluch, J. M., and Truhlar , D. G. 1998b. Entropic effects on the dynamical bottleneck location and tunneling contrib utions for C 2 H 4 + H → C 2 H 5 : Variable scaling of external correlation energy for association reactions. J . Am. Chem. Soc. 120: 5559–5567.

W ada, A., Mochizuki, N., and Hiraoka, K. 2006. Methanol formation from electron-irradiated mixed H 2 O/CH 4 ice at 10 K. Astr ophys. J. 644: 300–306.

W atson, W. D. 1974. Ion-molecule reactions, molecule formation, and hydrogen-isotope exchange in dense interstellar clouds. Astr ophys. J. 188: 35–42.

W atson, W. D. 1977. Interstellar chemistry . Acc. Chem. Res . 10: 221–226.

W atson, W. D. 1980. Molecule formation in cool, dense interstellar clouds. In Interstellar Molecules, IAU Symposium 87, B. H. Andrew(ed.), Quebec, Canada, pp. 341–350. Dordrecht, the Netherlands: Reidel.

W oon, D. E. 2002. Modeling gas-grain chemistry with quantum chemical cluster calculations. I. Heterogeneous hydrogenation of CO and H 2 CO on icy grain mantles. Astrophys. J. 569: 541–548.

Yang, K. and Rabitz, H. 1994. Quantum effects in the surface penetration of energetic hydrogen atoms. J. Chem. Phys. 101: 8205–8213. 30 Chapter 30. Radiation Effects on Semiconductors and Polymers for Space Applications

Amekura, H., Kishimoto, N., Kono, K., and Kondo, A. 2000. Persistent excited conductivity and the threshold ¡uence in a-Si:H under 17 MeV proton irradiation. J . Non-Cryst. Solids 266–269: 444–449.

Baba, N. and Kimoto, Y. 2009. Contamination growth observed on the micro-particles capturer and space environment e xposure de vice. J . Spacecr. Rockets 46: 33–38.

Banks, B. A., deGroh, K. K., and Miller, S. K. 2006. MISSE scattered atomic oxygen characterization experiment. N ASA/TM-2006-214355, N ASA, Cle veland, OH.

Benedetto, J., Eaton, P., Avery, K., Mavis, D., Gadlage, M., Tur¡inger, T., Dodd, P. E., and Vizkelethy, G. 2004. Heavy ion-induced digital single-event transients in deep submicron processes, IEEE Trans. Nucl. Sci. 51: 3365–3368.

FIGURE 30.32 Large cracks in HST MLI after 6.8 years in space. (Reprinted from de Groh, K.K. et al., The ef fect of he ating on th e de gradation of gr ound la boratory an d sp ace ir radiated Te ¡on ® FEP, NASA/TM-2002

211704, 2 002, 2 ( Fig. 1 ). Wi th p ermission.)

Breese, M. B. H. 1993. A theory of ion beam induced char ge collection. J . Appl. Phys. 74: 3789–3799.

Brinza, D. E., Chung, S. Y., Minton, T. K., and Liang, R. H. 1994. The NASA/JPL Evaluation of Oxygen Interactions with Materials-3 (EOIM-3). N ASA, CR-198865, N ASA, P asadena, CA.

Buchner , S. P. and Baze, M. P. 2001. IEEE Nuclear Space Radiation Effects Conference Short Course Notebook, Section V, Vancouver, Canada.

Buchner , S., Baze, M., Brown, D., McMorrow, D., and Melinger, J. 1997. Comparison of error rates in combinational and sequential logic. IEEE Trans. Nucl. Sci. 44: 2209–2216. d e Groh, K. K., Banks, B. A., Hammerstrom, A. M., Youngstrom, E. E., Kaminski, C., Marx, L. M., Fine, E. S., Gummow, J. D., and Wright, D., 2001. MISSE PEACE polymers: An international space station environmental e xposure e xperiment. N ASA/TM-2001-211311, N ASA, Cle veland, OH. de Groh, K. K. and Martin, M. 2002. The effect of heating on the degradation of ground laboratory and space irradiated Te¡on ® FEP. NASA/TM-2002-211704, NASA, Cleveland, OH.

Devasahayam, D., Hill, D. J. T., and Connell, J. W. 2005. Effect of electron beam radiolysis on mechanical properties of high performance polyimides. A comparative study of transparent polymer �lms. High Perform. Polym. 17: 547–559.

Dharmarasu, N., Yamaguchi, M., Bourgoin, J., Takamoto, T., Ohshima, T., Itoh, H., Imaizumi, M., and Matsuda, S. 2002. Majority and minority carrier deep lev el traps in proton-irradiated n + /p-InGaP space solar cells. Appl. Phys. Lett. 81: 64–66.

Dimroth, F., Baur, C., Bett, A. W., Meusel, M., and Strobl, G. 2005. 3–6 Junction photovoltaic cells for space and terrestrial concentrator applications. Proceedings of 31st Photovoltaic Specialists Conference, Lake Buena Vista, FL, pp. 525–529.

D odd, P. E. , Mu sseau, O. , Sh aneyfelt, M. R. , Se xton, F. W. , D’ hose, C. , Ha sh, G. L. , Ma rtinez, M. , Lo emker, R. A., Leray, J.-L., and Winokur , P. S. 1998. Impact of ion energy on single-ev ent upset. IEEE T rans. Nucl. Sci. 45: 2483–2491.

ESA, 1994. Eureca the European Retrievable Carrier Technical Report. ESA WPP-069, ESA, Noordwijk, the Netherlands.

Fageeha, O., Howard, J., and Block, R. C. 1994. Distribution of radial energy deposition around the track of energetic char ged particles in silicon. J . Appl. Phys. 75: 2317–2321.

Ferlet-Ca vrois, V., Vizkelethy, G., Paillet, P., Torres, A., Schwank, J. R., Shaneyfelt, M. R., Baggio, J., du Port de Pontcharra, J., and Tosti, L. 2004. Charge enhancement effect in NMOS bulk transistors induced by heavy ion irradiation: Comparison with SOI. IEEE Trans. Nucl. Sci. 51: 3255–3262.

Ferlet-Ca vrois, V., Paillet, P., Gaillardin, M., Lambert, D., Baggio, J., Schwank, J. R., Vizkelethy, G., Shaneyfelt, M. R., Hirose, K., Blackmore, E. W., Faynot, O., Jahan, C., and Tosti, L. 2006. Statistical analysis of the charge collected in SOI and bulk devices under heavy ion and proton irradiation—Implications for digital SETs. IEEE Trans. Nucl. Sci. 53: 3242–3252.

Finck enor, M. M. 2006. The Materials on International Space Station Experiment (MISSE): First results from MSFC in vestigations. AIAA 2006-472, N ASA, Huntsville, AL.

Fukatsu, T. 1997. Post¡ight analysis of the exposed materials on EFFU. Proceedings of the 7th ISMSE 1997, Toulouse, France, pp. 287–292.

Gadlage, M. J., Schrimpf, R. D., Benedetto, J. M. et al. 2004. Single event transient pulse widths in digital microcircuits. IEEE Trans. Nucl. Sci. 51: 3285–3290.

Gary Pippin, H., Woll, S. L. B., Loebs, V. A., and Bohnhoff-Hlavacek, G., 2000. Contamination effects on the passiv e optical sample assembly e xperiments. J . Spacecr. Rockets 37: 567–572.

G eisz, J. F., Friedman, D. J., Ward, J. S., Duda, A., Olavarria, W. J., Moriarty, T. E., Kiehl, J. T., Romero, M. J., Norman, A. G., and Jones, K. M. 2008. 40.8% Ef�cient inverted triple-junction solar cell with two in dependently metamorphic junctions. Appl . Phys. Lett . 93: 123505-1–123505-3.

Granata, J. E., Sahlstrom, T. D., Hausgen, P., Messenger, S. R., Walters, R. J., and Lorentzen, J. R. 2005. Thin�lm photovoltaic radiation testing and modeling for a MEO orbit. Proceedings of the 31st Photovoltaic Specialists Conference, Lak e Buena Vista, FL, pp. 607–610.

Harris, R. D., Imaizumi, M., Walters, R. J., Lorentzen, J. R., Messenger, S. R., Tischler , J. G., Ohshima, T., Sato, S., Sharps, P. R., and Fatemi, N. S. 2008. In situ irradiation and measurement of triple junction solar cells at lo w intensity , lo w temperature (LIL T) conditions. IEEE Trans. Nucl. Sci. 55: 3502–3507.

Hayaka wa, J. 1989 Useful Life and Its Pr ediction for Polymer Material. Japan: IPC [in Japanese].

Hirao, T., Onoda, S., Oikawa, M., Satoh, T., Kamiya, T., and Ohshima, T. 2009. Transient current mapping obtained from silicon photodiodes using focused ion microbeams with several hundreds of MeV. Nucl. Instrum. Methods B 267: 2216–2218.

Holmes-Siedle, A. and Adams, L. 2000. Handbook of Radiation Effects. New York: Oxford Univ ersity Press, p. 368.

Imagawa, K. 2002. Evaluation and analysis of parts and materials installed on MFD-ESEM. NASDATMR-000011, N ASDA, Japan.

Imaizumi, M., Sumita, T., Kawakita, S., Aoyama, K., Anzawa, O., Aburaya, T., Hisamatsu, T., and Matsuda, S. 2005. Results of ¡ight demonstration of terrestrial solar cells in space. Prog. Photovolt: Res. Appl. 13: 93–102.

Inoue, H., Okamoto, H., and Hiraoka, Y. 1987. Effect of the chemical structure of acid dianhydride in the skeleton on the thermal property and radiation resistance of polyimide. Int. J. Radiat. Appl. Instrum. Part C: Radiat. Phys. Chem. 29: 283–288.

J AXA, 2009. Proceedings of International Symposium on “SM/MPAC&SEED Experiment”. JAXA-SP-08015E, Tsukuba, Japan.

Kanaza wa, T., Haruyama, Y., and Yotsumoto, K. 1992. JAERI-M 1992-062. Takasaki, Japan: Japan Atomic Energy Research Institute Publication.

Katsu, T., Shimada, K., Washio, H., Tonomura, Y., Hisamatsu, T., Kamimura, K., Saga, T., Matsutani, T., Suzuki, A., Kaw asaki, O., Yamamoto, Y., and Matsuda, S. 1994. Dev elopment of high ef�cienc y silicon space solar cells. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion (WCPEC), Hawai, US, Conference Record of the 24th IEEE Photovoltaic Specialist Conference, Waik oloa, HI, pp. 2133–2136.

Ka wakita, S., Imaizumi, M., Yamaguchi, M., Kushiya, K., Ohshima, T., Itoh, H., and Matsuda, S. 2002. Annealing enhancement effect by light illumination on proton irradiated Cu(In,Ga)Se 2 thin-�lm solar cells. Jpn. J . Appl. Phys. 41: L797–L799.

Kimoto, Y., Yano, K., Ishizawa, J., Miyazaki, E., and Yamagata, I. 2009. Passive space-environment-effect measurement on the international space station. J . Spacecr. Rockets 46: 22–27.

K leiman, J. I. , Is kanderova, Z. , Is soupov, V. , Gr igorevskiy, A. V. , Ki seleva, L. V. , Fi nckenor, M. , Na umov, S. F., Sokolo va, S. P., and Kurilenok, A. O. 2009. The Results of Ground-based and In-¡ight Testing of Charge-dissipati ve and Conducting EKOM Thermal Control Paints, Proceedings of the 9th International Conference on “Protection of Materials and Structures from Space Environment” AIP Conference Proceedings, Vol. 1087, pp. 610-620, Toronto, Canada.

K obayashi, D., Hirose, K., Makino, T., Ikeda, H., and Saito, H. 2007a. Feasibility study of a table-based SETpulse estimation in logic cells from heavy-ion-induced transient currents measured in a single MOSFET. IEEE Trans. Nucl. Sci. 54: 2347–2354.

K obayashi, D., Saito, H., and Hirose, K. 2007b. Estimation of single ev ent transient voltage pulses in VLSI circuits from heavy-ion-induced transient currents measured in a single MOSFET. IEEE Trans. Nucl. Sci. 54: 1037–1041.

K obetich, E. J. an d Ka tz, R. 19 68. En ergy de position by el ectron be ams an d δ ra ys. Ph ys. Rev. 17 0: 391–396.

Kurashima, S., Miyawaki, N., Okumura, S., Oikawa, M., Yoshida, K., Kamiya, T., Fukuda, M., Satoh, T., Nara, T., Agematsu, T., Ishibori, I., Yokota, W., and Nakamura, Y. 2007. Improvement in beam quality of the JAEA AVF cyclotron for focusing heavy-ion beams with energies of hundreds of MeV. Nucl. Instrum. Methods B 260: 65–70.

K utz, M. 2005. Handbook of Environmental Degradation of Material. Norwich, NY: William Andrew Publishing, p. 465.

Laird, J. S., Hirao, T., Mori, H., Onoda, S., Kamiya, T., and Itoh, H. 2001. Dev elopment of a new data collection system and chamber for microbeam and laser inv estigations of single ev ent phenomena. Nucl. Instrum. Methods B 181: 87–94.

Laird, J. S., Toshio, H., Shinobu, O., and Hisayoshi, I., 2005. High-injection carrier dynamics generated by MeV hea vy ions impacting high-speed photodetectors. J . Appl. Phys. 98: 013530-1–013530-14.

LDEF 69 Months in Space. First Post-Retrie val Symposium, 1991, N ASA-CP-3134, Kissimmee, FL.

LDEF 69 Months in Space. Second Post-Retrie val Symposium, 1992, N ASA-CP-3194, San Die go, CA.

LDEF 69 Months in Space. Third Post-Retrie val Symposium, 1993, N ASA-CP-3275, Williamsb urg, VA.

Marco, J. and Remaury, S. 2004. Evaluation of thermal control coatings degradation in simulated geo-space environment. High P erform. Polym. 16: 177–196.

Matsuda, S., Yamamoto, Y., and Kawasaki, O. 1994. GaAs space solar cells. Optoelectron.: Devices Technol. 9: 561–576.

Matsuura, H., Iwata, H., Kagamihara, S., Ishihara, R., Komeda, M., Imai, H., Kikuta, M., Inoue, Y., Hisamatsu, T., Kawakita, S., Ohshima, T., and Itoh, H., 2006. Si substrate suitable for radiation resistant space solar cells. Jpn. J . Appl. Phys. 45: 2648–2655.

Me gusar, J. 1997. Low temperature fast-neutron and gamma irradiation of Kapton ® polyimide �lms. J. Nucl. Mater. 245: 185–190.

Messenger, S. R., Summers, G. P., Burke, E. A., Walters, R. J., and Xapsos, M. A. 2001. Modeling solar cell degradation in space: A comparison of the NRL displacement damage dose and the JPL equivalent ¡uence approaches. Pr og. Photovolt: Res. Appl. 9: 103–121.

Miyazaki, E. and Shimamura, H. 2007. Current performance and issues of the combined space effects test facility. J AXA-RM-07-004 [in Japanese].

Miyazaki, E. and Yamagata, I. 2009. Results of space-environment exposure of the ¡exible optical solar re¡ector. J . Spacecr. Rockets 46: 28–32.

Nashiyama, I., Hirao, T., Kamiya, T., Yutoh, H., Nishijima, T., and Sekiguti, H. 1993. Single-event current transients induced by high ener gy ion microbeams. IEEE Trans. Nucl. Sci. 40: 1935–1940.

O’Donnell, J. H. and Sangster, D. S. 1970. Principals of Radiation Chemistry. London, U.K.: Edword Armold.

Ohshima, T., Morita, Y., Nashiyama, I., Kawasaki, O., Hisamatsu, T., Nakao, T., Wakow, Y., and Matsuda, S. 1996. Mechanism of anomalous degradation of silicon solar cells subjected to high-¡uence irradiation. IEEE Trans. Nucl. Sci. 43: 2990–2997. Ohshima, T., Sumita, T., Imaizumi, M., Kaw akita, S., Shimazaki, K., Kuw ajima, S., Ohi, A., and Itoh, H., 2005. Evaluation of the electrical characteristics of III-V compounds solar cells irradiated with proton at low te mperature. Pr oceedings of 31st IEEE Photovoltaic Specialists Conference, La ke Bu ena Vi sta, FL , pp . 806–809.

Oikaw a, M., Kamiya, T., Fukuda, M., Okumura, S., Inoue, H., Masuno, S., Umemiya, S., Oshiyama, Y., and Taira, Y. 2003. Design of a focusing high-energy heavy ion microbeam system at the JAERI AVF cyclotron. Nucl. Instrum. Methods B 210: 54–58.

Oika wa, M., Satoh, T., Sakai, T., Miyaw aki, N., Kashiwagi, H., Kurashima, S., Okumura, S., Fukuda, M., Yok ota, W., and Kamiya, T. 2007. F ocusing high-ener gy hea vy ion microbeam system at the J AEA AVF cyclotron. Nucl. Instrum. Methods B 260: 85–90.

ONERA home page http://www .onera.fr/desp-en/technical-resources/semiramis.php

Onoda, S., Hirao, T., Laird, J. S., Mishima, K., Kaw ano, K., and Itoh, H. 2006. Transient currents generated by heavy ions with hundreds of MeV . IEEE Trans. Nucl. Sci. 53: 3731–3737.

Petersen, E. 2008. IEEE Nuclear Space Radiation Effects Conference Short Course Notebook, Section III, Tucson, AZ.

Sasuga, T. 1988. Oxidati ve irradiation ef fects on se veral aromatic polyimides. P olymer 29: 1562–1568.

Sasug a, T. and Hagiwara, M. 1985. Degradation in tensile properties of aromatic polymers by electron beam irradiation. P olymer 26: 1039–1045.

Sasug a, T. and Hagiwara, M. 1987. Radiation deterioration of sev eral aromatic polymers under oxidativ e conditions. P olymer 28: 1915–1921.

Sato, S., Miyamoto, H., Imaizumi, M., Shimazaki, K., Morioka, C., Kawano, K., and Ohshima, T. 2009a. Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated with various-ener gy protons. Sol. Ener gy Mater. Sol. Cells 93: 768–773.

Sato, S., Ohshima, T., and Imaizumi, M. 2009b. Modeling of degradation behavior of InGaP/GaAs/Ge triplejunction space solar cell e xposed to char ged particles. J . Appl. Phys. 105: 044504-1–044504-6.

Schone, H., Walsh, D. S., Sexton, F. W. et al. 1998. Time-resolv ed ion beam induced charge collection (TRIBICC) in micro-electronics. IEEE Trans. Nucl. Sci. 45: 2544–2549.

Shimamura, H. and Yamag ata, I. 2009. Degradation of mechanical properties of polyimide �lm exposed to space en vironment. J . Spacecr. Rockets 46: 15–21.

Shimamura, H. and Miyazaki, E. 2009. Investigations into synergistic effects of atomic oxygen and vacuum ultraviolet. J . Spacecr. Rockets 46: 241–247.

Sog a, T., Chandrasekaran, N., Imaizumi, M., Inuzuka, Y., Taguchi, H., Jimbo, T., and Matsuda, S. 2003. Highradiation resistance of GaAs solar cell on Si substrate following 1 MeV electron irradiation. Jpn. J. Appl. Phys. 42: L1054 –L1056.

Steagall, C. A., Smith, K., Soares, C., Mikatarian, R., and Baba, N. 2009. Induced-contamination predictions for the micro-particle capturer and space en vironment e xposure de vice. J . Spacecr. Rockets 46: 39–44.

Sumita, T., Imaizumi, M., Matsuda, S., Ohshima, T., Ohi, A., and Itoh, H. 2003. Proton radiation analysis of multi-junction space solar cells. Nucl. Instrum. Methods B 206: 448–451.

Summers, G. P., Burke, E. A., Dale, C. J., Wolicki, E. A., Marshall, P. W., and Gehlhausen, M. A. 1987. Collection of particle-induced displacement damage in silicon. IEEE Trans. Nucl. Sci. NS34: 1134–1139.

Ta da, H. Y. , Ca rter, Jr ., J. R. , An spaugh, B. E. , an d Do wing, R. G. 19 82. So lar Cell Radiation Handbook, 3rd edn. pp. 82–96, Pasadena, CA: JPL Publications.

Takamoto, T., Agui, T., Washio, H., Takahashi, N., Nakamura, K., Anzaw a, O., Kaneiwa, M., Kamimura, K., Okamoto, K., and Yamaguchi, M. 2005. Future dev elopment of InGaP/(In)GaAs based multijunction solar cells. Proceedings of 31st Photovoltaic Specialists Conference, Lake Buena Vista, FL, pp. 519–524.

Tavlet, M., Fontaine, A., and Schonbacher, H. 1998. Compilation of radiation damage test data, Part II, 2nd edn: Thermoset and thermoplastic regins; composite materials. Report No. CERN-98-01. Geneva Switzerland: CERN.

T ownsend, J. A., Powers, C., Viens, M., Ayres-Treusdell, M., and Munoz, B. 1998. Degradation of te¡on FEP following charged particle radiation and rapid thermal cycling. Proceedings of Space Simulation Conference, N ASA CR-1998-208598, Annapolis, MD, pp. 201–209.

Uemura, T., Tosaka, Y., and Satoh, S. 2006. Neutron-induced soft-error simulation technology for logic circuits. Jpn. J. Appl. Phys. 45: 3256–3259.

V izkelethy, G., Onoda, S., Hirao, T., Ohshima, T., and Kamiya, T. 2009. Time resolved ion beam induced current measurements on MOS capacitors using a cyclotron microbeam. Nucl. Instrum. Methods B 267: 2185–2188.

Wagner, R. S., Bradley, J. M., Bordes, N., Maggiore, C. J., Sinha, D. N., and Hammond, R. B. 1987. Transient measurements of ultrafast charge collection in semiconductor diodes. IEEE Trans. Nucl. Sci. 34: 1240–1245.

Walters, R. J., Messenger, S. R., Summers, G., Romero, M., Al-Jassim, M., Araujo, D., and Garcia, R. 2001. Radiation response of n-type base InP solar cells. J . Appl. Phys. 90: 3558–3565.

W eatherford, T. 2002. IEEE Nuclear Space Radiation Effects Conference Short Course Notebook, Section IV, Phoenix, AZ.

Weinber g, I. 1991. Radiation damage in InP solar cells. Sol. Cells 31: 331–348.

Xapsos, M. 2006. IEEE Nuclear Space Radiation Effects Conference Short Course Notebook, Section II, Ponte Vedra Beach, FL.

Y amaguchi, M. 2001. Radiation-resistant solar cells for space use. Sol. Ener gy Mater. Sol. Cells 68: 31–53.

Y amaguchi, M., Uemura, C., and Yamamoto, A. 1984. Radiation damage in InP single crystals and solar cells. J. Appl. Phys. 55: 1429–1436.

Y amaguchi, M., Itoh, Y., Ando, K., and Yamamoto, A. 1986. Room-temperature annealing effects on radiationinduced defects in InP crystals and solar cells. Jpn. J . Appl. Phys. 25: 1650–1656.

Y amaguchi, M., Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M., Ando, K., and Var gas-Aburto, C. 1995. Radiation resistance of InP-related materials. Jpn. J . Appl. Phys. 34: 6222–6225.

Y amaguchi, M., Tayler , S., Matsuda, S., and Kaw asaki, O. 1996. Mechanism for the anomalous degradation of Si solar cells induced by high ¡uence 1 MeV electron irradiation. Appl. Phys. Lett . 68: 3141–3143.

Y amaguchi, M., T. Okuda, T,, and Tayler , S. 1997. Minority-carrier injection-enhanced annealing of radiation damage to InGaP solar cells. Appl. Phys. Lett . 170: 2180–2182.

Zie gler, J. F., Biersack, J. P., and Ziegler , M. D. 2008. SRIM–The Stopping and Range of Ions in Matter. Chester, MD: SRIM Co.

Zoutendyk, J. A., Schwartz, H. R., and Nevill, L. R. 1988. Lateral charge transport from heavy-ion tracks in integrated circuit chips. IEEE Trans. Nucl. Sci. 35: 1644–1647.

Zoutendyk, J. A., Edmonds, L. D., and Smith, L. S. 1989. Characterization of multiple-bit errors from singleion tracks in inte grated circuits. IEEE Trans. Nucl. Sci. 36: 2267–2274.

Zwiener , J. M., 1998. Contamination observed on the passiv e optical sample assembly (POSA)-I experiment. SPIE Proc. 3427: 186–195. 31 Chapter 31. Applications of Rare Gas Liquids to Radiation Detectors

Abe, K., Hosaka, J., Iida, T. et al. 2009. Distillation of liquid xenon to remove krypton. Astropart. Phys. 31: 290–296.

Aharrouche, M. 2007. The ATLAS liquid argon calorimeter: Construction, integration, commissioning and combined test beam results. Nucl. Instrum. Methods Phys. Res. Sect. A 581: 373–376.

Ahlen, S. P. 1980. Theoretical and experimental aspects of the energy loss of relativistic heavy ionizing particles. Re v. Modern Phys. 52: 121–173. Cryostat Xe PMT Gas LXe b΄ b a΄ a (a) a–a΄ section b–b΄ section (b)

FIGURE 31.35 (a) Cross-sectional view of LXe scintillation TOF-PET seen from the front. (b) Two cross sectional views seen from the top of TOF-PET. (From Doke, T. et al., Nucl. Instrum. Methods Phys. Res. A., 569,

863, 2006. With permission.)

Akimov, D. 2009. Detectors for dark matter search (review). Nucl. Instrum. Methods Phys. Res. Sect. A 598: 275–281.

Akimov, D., Bewick, A., Davidge, D. et al. 2002. Measurement of scintillation ef�ciency and pulse shape for low ener gy recoils in liquid x enon. Phys. Lett. B 524: 245–251.

Alner , G. J., UK Dark Matter Collaboration. 2005. First limits on nuclear recoil events from ZEPLIN I galactic dark matter detector . Astr opart. Phys. 23: 444–462.

Amerio, S., Amoruso, S., Antonello, M. et al. 2004. Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Methods Phys. Res. Sect. A 527: 329–410.

Anderson, D. F. 1986. Photosensitive dopants for liquid argon. Nucl. Instrum. Methods Phys. Res. Sect. A 242: 254–258; Ne w photosensiti ve dopants for liquid ar gon. ibid . 245: 361–365.

Angle, J. et al. (XENON Collaboration). 2008a. First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory . Phys. Re v. Lett. 100: 021303.

Angle, J. et al. 2008b. Limits on spin-dependent WIMP-nucleon cross sections from the xenon10 experiment. Phys. Rev . Lett. 101: 091301-1-5.

Aprile, E., Giboni, K. L., Majewski, P. et al. 2005. Scintillation response of liquid xenon to low energy nuclear recoils. Phys. Re v. D 72: 072006.

Aprile, E., Dahl, C. E., de Vi veiros, L. et al. 2006. Simultaneous measurement of ionization and scintillation from nuclear recoils in liquid x enon for a dark matter e xperiment. Phys. Re v. Lett. 97: 081302-1-4.

Aprile, E., Giboni, K. L., Majewski, P. et al. 2007. Observation of anticorrelation between scintillation and ionization for MeV g amma rays in liquid x enon. Phys. Re v. B 76: 014115.

Aprile, E., Curioni, A., Giboni, K. L. et al. 2008. Compton imaging of MeV gamma-rays with the liquid xenon gamma-ray imaging telescope (LXeGRIT). Nucl. Instrum. Methods Phys. Res. Sect. A 593: 414–425.

Arneodo, F., Baiboussinov, B., Badertscher, A. et al. 2000. Scintillation ef�ciency of nuclear recoil in liquid xenon. Nucl. Instrum. Methods Phys. Res. Sect. A 449:147–157.

Arneodo, F., Benetti, P., Bonesini, M. et al. 2003. Performance of the 10 m 3 ICARUS liquid argon prototype. Nucl. Instrum. Methods Phys. Res. Sect. A 498: 292–311.

Arneodo, F., Benetti, P., Bonesini, M. et al. 2006. Performance of a liquid argon time projection chamber exposed to the CERN west area neutrino f acility neutrino beam. Phys. Re v. D 74: 112001.

Asaf, U. and Steinber ger, I. T. 1971. Wannier e xcitons in liquid x enon. Phys. Lett . 34A:207–208.

Aubert, B., Bazan, A., Cav anna, F. et al. 1991. Performance of a liquid argon electromagnetic calorimeter with an “accordion” geometry . Nucl. Instrum. Methods Phys. Res. A 309: 438–449.

Aubert, B., Ballansat, J., Colas, J. et al. 2005. Development and construction of large size signal electrodes for the ATLAS electromagnetic calorimeter . Nucl. Instrum. Methods Phys. Res. A 539: 558–594.

Badw ar, G. D. 1973. Calculation of the Vavilov distribution allowing for electron escape from the absorber. Nucl. Instrum. Methods 109: 119–123.

Bakale, G., Sowada, U., and Schmidt, W. F. 1976. Effect of an electric �eld on electron attachment to SF 6 , N 2 O, and O 2 in liquid argon and xenon. J. Phys. Chem. 80: 2556–2559.

Baldini, G. 1962. Ultra violet absorption of solid ar gon, krypton, and x enon. Phys. Re v. 128: 1562–1556.

Baldini, A., Bemporad, C., Cei, F. et al. 2005a. Absorption of scintillation light in a 100L LXe γ-ray detector and e xpected detector performance. Nucl. Instrum. Methods Phys. Res. Sect. A 545: 753–764.

Baldini, A., Bemporad, C., Cei, F. et al. 2005b. Transparency of a 100 liter liquid xenon scintillation calorimeter prototype and measurement of its energy resolution for 55 MeV photons. In 2005 IEEE International Conference on Dielectric Liquids, June 26–July 1, 2005 ( ICDL 2005), Coimbra, Portug al, pp. 337–340.

B aldini, A., Bemporad, C., and Cei, F. 2006. A radioactive point-source lattice for calibrating and monitoring the LXe calorimeter of the MEG experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 565: 589–598.

Baranov, A., Baskakov, V., Bondarenko, G. et al. 1990. A liquid-xenon calorimeter for the detection of electromagnetic sho wers. Nucl. Instrum. Methods Phys. Res. A 294: 439–445.

B arr, G. D., Bruschini, C., Bocquet, C. et al. 1996. Performance of an electromagnetic liquid krypton calorimeter based on a ribbon electrode tower structure. Nucl. Instrum. Methods Phys. Res. A 370: 41 3–424.

Batley, J. R., Culling, A. J., Kalmus, G. et al. 2009. Precise measurement of the K ± → π ± e + e − decay. Phys. Lett. B 677: 246–254.

Beaglehole, D. 1965. Re¡ection studies of e xcitons in liquid and solid x enon. Phys. Re v. Lett. 15: 551–553.

Benetti, P., Bettini, A., Calligarich, E. et al. 1993a. A simple and effective puri�er for liquid xenon. Nucl. Instrum. Methods Phys. Res. A 329: 361–364.

Benetti, P., Bettini, A., Calligarich, E. et al. 1993b. A three-ton liquid argon time projection chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 332: 395–412.

Bernabei, R. et al. 2002. Results with the DAMA/LXe experiment at LNGS. Nucl. Phys. B (Proc. Suppl.) 110: 88–90.

Bettini, A., Braggiotti, A., Casagrande, F. et al. 1991. A study of the factors affecting the electron life time in ultra-pure liquid ar gon. Nucl. Instrum. Methods Phys. Res. Sect. A 305: 177–186.

Birks, J. B. 1964. The Theory and Practice of Scintillation Counting. Oxford, U.K.: Per gamon.

Bolotnikov, A. and Ramsey, B. 1997. The spectroscopic properties of high-pressure xenon. Nucl. Instrum. Methods Phys. Res. Sect. A 396: 360–370.

Bolozdyn ya, A. I., Brusov, P. P., Shutt, T. et al. 2007. A chromatographic system for removal of radioactive 85 Kr from x enon. Nucl. Instrum. Methods Phys. Res. Sect. A 579: 50–53.

Boulay , M. G. and Hime, A. 2006. Technique for direct detection of weakly interacting massive particles using scintillation time discrimination in liquid ar gon. Astr opart. Phys. 25: 179–182.

Brooks, M. L. et al. (MEGA Collaboration). 1999. New limit for the lepton-family number nonconserving decay μ + (e + γ). Phys. Rev. Lett. 83: 1521–1524.

Brunetti, R. et al. 2005. WARP liquid ar gon detector for dark matter surv ey. Ne w Astron. Rev. 49: 265–269.

Buckle y, E., Campanella, M., Carugno, G. et al. 1989. A study of ionization electrons drifting ov er large distances in liquid Argon. Nucl. Instrum. Methods Phys. Res. Sect. A 275: 364–372.

Bunemann, O., Cransha w, T. E., and Harv ey, J. A. 1949. Can. J . Res. Sect. A 27: 191–206.

Cauwels, P. et al. 2001. Study of the atmospheric 85 Kr concentration growth in Gent between 1979 and 1999. Radiat. Phys. Chem. 61: 649–651. Cennini, P., Cittolin, S., Revol, J. P. et al. 1994. Performance of a three-ton liquid argon time projection chamber. Nucl. Instrum. Methods Phys. Res. Sect. A 345: 230–243.

Cennini, P., Revol, J. P., Rubbia, C. et al. 1995. Improving the performance of the liquid argon TPC by doping with tetra-meth yl-germanium. Nucl. Instrum. Methods Phys. Res. Sect. A 355: 660–662.

Chepel, V. Y. U., Lopes, M. I., Araújo, H. M. et al. 1995. Liquid xenon multiwire chamber for positron tomography. Nucl. Instrum. Methods Phys. Res. A 367: 58–61.

Chepel, V., Lopes, M. I., Kuchenkov, A. et al. 1997. Performance study of liquid xenon detector for PET. Nucl. Instrum. Methods Phys. Res. A 392: 427–432.

Chepel, V., Solovov, V., Neves, F. et al. 2006. Scintillation ef�ciency of liquid xenon for nuclear recoils with the energy do wn to 5 keV . Astr opart. Phys. 26: 58–63.

Christophorou, L. G. 1988. Gas/liquid transition: Interphase physics. In The Liquid State and Its Electrical Properties, E. E. Kunhardt, L. G. Christophorou, and L. H. Lussen (eds.), pp. 283–316. New York: Plenum Pub . Corp.

Coakle y, K. J. and McKinsey , D. N. 2004. Spatial methods for ev ent reconstruction in CLEAN. Nucl. Instrum. Methods Phys. Res. A 522: 504–520.

Costantini, F. 1998. The liquid krypton calorimeter of NA48: First operation results. Nucl. Instrum. Methods Phys. Res. A 409: 570–574.

Dok e, T. 1981. Fundamental properties of liquid argon, krypton and xenon as radiation detector media. Port. Phys. 12: 9–48.

Dok e, T. and Masuda, K. 1999. Present status of liquid rare gas scintillation detectors and their new application to g amma-ray calorimeters. Nucl. Instrum. Methods Phys. Res. A 420: 62–80.

Dok e, T., Hitachi, A., Kubota, S., Nakamoto, A., and Takahashi, T. 1976. Estimation of Fano factors in liquid argon, krypton, x enon and x enon-doped liquid ar gon. Nucl. Instrum. Methods 134: 353–357. D oke, T., Hitachi, A., Kikuchi, J. et al. 1985. Estimation of the fraction of electrons escaping from recombination in th e io nization of li quid ar gon wi th re lativistic el ectrons an d he avy io ns. Ch em. Phys. Lett. 11 5: 16 4–166.

Doke, T., Crawford, H., Hitachi, A. et al. 1988. LET dependence of scintillation yields in liquid argon. Nucl. Instrum. Methods Phys. Res. A 269: 291–296.

Dok e, T., Kikuchi, J., and Nishikido, F. 2006. Time-of-¡ight positron emission tomography using liquid xenon scintillation. Nucl. Instrum. Methods Phys. Res. A 569: 863–871.

Ellis, J. and Flores, R. A. 1991. Elastic supersymmetric relic-nucleus scattering revisited. Phys. Lett. B 263: 259–266.

Fanti, V., Lai, A., Marras, D. et al. NA48 Collaboration. 1999. A new measurement of direct CP violation in two pion decays of the kaon. Phys. Lett. B 465: 335–348.

F anti, V., Lai, A., Marras, D. et al. 2007. The beam and detector for the NA48 neutral kaon CP violation experiment at CERN. CERN-PH-EP/2007-006.

Freedman, W. and Turner, M. 2003. Colloquium: Measuring and understanding the universe. Rev. Mod. Phys. 75: 1433–1447.

Fukasa wa, A., Arisaka, K., Wang, H., and Suyama, M. 2010. QUIPID, a single photon sensor for extremely low radioactivity. Nucl. Instrum. Methods. Phys. Res. Sect. A, in press.

Gaitskell, R. 2004. Direct detection of dark matter . Annu. Re v. Nucl. Part. Sci. 54: 315–359.

Gallin-Martel, M. L., Gallin-Martel, L., Grondin, Y. et al. 2009. A liquid xenon positron emission tomograph for small imaging: First experimental results of prototype cell. Nucl. Instrum. Methods Phys. Res. A 599: 275–283.

Gatti, E., Padovini, G., Quartapelle, L. et al. 1979. Considerations for the design of a time projection liquid argon ionization chamber . IEEE Trans. Nucl. Sci. 26: 2910–2932.

Giboni, K., Aprile, E., Doke, T. et al. 2007. Compton positron emission tomography with a liquid xenon time projection chamber . JINST 2: P10001.

Haruyama, T. 2002. Boiling heat transfer characteristics of liquid x enon. Adv . Cryog. Eng. 47: 1499–1506.

Hilt, O., Schmidt, W. F., and Khrapak, A. G. 1994. Ionic mobilities in liquid xenon. IEEE Trans. Dielectr. Electr. Insul. 1: 648–656.

Hirschfelder , J. O., Curtiss, C. F., and Bird, R. B. 1954. Molecular Theory of Gases and Liquids. New York: Wiley.

Hitachi, A. 1984. Exciton kinetics in condensed rare g ases. J . Chem. Phys. 80: 745–748.

H itachi, A. 20 05. Pr operties of li quid xe non sc intillation fo r da rk ma tter se arches, As tropart. Phys. 24 : 24 7–256.

Hitachi, A. 2008. Bragg-like curve for dark matter searches: Binary gases. Radiat. Phys. Chem. 77: 1311–1317, A W-v alue for CF 4 used in this reference was too large. A proper value of 34.3 eV (G.F. Reinking et al., J. Appl. Phys. 60, 499, 1986) makes the ionization 1.57 times that shown in Figure 31.7 (the right axis) of this reference.

Hitachi, A., Takahashi, T., Funayama, N. et al. 1983. Effect of ionization density on the time dependence of luminescence from liquid ar gon and x enon. Phys. Re v. B 27: 5279–5285.

Hitachi, A., Yunoki, A., Doke, T., and Takahashi, T. 1987. Scintillation and ionization yield for α particles and �ssion fragments in liquid ar gon. Phys. Re v. A 35: 3959–3958.

Hitachi, A., LaVerne, J. A., and Doke, T. 1992a. Effect of an electric �eld on luminescence quenching in liquid argon. Phys. Re v. B 18: 540–543.

H itachi, A., Doke, T., and Mozumder, A. 1992b. Luminescence quenching in liquid argon under chargedparticle impact: Relative scintillation yield at different liner energy transfers. Phys. Rev. B 18: 11 463–11470.

Hitachi, A., LaVerne, J. A., Kolata, J. J., and Doke, T. 1994. Energy resolution of allene doped liquid argon detectors for ions of ener gy 23–34 MeV/amu. Nucl. Instrum. Methods Phys. Res. Sect. A: 546–550.

Hitachi, A., Ichinose, H., Kikuchi, J. et al. 1997. Photoionization quantum yield of org anic molecules in liquid argon and x enon. Phys. Re v. B 55, 5742–5748.

Hitachi, A., LaVerne, J., Kolata, J. J., and Doke, T. 2002. Field effects on ionic and excitonic quenching for heavy ions in liquid Ar. IEEE Trans. Dielectr. Electr. Insul. 9, 45–47.

Holro yd, R. A. 2004, Electrons in nonpolar liquids. In Charged Particle and Photon Interactions with Matter, A. Mozumder and Y. Hatano (eds.). Ne w York: Marcel Dekk er, Inc.

Holro yd, R. A. and Schmidt, W. F. 1989. Transport of electrons in nonpolar ¡uids. Annu. Re v. Phys. Chem. 40: 439–468.

Hoshi, Y., Masuda, K., and Doke, T. 1982. Theoretical estimation of energy resolution in liquid argon sampling calorimeter. Jpn. J . Appl. Phys. 21:1086–1094.

Hung, S. S. S., Gee, N., and Freeman, G. R. 1991. Ionization of liquid argon by x-rays: Effect of density on electron thermalization and free ion yields. Radiat. Phys. Chem . 37: 417–421.

Hynes, J. T. 1985. Chemical reaction dynamics in solution. Annu. Re v. Phys. Chem. 36: 573–597.

Ig arashi, Y. et al. 2000. Radioactive noble gases in surface air monitored at MRI, Tsukuba, before and after the JCO accident. J . Environ. Radioact. 50:107–118.

Ishida, N., Chen, M., Doke, T. et al. 1997. Attenuation length measurements of scintillation light in liquid rare gases and their mixtures using an improved re¡ection suppresser. Nucl. Instrum. Methods Phys. Res. A 384: 380–386.

Jaf fe, G. 1913. Zur Theorie der Ionisation in K olonner. Annalen der Physik 347: 303–344.

Jeitler , M. 2002. The N A48 liquid-krypton calorimeter . Nucl. Instrum. Methods Phys. Res. A 494: 373–377.

Jortner , J., Meyer, L., Rice, S. A., and Wilson, E. G. 1965. Localized excitons in condensed Ne, Ar, Kr, and Xe. J. Chem. Phys. 42: 4250–4253.

K oizumi, H. 1994. Photoionization quantum yield for liquid squalane and squalene estimated from photoelectron emission yield. Chem. Phys. Lett ., 219: 137–142.

Kramers, H. A. 1952. On a modi�cation of Jaf fe’s theory of column-ionization. Physica 18: 665–675.

Kubota, S., Nakamoto, A., Takahashi, T. et al. 1976. Evidence of the existence of exciton states in liquid argon and e xciton-enhanced ionization from x enon doping. Phys. Re v. B 13: 1649–1653.

K ubota, S., Hishida, M., and Ruan (Gen), J. 1978. Evidence for a triplet state of the self-trapped exciton states in liquid ar gon, krypton and x enon. J . Phys. C 11: 2645–2651.

K ubota, S., Hishida, M., Suzuki, M., and RuanGen, J. Z. 1979. Dynamical behavior of free electrons in the recombination process in liquid ar gon, krypton and x enon. Phys. Re v. B 20: 3486–3496.

K ubota, S. et al. 1980. Speci�c-ionization-density effect on the time dependence of luminescence in liquid xenon. Phys. Re v. B 21: 2632–2634.

K uo, C.-Y. and Keto, J.W. 1983. Dissociable recombination in electron-beam excited argon at high pressure. J. Chem. Phys. 78: 1851–1860.

Lai, A., Marras, D., Batley, J. R. et al. 2003. Precise measurements of the K S → γγ and K L → γγ decay rates. Phys. Lett. B 551: 7–15.

Laporte, P . et al. 1980. Intermediate and Wannier e xcitons in ¡uid x enon. Phys. Re v. Lett. 45: 2138–2140.

LaV erne, J., Hitachi, A., Kolata, J. J., and Doke, T. 1996. Scintillation and ionization in allene-doped liquid argon irradiated with 18 O and 36 Ar ions of 30 MeV/u. Phys. Rev. B 54: 15724–15729.

Le Comber, P. G., Loveland, R. J., and Spear, W. E. 1975. Hole transport in the rare-gas solids Ne, Ar, Kr, and Xe. Phys. Re v. B 11: 3124–3130.

Le win, J. D. and Smith, P. F. 1996. Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astr opart. Phys. 6: 87–112.

Lindhard, J., Nielsen, V., Sharff, M., and Thomsen, P. V. 1963. Integral equations gov erning radiation effects. Matematisk-fysiske Meddelelser Dansk e Videnskabernes Selskab 33(10): 1–42.

Lopes, M. I. and Chepel, V. 2003. Liquid rare gas detectors: Recent dev elopment and applications. IEEE T rans. Dielectr. Electr. Insul. 10: 994–1005.

Magee, J. L. and Huang, J. T. J. 1972. Triplet formation in ion recombination in spurs. J. Chem. Phys. 76: 3801–3805.

Martin, M. 1971. Exciton self-trapping in rare-g as crystals. J . Chem. Phys. 54: 3289–3299.

Masuda, K., Doke, T., and Takahashi, T. 1981. A liquid xenon position sensitiv e gamma-ray detector for positron annihilation e xperiments. Nucl. Instrum. Methods 188: 629–638.

Masuda, K., Doke, T., Hitachi, A. et al. 1989a. Energy resolution for alpha particles in liquid argon doped with allene. Nucl. Instrum. Methods Phys. Res. A 279: 560–566.

Masuda, K., Shibamura, E., Doke, T. et al. 1989b. Relation between scintillation and ionization produced by relativistic hea vy ions in liquid ar gon. Phys. Re v. A 39: 4732–4734.

M cCabe, W. L. and Smith, J. C. 1976. Unit Operations of Chemical Engineering, 3rd edn. New York: McGraw-Hill.

McKinsey, D. N. 2007. The Mini-CLEAN e xperiment. Nucl. Phys. B (Proc. Suppl.) 173: 152–155.

Mihara, S., Doke, T., Kamiya, Y. et al. 2002. Development of a liquid Xe photon detector for μ + → e + γ decay search e xperiment at PSI. IEEE Trans. Nucl. Sci. 49: 588–591.

Mihara, S., Doke, T., Haruyama, T. et al. 2004. Development of a liquid-xenon photon detector towards the search for a muon rare decay mode at P aul Scherrer Institute. Cryo genics 44: 223–228.

M ihara, S. , Ha ruyamma, T. , Iw amoto, T. et al . 20 06. De velopment of a me thod fo r li quid xe non pu ri�cation wr ing a cryogenic centrifugal pump. Cryogenics 46: 688–693.

Miller, L. S., Howe, S., and Spear, W. E. 1968. Charge transport in solid and liquid Ar, Kr and Xe. Phys. Rev. 166: 871–878.

Miyajima, M. et al. 1974. Av erage energy expended per ion pair in liquid argon. Phys. Re v. A 9: 1438–1443. ibid. 10: 1452–1452.

Mori, T. MEG collaboration. 1999. Search for μ + → e + γ down to 10 −14 branching ratio. Research Proposal to Paul Scherrer Institut.

Mozumder , A. 1995. Free-ion yield and electron-ion recombination rate in liquid xenon. Chem. Phys. Lett. 245: 359–363.

Mozumder , A. 1999. Fundamentals of Radiation Chemistry . San Die go, CA: Academic Press.

Mozumder , A. and Hatano, Y. (eds.). 2004. Charged Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. Ne w York: Marcel Dekk er.

Mozumder, A., Chatterjee, A., and Magee, J. L. 1968. Theory of radiation chemistry IX. Model and structure of hea vy particle tracks in w ater. In Radiation Chemistry , Advances in Chemistry Series 81, R. F . Gould (ed.), p. 27. Washington, DC: American Chemical Society .

Mulliken, R. S. 1964. Rare-gas and hydrogen molecule electronic states, noncrossing rule, and recombination of electrons with rare-g as and h ydrogen ions. Phys. Re v. 136: 962–965.

Nakag awa, K., Kimura, K., and Ejiri, A. 1993. Photoionization quantum yield of TMAE (tetrakis-dimethylamino-ethylene) in supercritical x enon ¡uid. Nucl. Instrum. Methods Phys. Res. Sect. A 327: 60–62.

Nikkel, J. A. et al. 2008. Scintillation of liquid neon from electronic and nuclear recoils. Astropart. Phys. 29: 161–169.

Nishikido, F., Doke, T., Kikuchi, J. et al. 2004. Performance of a prototype of liquid xenon scintillation detector system for positron emission tomograph y. Jpn. J . Appl. Phys. 43:779–784.

N ishikido, F., Doke, T., Kikuchi, J. et al. 2005. Performance of a prototype of liquid xenon scintillation detector s ystem f or t ime o f ¡ ight t ype p ositron e mission t omography w ith i mproved p hotomultipliers. Jpn. J. Appl. Phys. 44: 5193–5198.

Okada, H., Doke, T., Kashiwagi, T. et al. 2000. Liquid Xe homogeneous electro-magnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 451: 427–438.

Onsager , L. 1938. Initial recombination of ions. Phys. Re v. 54: 554–557.

Otyugo va, P. 2008. (ArDM collaboration), The ArDM, a ton-scale liquid argon experiment for direct dark matter detection. J . Phys.: Conf. Ser. 120: 042023 (1–3).

P latzman, R. L. 1961. Total ionization in gases by high-energy particles: An appraisal of our understanding. J. Appl. Radiat. Isot. 10 : 11 6–127.

Pack, J. L. , Vo shall, R. E. , an d Ph elps, A. V. 19 62. Dr ift ve locity of sl ow el ectrons in kr ypton, xe non, de uterium, ca rbon mo noxide, ca rbon di oxide, wat er va por, ni trous ox ide an d am monia. Ph ys. Rev. 12 7: 20 84–2089.

Peleganchuk, S. 2009. Liquid noble gas calorimeters at Budker INP. Nucl. Instrum. Methods Phys. Res. A 598: 248–252.

Rabinovich, V. A., Vasserman, A. A., Nedostup, V. I., and Veksler , L. S. 1988. Thermophysical Pr operties of Neon, Argon, Krypton and Xenon. Washington, DC: Hemisphere Pub . Corp.

Rahman, A. 1964. Correlations in the motion of atoms in liquid ar gon. Phys. Re v. A 136: 405–411.

Rubbia, C. 1977. The liquid-argon time projection chamber: A new concept for Neutrino Detector. CERN-EP/77-08.

Rubbia, C. 2006. Proc. TA UP 2005. J . Phys.: Conf. Ser. 36: 133–135.

Schmidt, W. F . 1997. Liquid State Electr onics of Insulating Liquids. Ne w York: CRC, Chapter 6.

Schrie ver, R., Chergui, M., Kunz, H., Stepanenko, V., and Schwentner, N. 1989. Cage effect for the abstraction of H from H 2 O in Ar matrices. J. Chem. Phys. 91: 4128–4133.

Schwentner, N., Koch, E. E., and Jortner, J. 1985. Electronic Excitation in Condensed Rare Gases. Berlin, Germany: Springer -Verlag.

Seidel, G. M., Lanou, R. E., and Yao, W. 2002. Rayleigh scattering in rare-gas liquids. Nucl. Instrum. Methods Phys. Res. Sect. A 489: 189–194.

Shibamura, E., Crawford, H. J., Doke, T. et al. 1987. Ionization and scintillation produced by relativistic Au, He and H ions in liquid ar gon. Nucl. Instrum. Methods Phys. Res. Sect. A 260: 437–442.

Sinnock, A. C. 1980. Refractiv e indices of the condensed rare gases, argon, krypton and xenon. J. Phys. C: Solid. Phys. 13: 2375–2391.

Solo vov, V., Chepel, V., Pereira, A. et al. 2002a. Tw o-dimensional readout in a liquid xenon ionisation chamber. Nucl. Instrum. Methods Phys. Res. A 477: 184–190.

Solo vov, V., Chepel, V., Lopes, M. I. et al. 2002b. Liquid-xenon γ-camera with ionisation readout. Nucl. Instrum. Methods Phys. Res. A 478: 435–439.

Solo vov, V., Chepel, V., Lopes, M. I. et al. 2003. Mini-strip ionization chamber for γ-ray imaging. IEEE Trans. Nucl. Sci. 50: 122–125.

So wada, U., Warman, J. M., and de Haas, M. P. 1982. Hot-electron thermalization in solid and liquid argon, krypton, and x enon. Phys. Re v. B 25, 3434–3437.

Sper gel, D. N. 1988. Motion of the Earth and the detection of weakly interacting massive particles. Phys. Rev. D 37, 1353–1355.

Spooner , N. J. C. 2007. Direct dark matter searches. J . Phys. Soc. Jpn. 76: 111016.

Steinber ger, I. T. and Schnepp, O. 1967. Wannier e xcitons in solid x enon. Solid State Commun . 5: 417–418.

Sumner , T. J. 2002. Experimental searches for dark matter. http://www.livingreviews.org/Articles/ Volume5/2002–4sumner/.

Suzuki, Y. 2008. XMASS e xperiment. In IDM Confer ence, Stockholm, Sweeden.

Suzuki, S., Doke, T., Hitachi, A. et al. 1986a. Photoionization effect in liquid xenon doped with triethylamine (TEA) or trimeth ylamine (TMA). Nucl. Instrum. Methods Phys. Res. Sect. A 245: 78–81.

Suzuki, S., Doke, T., Hitachi, A. et al. 1986b. Photoionization in liquid argon doped with trimethylamine or triethylamine. Nucl. Instrum. Methods Phys. Res. Sect. A 245: 366–372.

T akahashi, T., Konno, S., Hamada, T. et al. 1975. Av erage energy expended per ion pair in liquid xenon. Phys. Rev. A 12, 1771–1775.

Tanaka, M., Doke, T., Hitachi, A. et al. 2001. LET dependence of scintillation yields in liquid xenon. Nucl. Instr. Methods A 457: 454–463, The LET values for α particles in Figures 31.4 and 31.12 of this article were wrong. They should be ∼ 400 MeV · g −1 · cm 2 in liquid Xe.

Thomas, D., Imel, A., and Biller, S. 1988. Statistics of charge collection in liquid argon and liquid xenon. Phys. Rev. A 38: 5793–5800.

W ARP. 2008. First results from a dark matter search with liquid argon at 87 K in the Gran Sasso underground laboratory. Nucl. Instrum. Methods Phys. Res. Sect. A 587: 46–51.

W atanabe, K. and Zelikoff, M. 1953. Absorption coef�cients of water vapor in vacuum ultraviolet. J. Opt. Soc. Am. 43: 753–754.

W atanabe, T. and Katuura, K. 1967. Ionization of atoms by collisions with excited atoms. II. A formula without the rotating atom approximation. J . Chem. Phys. 47: 800–810.

W atanabe, K., Edward, C., Inn, Y., and Zelikoff, M. 1953. Absorption coef�cients of oxygen in the vacuum ultraviolet. J . Chem. Phys. 21: 1026–1030.

W ojcik, M., Tachiya, M., Tagawa, S., and Hatano, Y. 2004. Electron-ion recombination in condensed matter: Geminate and bulk recombination processes. In Charg ed Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.). New York: Marcel Dekk er, Inc.

Y okota, M. and Tanimoto, O. 1967. Effects of diffusion on energy transfer by resonance. J. Phys. Soc. Jpn. 22: 779–784.

Yoshino, K., Sowada, U., and Schmidt, W. F. 1976. Effect of molecular solutes on the electron drift velocity in liquid Ar, Kr and Xe. Phys. Re v. A 14: 438–444.

Zwick y, F . 1933. Die Rotv erschiebung v on e xtragalaktischen Nebeln. Helv . Phys. Acta 6: 110–127. 32 Chapter 32. Applications of Ionizing Radiation to Environmental Conservation

Atkinson, R. 1986. Kinetics and mechanism of the gas-phase reactions of the hydroxyl radicals with organic compounds under atmospheric condition. Chem. Re v. 86: 69–201.

Atkinson, R. 1987. Estimation of OH radical reaction rate constants and atmospheric lifetimes for polychlorobiphenyls, dibenzop-dioxins, and dibenzofurans. En viron. Sci. Technol. 21: 305–307.

Burton, M. and Magee, J. L. 1976. Advances in Radiation Chemistry , Vol. 1. Ne w York: Wiley-Interscience.

Carmichael, G. R., Streets, D. G., Calori, G., Amann, M., Jacobson, M. Z., Hansen, J., and Ueda, H. 2002. Changing trends in sulfur emission in Asia: Implications for acid deposition, air pollution, and climate. Envir on. Sci. Technol. 36: 4707–4713.

Carroll, W. F. Jr., Berger , T. C., Borrelli, F. E., Garrity, P. J., Jacobs, R. A., Ledvina, J., Lewis, J. W., McCreedy, R. L., Smith, T. P., Tuho vak, D. R., and Weston, A. F. 2001. Characterization of emissions of dioxins and furans from ethylene dichloride, vinyl chloride monomer and polyvinyl chloride facilities in the . Consolidated report. Chemospher e 43: 689–700.

Celebi, U. B. and Vardar , N. 2008. Inv estigation of VOC emissions from indoor and outdoor painting process in ship yards. Atmos. En viron. 42: 5685–5695.

Chmiele wski, A. G., Licki, J., Pawelec, A., Tyminski, B., and Zimek, Z. 2004. Operational experience of the industrial plant for electron beam ¡ue g as treatment. Radiat. Phys. Chem . 71: 439–442.

Choi, K. I., Lee, S. H., and Lee, D. H. 2008. Emissions of PCDD/Fs and dioxin-like PCBs from small waste incinerators in K orea. Atmos. En viron. 42: 940–948.

Cooper , W. J., Meacham, D. E., Nickelsen, M. G., Lin, K., Ford, D. B., Kurucz, C. N., and Waite, T. D. 1993. The removal of tir-(TCE) and tetrachloroethylene (PCE) from aqueous solution using high energy electrons. J . Air Waste Manag. Assoc. 43: 1358–1366.

C rain, D. A., Janssen, S. J., Edwards, T. M., Heindel, J., Ho, S., Hunt, P., Iguchi, T., Juul, A., McLachlan, J. A., Schwartz, J., Skakkebaek, N., Soto, A. M., Swan, S., Walker, C., Woodruff, T. K., Woodruff, T. J., Giudice, L. C., and Guillette, L. J. Jr., 2008. Female reproductive disorder: The roles of endocrinedisrupting compounds and de velopmental timing. F ertil. Steril. 90: 911–940.

Dyk e, P. H. and Amendola, G. 2007. Dioxin releases from U.S. chemical industry sites manufacturing or using chlorine. Chemospher e 67: S125–S134.

European Environmental Agency. 2006. Annual European Community LRTAP Convention Emission Inv entory 1990–2004. EEA Technical Report No 8/2006, .

Finlayson-Pitss, B. J. and Pitts, J. N. Jr ., 1986. Atmospheric Chemistry . Ne w York: John Wiley & Sons, Inc.

Gaf fney, J. S. and Marley, N. A. 2009. The impact of combustion on air quality and climate—From coal to biofuels and be yond. Atmos. En viron. 43: 23–36.

G affney, J. S., Streit, G. E., Spall, W. D., and Hall, J. H. 1987. Beyond acid rain. Do soluble oxidations and organic to xins in teract wi th SO 2 and NO X to increase ecosystem effects? Environ. Sci. Technol. 21: 519–524.

Gehringer, P., Proksch, E., and Szinovatz, W. 1985. Radiation–induced degradation of trichloroethylene and tetrachloroethylene in drinking w ater. Int. J . Appl. Radiat. Isot. 36: 313–314.

Gehringer , P., Proksch, E., Szinovatz, W., and Eschweiler, H. 1987. Decomposition of trichloroethylene and tetrachloroethylene in drinking water by a combined radiation/ozone treatment. Water Res. 22: 645–646.

Gehringer, P., Proksch, E., Szinovatz, W., and Eschweiler, H. 1988. Radiation-induced decomposition of aqueous trichloroeth ylene solutions. Appl. Radiat. Isot . 39: 1227–1231.

Gentry, J. W., Paur, H.-R., Mäting, H., and Bauman, W. 1988. A modelling study of the dose rate effect on the ef�ciency of the EBDS-process. Radiat. Phys. Chem . 31: 95–100.

Getof f, N. 1986. Radiation induced decomposition of biological resistant pollutants. Appl. Radiat. Isot. 37: 1103–1109.

Getoff, N. 1996. Radiation–induced degradation of water pollutants—State of the art. Radiat. Phys. Chem. 47: 581–593.

Hakoda, T., Matsumoto, K., Shimada, A., Narita, T., Kojima, T., and Hirota, K. 2008. Application of ozone decomposition catalysts to electron-beam irradiated xylene/air mixtures for enhancing carbon dioxide production. Radiat. Phys. Chem . 77: 585–590.

Han, B., Kim, D. K., and Pikaev, A. K. 1998. Research activities of Samsung heavy industries in the conservation of the environment. In Radiation Technology for Conservation of the Environment, Proceedings of an International Symposium, IAEA-TECDOC-1023, Zak opane, Poland, pp. 339–347.

Han, B., Ko, J., Kim, J., Kim, Y., Chung, W., Makarov, I. E., Ponomarev, A. V., and Pikaev, A. K., 2002. Combination electron-beam and biological treatment of dyeing complex waste water. Pilot plant experiments. Radiat. Phys. Chem . 64: 53–59.

Hirota, K. and Kojima, T . 2005. Decomposition behavior of PCDD/F isomers in incinerator gases under electron-beam irradiation. Bull. Chem. Soc. Jpn . 78: 1685–1690.

Hirota, K., Mätzing, H., Paur , H.-R., and Woletz, K. 1995. Analyses of products formed by electron beam treatment of VOC/air mixtures. Radiat. Phys. Chem . 45: 649–655.

Hirota, K., Mäkelä, J., and Tokunag a, O. 1996. Reactions of sulfur dioxide with ammonia: Dependence on oxygen and nitric oxide. Ind. Eng . Chem. Res. 35: 3362–3368.

Hirota, K., Hakoda, T., Arai, H., and Hashimoto, S. 1999. Dechlorination of chlorobenzene in air with electron beam. Radiat. Phys. Chem . 57: 63–73.

Hirota, K., Hakoda, T., Taguchi, M., Takigami, M, Kim, H., and Kojima, T. 2003. Application of electron beam for the reduction of PCDD/F emission from municipal solid waste incinerators. Envir on. Sci. Technol. 37: 3164–3170.

Hirota, K., Sakai, H., Washio, M., and Kojima, T. 2004. Application of electron beams for the treatment of VOC streams. Ind. Eng . Chem. Res. 43: 1185–1191.

Huang, S. K., Hsieh, L. L., Chen, C. C., Lee, P. H., and Hsieh, B. T. 2009. A study on radiation technology degradation of org anic chloride waste water—Exempli�ed TCE and PCE. Appl. Radiat. Isot. 67: 1493–1498.

Irwin, J. G. and Williams, M. L. 1988. Acid rain: Chemistry and transport. En viron. Pollut. 50: 29–59.

Jackson, J. and Sutton, R. 2008. Sources of endocrine-disrupting chemicals in urban waste water, Oakland, CA. Sci. T otal Environ. 405: 153–160.

Janata, E. and Schuler, R. H. 1982. Rate constant for scavenging e aq − in N 2 O-saturated solution. J. Phys. Chem. 86: 2078–2084.

Jia, C., Battermann, S., and Godwin, C. 2008. VOCs in industrial, urban and suburban neighborhoods. Part 1: Indoor and outdoor concentrations, v ariation, and risk dri vers. Atmos. En viron. 42: 2083–2100.

Kato, N. and Akimoto, H. 2007. Anthropogenic emissions of SO 2 and NO X in Asia: Emission inventory. Atmos. Environ. 41: S171–S191.

Kimura, A., Taguchi, M., Arai, H., Hiratsuka, H., Namba, H., and Kojima, T. 2004. Radiation-induced decomposition of trace amounts of 17 β -estradiol in w ater. Radiat. Phys. Chem . 69: 295–301.

Kimura, A., Taguchi, M., Ohtani, Y., Takigami, M., Shimada, Y., Kojima, T., Hiratsuka, H., and Namba, H. 2006. Decomposition of p-nonylphenols in water and elimination of their estrogen activities by 60 Co γ-irradiation. Radiat. Phys. Chem . 75: 61–69.

Kishimoto, A., Oka, T., Yoshida, K., and Nakanishi, J. 2001. Cost effectiveness of reducing dioxin emissions from municipal solid w aste incinerators in Japan. En viron. Sci. Technol. 35: 2861–2866.

Klimont, Z., Co¡a, J., Schöpp, W., Amann, M., Streets, D. G., Ichikawa, Y., and Fujita, S. 2001. Projections of SO 2 , NO X , NO 3 and VOC emissions in East Asia up to 2030. Water Air Soil Pollut. 130: 193–198.

Kwok, E. S. C., Atkinson, R., and Arey, J. 1995. Rate constants for the gas-phase reactions of the OH radical with dichlorobiphenyls, 1-chlorodibenzo-p-dioxin, 1,2-dimethoxybenzene, and diphenyl ether: Estimation of OH radical reaction rate constants for PCBs, PCDDs, and PCDFs. Envir on. Sci. Technol. 29: 1591–1598.

Li, Y., Jiang, G., Wang, Y., Cai, Z., and Zhang, Q. 2008. Concentrations, pro�les and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air of Beijing, China. Atmos. Environ. 42: 2037–2047.

Machi, S., Tokunaga, O., Nishimura, K., Hashimoto, S., Kawakami, W., and Washio, M. 1977. Radiation treatment of comb ustion g ases. Radiat. Phys. Chem . 9: 371–388.

Mariscal-Arcas, M., Rivas, A., Granada, A., Monteagudo, C., Murcia, M. A., and Olea-Serrano, F. 2009. Dietary exposure assessment of pregnant women to bisphenol-A from cans and microwave containers in Southern Spain. F ood. Chem. Toxicol. 47: 506–510.

Mätzing, H. 1992. Model studies of ¡ue gas treatment by electron beams. In Proceedings of an International Symposium on Applications of Isotopes and Radiation in Conservation of the Environment, IAEA-SM-325/186, Karlsruche, German y, pp. 115–124.

Mininni, G., Sbrilli, A., Braguglia, C. M., Guerriero, E., Marani, D., and Rotatori, M. 2007. Dioxins, furans and polycyclic aromatic hydrocarbons emissions from a hospital and cemetery waste incinerator. Atmos. Environ. 41: 8527–8536.

Ministry of the Environment. 2009a. PRTR information hiroba (in Japanese). .

Ministry of the Environment. 2009b. Background to Japanese PRTR. .

Ministry of the Environment. 2009c. PRTR information hiroba (in Japanese). .

Ministry of the Environment. 2009d. Dioxin emission inv entory (in Japanese). .

Mohamed, M. F., Kang, D., and Aneja, V. P. 2002. Volatile org anic compounds in some urban locations in United States. Chemospher e 47: 863–882.

Namba, H., Tokunag a, O., Suzuki, R., and Aoki, S. 1990. Material balance of nitrogen and sulfur components in simulated ¡ue g as treated by an electron beam. Appl. Radiat. Isot . 41: 569–573.

P aur, H.-R., Mätzing, H., and Schikarski, W. 1991. Remov al of chlorinated dioxins and furans from simulated incinerator ¡ue gas by electron beam. In Proceedings of Chlorinated Dioxins and Furans from Simulated Engineering, Karlsruhe, German y, pp. 452–456.

P aur, H.-R., Baumann, W., Mätzing, H., and Jay, K. 1998. Electron beam induced decomposition of chlorinated aromatic compounds in w aste incinerator of f-gas. Radiat. Phys. Chem . 52: 355–359.

Qua β, U., Fermann, M., and Bröker , G. 2004. The European dioxin air emission inv entory project—Final results. Chemospher e 54: 1319–1327.

Ramanathan, V. and Feng, Y. 2009. Air pollution, greenhouse gases and climate change: Global and regional perspectiv es. Atmos. En viron. 43: 37–50.

Sampa, M. H. O., Rela, P. R., Duarte, C. L., Borrely, S. I., Oikaw a, H., Somessari, E. S. R., Silveira, C. G., and Costa, F. E. 2001. Electron beam waste water treatment in Brazil. In Use of Irradiation for Chemical and Microbial Decontamination of Water, Wastewater and Sludge, IAEA-TECDOC-1225, IAEA, Vienna, Austria, pp. 65–86.

S hah, J. J. an d Si ngh, H. B. 19 88. Di stribution of vo latile or ganic ch emicals in ou tdoor an d in door ai r: A na tional VO Cs da ta ba se. En viron. Sci. Technol. 22 : 13 81–1388.

Streets, D. G. and Waldhoff, S. T. 2000. Present and future emissions of air pollutions in China: SO 2 , NO X , and CO. Atmos. En viron. 34: 363–374.

Streets, D. G., Tsai, N. Y., Akimoto, H., and Oka, K. 2000. Sulfur dioxide emissions in Asia in the period 1985–1997. Atmos. En viron. 34: 4413–4424.

Thelok e, J. and Friedrich, R. 2007. Compilation of database on the composition of anthropogenic VOC emissions for atmospheric modeling in Europe. Atmos. En viron. 41: 4148–4160. T okunaga, O. 1998a. Electron-beam technology for puri�cation of ¡ue gas. In Environmental Application of Ionizing Radiation, W. J. Cooper, R. D. Curry, and K. E. O’Shea (eds.), pp. 99–112. New York: John Wiley & Sons, Inc.

T okunaga, O. 1998b. A technique for desulfurization and denitration of exhaust gases using an electron beam. Sci. Technol. Jpn. 16: 47–50.

T okunaga, O. and Suzuki, N. 1984. Radiation chemical reactions in NO X and SO 2 removals from ¡ue gas. Radiat. Phys. Chem. 24: 145–165.

T okunaga, O., Nishimura, K., Suzuki, N., and Washio, M. 1978a. Radiation treatment of exhaust gases. IV. Oxidation of NO in the moist mixture of O 2 and N 2 . Radiat. Phys. Chem. 11: 117–122.

Tokunaga, O., Nishimura, K., Suzuki, N., Machi, S., and Washio, M. 1978b. Radiation treatment of exhaust gases. V . Effect of NH 3 on the removal of NO in the moist mixture of O 2 and N 2 . Radiat. Phys. Chem. 11: 299–303.

T okunaga, O., Namba, H., and Hirota, K., 1993. Experiments on chemical reactions in electron-beam-induced NO x /SO 2 removal. In Penetrante, B. M. and Schultheis, S. E. (Eds.), Non-Thermal Plasma Techniques for Pollution Control, N ATO ASI Series Vol. 34. P art B Springer -Verlag, Berlin Heidelber g, pp. 55–62.

Venier, M., Ferrario, J., and Hites, R. A. 2009. Polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere around the Great Lak es. En viron. Sci. Technol. 43: 1036–1041.

W ei, W., Wang, S., Chatani, S., Klimont, Z., Cofala, J., and Hao, J. 2008. Emission and speciation of nonmethane volatile organic compounds from anthropogenic sources in China. Atmos. Environ. 42: 4976–4988.

Willis, C. and Boyd, A. W. 1976. Excitation in the radiation chemistry of inorganic gases. Int. J. Radiat. Phys. Chem. 8: 71–111.

W illis, C., Boyd, A. W., and Young, M. J. 1970. Radiolysis of air and nitrogen-oxygen mixtures with intense electron pulses: Determination of a mechanism by comparison of measured and computed yields. Can. J. Chem. 48: 1515–1525.

Xie, S., Qi, L., and Zhou, D. 2004. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory . Atmos. En viron. 38: 4457–4466.

Zhang, H., Ni, Y., Chen, J., Su, F., Lu, X., Zhao, L., Zhang, Q., and Zhang, X. 2008. Polychlorinated dibenzop-dioxins and dibenzofurans in soils and sediments from Daliano Riv er Basin, China. Chemosphere 73: 1640–1648.

Zhao, J. L., Ying, G. G., Wang, L., Yang, J. F., Yang, X. B., Yang, L. H., and Li, X. 2009. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Riv ers in South China by gas chromatography-ne gative chemical ionization-mass spectrometry. Sci. T otal Environ. 407: 962–974. 33 Chapter 33. Applications to Biotechnology: Ion-Beam Breeding of Plants

Abe, T., Matsuyama, T., Sekido, S., Yamaguchi, I., Yoshida, S., and Kameya, T. 2002. Chlorophyll-de�cient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J. Radiat. Res. 43: 157–161.

B ae, C. H., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., and Yoshida, S. 2001. Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. Ann. Bot. 88: 545–553.

Blakely, E. A. 1992. Cell inacti vation by hea vy char ged particles. Radiat. En viron. Biophys. 31: 181–196.

Cairns, J., Ov erbaugh, J., and Miller , S. 1988. The origin of mutants. Natur e 335: 142–145.

De gi, K., Morishita, T., Yamaguchi, H., Nagatomi, S., Miyagi, K., Tanaka, A., Shikazono, N., and Hase, Y. 2004. Development of the ef�cient mutation breeding method using ion bema irradiation. JAERI-Rev. 2004-025: 48–50.

F AO/IAEA. 2006. FA O/IAEA Mutant Varieties Database. Plant breeding and genetics section Vienna, Austria. http://www-mvd.iaea.org/MVD/def ault.htm.

Fukuda, M., Itoh, H., Ohshima, T., Saidoh, M., and Tanaka, A. 2004. New applications of ion beams to material, space, and biological science and engineering. In Charged Particle Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications. A. Mozumder and Y. Hatano (eds.), pp. 813–859. Ne w York: Marcel Dekk er.

Goodhead, D. T. 1995. Molecular and cell models of biological effects of heavy ion radiation. Radiat. Environ. Biophys. 34: 67–72.

Hamada, K., Inoue, M., Tanaka, A., and Watanabe, H. 1999. Potato virus Y-resistant mutation induced by the combination treatment of ion beam exposure and anther culture in Nicotiana tabacum L. Plant Biotechnol. 16: 285–289.

Hase, Y., Shimono, K., Inoue, M., Tanaka, A., and Watanabe, H. 1999. Biological effects of ion beams in Nicotiana tabacum L. Radiat. En viron. Biophys. 38: 111–115.

Hase, Y., Tanaka, A., Baba, T., and Watanabe, H. 2000. FRL1 is required for petal and sepal development in Arabidopsis. Plant J. 24: 21–32.

Hase, Y., Yamaguchi, M., Inoue, M., and Tanaka, A. 2002. Reduction of survival and induction of chromosome aberrations in tobacco irradiated by carbon ions with dif ferent LETs. Int. J . Radiat. Biol. 78: 799–806.

Hase, Y., Fujioka, S., Yoshida, S., Sun, G., Umeda, M., and Tanaka, A. 2005. Ectopic endoreduplication caused by sterol alteration results in serrated petals in Ar abidopsis. J. Exp. Bot. 56: 1263–1268.

Hase, Y., Trung, K. H., Matsunaga, T., and Tanaka, A. 2006. A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance to wards ultra violet B light. Plant J . 46: 317–326.

H irono, Y., Smith, H. H., Lyman, J. T., Thompson, K. H., and Baum, J. W. 1970. Relative biological effectiveness of he avy io ns in pr oducing mu tations, tu mors, an d gr owth in hibition in th e cr ucifer pl ant, Ar abidopsis. Radiat. Res. 44: 204–223.

Ikegami, H., Kunitake, T., Hirashima, K., Sakai, Y., Nakahara, T., Hase, Y., Shikazono, N., and Tanaka, A. 2005. Mutation induction through ion beam irradiations in protoplasts of chrysanthemum. Bull. Fukuoka Agric. Res. Cent. 24: 5–9 (in Japanese).

Inoue, M., Watanabe, H., Tanaka, A., and Nakamura, A. 1994. Interspeci�c hybridization between Nicotiana gossei Domin and N. tabacum L., using 4He2+ irradiated pollen. JAERI TIARA Annu. Rep. 1993: 44–45.

Ishii, K., Yamada, Y., Hase, Y., Shikazono, N., and Tanaka, A. 2003. RAPD analysis of mutants obtained by ion beam irradiation to Hinoki cypress shoot primordial. Nucl. Instrum. Methods Phys. Res. B 206: 570–573.

Kazama, Y., Saito, H., Yoshiharu, Y., Yamamoto, Y., Hayashi, Y., Ichida, H., Ryuto, H., Fukunishi, N., and Abe, T. 2008. LET-dependent effects of heavy-ion beam irradiation in Arabidopsis thaliana. Plant Biotechnol. 25: 113–117.

Kishinami, I., Tanaka, A., and Watanabe, H. 1994. Mutations induced by ion beam (C5+) irradiation in barle y. JAERI TIARA Annu. Rep. 3: 30–31.

Kishinami, I., Tanaka, A., and Watanabe, H. 1996. Studies on mutation induction of barley by ion beams. Abstracts of the 5th TIARA Research Review Meeting 165: 6 (in Japanese).

K itamura, S., Shikazono, N., and Tanaka, A. 2004. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 37: 104–114.

Komai, F. , Sh ikazono, N. , an d Ta naka, A. 20 03. Se xual mo di�cation of fe male sp inach se eds (Sp inacia oleracea L. ) by ir radiation wi th io n pa rticles. Pl ant Cell Rep. 21 : 71 3–717.

Maekawa, M., Hase, Y., Shikazono, N., and Tanaka, A. 2003. Induction of somatic instability in stable yellow leaf mutant of rice by ion beam irradiation. Nucl. Instrum. Methods Phys. Res. B 206: 579–585.

Matsuo, Y., Hase, Y., Yok ota, Y., Narumi, I., and Ohyab u, E. 2008. Induction of thornless Yuzu mutant by heavy ion beam irradiation. J AERI-Rev. 2007-060: 79.

Mei, M., Deng, H., Lu, Y., Zhuang, C., Liu, Z., Qiu, Q., Qiu, Y., and Yang, T. C. 1994. Mutagenic effects of heavy ion radiation in plants. Adv . Space Res. 14: 363–372.

Miyazaki, K., Suzuki, K., Iwaki, K., Kusumi, T., Abe, T., Yoshida, S., and Fukui, H. 2006. Flower pigment mutations induced by heavy ion beam irradiation in an interspeci�c hybrid of Torenia. Plant Biotechnol. 23: 163–167.

Muller , H. J. 1927. Arti�cial transmutation of the gene. Science 66: 84–87.

Nag atomi, S., Tanaka, A., Kato, A., Watanabe, H., and Tano, S. 1997. Mutation induction on chrysanthemum plants regenerated from in vitro cultured explants irradiated with C ion beam. JAERI-Re v. 96-017: 50–52.

Nakai, H., Watanabe, H., Kitayama, A., Tanaka, A., Kobayashi, Y., Takahashi, T., Asai, T., and Imada, T. 1995. Studies on induced mutations by ion beam in plants. J AERI-Rev. 19: 34–36.

Oka-Kira, E., Tateno, K., Miura, K., Haga, T., Hayashi, M., Harada, K., Sato, S., Tabata, S., Shikazono, N., Tanaka, A., Watanabe, Y., Fukuhara, I., Nagata, T., and Kaw aguchi, M. 2005. klavier (klv ), a nov el hyper nodulation mutant of Lotus japonicus affected in vascular tissue org anization and ¡oral induction. Plant J. 44: 505–515.

O kamura, M., Yasuno, N., Ohtsuka, M., Tanaka, A., Shikazono, N., and Hase, Y. 2003. Wide variety of ¡ower-color an d -s hape mu tants re generated fr om le af cu ltures ir radiated wi th io n be ams. Nu cl. Instrum. Methods Phys. Res. B 20 6: 57 4–578.

Okamura, M., Tanaka, A., Momose, M., Umemoto, N., da Silva, J. T., and Toguri, T. 2006. Advances of mutagenesis in ¡owers and their industrialization. In Floriculture , Ornamental and Plant Biotechnology, Vo l. I, pp . 61 9–628. Lo ndon, U. K.: Gl obal Sc ience Bo oks.

Rahman, A., Nakasone, A., Chhun, T., Ooura, C., Biswas, K. K., Uchimiya, H., Tsurumi, S., Baskin, T. I., Tanaka, A., and Oono, Y. 2006. A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid. Plant J . 47: 788–801.

Redei, G. P. and Koncz, C. 1992. Classical mutagenesis. In Methods in Arabidopsis Research, C. Koncz, N. H. Chua and J. Schell (eds.). Sing apore: World Scienti�c Publishing Co. Pte. Ltd.

Re yes-Borja, W. O., Sotomayor, I., Garzon, I., Vera, D., Cedeno, M., Castillo, B., Tanaka, A., Hase, Y., Sekozawa, Y., Sugaya, S., and Gemma, H. 2007. Alteration of resistance to black Sigatoka (Mycosphaerella ±jiensis Morelet) in banana by in vitr o irradiation using carbon ion-beam. Plant Biotec hnol. 24: 349–363.

Sakamoto, A., Lan, V. T. T., Hase, Y., Shikazono, N., Matsunaga, T., and Tanaka, A. 2003. Disruption of the AtREV3 gene causes h ypersensitivity to ultra violet B light and g amma-rays in Arabidopsis: Implication of the presence of a translation synthesis mechanism in plants. Plant Cell 15: 2042–2057.

S hikazono, N., Tanaka, A., Watanabe, H., and Tano, S. 2001. Rearrangements of the DNA in carbon ion-induced mutants of Arabidopsis thaliana. Genetics 157: 379–387.

Shikazono, N., Tanaka, A., Kitayama, S., Watanabe, H., and Tano, S. 2002. LET dependence of lethality in Arabidopsis thaliana irradiated by hea vy ions. Radiat. En viron. Biophys. 41: 159–162.

Shikazono, N., Yokota, Y., Kitamura, S., Suzuki, C., Watanabe, H., Tano, S., and Tanaka, A. 2003. Mutation rate and no vel tt mutants of Ar abidopsis thaliana induced by carbon ions. Genetics 163: 1449–1455.

Shikazono, N., Suzuki, C., Kitamura, S., W atanabe, H., Tano, S., and Tanaka, A. 2005. Analysis of mutations induced by carbon ions in Ar abidopsis thaliana. J. Exp. Bot. 56: 587–596.

Shimono, K., Shikazono, N., Inoue, M., Tanaka, A., and Watanabe, H. 2001. Effect of fractionated exposure to carbon ions on the frequency of chromosome aberrations in tobacco root cells. Radiat. Environ. Biophys. 40: 221–225.

Stadler , L. J. 1928. Mutations in barle y induced by x-rays and radium. Science 68: 186–187.

Sugiyama, M., Saito, H., Ichida, H., Hayashi, Y., Ryuto, H., Fukunishi, N., Terakawa, T., and Abe, T. 2008. Biological ef fects of hea vy-ion beam irradiation on c yclamen. Plant Biotec hnol. 25: 101–104.

T akahashi, M., Kohama, S., Kondo, K., Hakata, M., Hase, Y., Shikazono, N., Tanaka, A., and Morikawa, H. 2005. Effects of ion beam irradiation on the regeneration and morphology of Ficus thunbergii Maxim. Plant Biotechnol. 22: 63–67.

T anaka, A., Shikazono, N., Yokota, Y., Watanabe, H., and Tano, S. 1997a. Effects of heavy ions on the germination and survival of Arabidopsis thaliana. Int. J. Radiat. Biol. 72: 121–127.

Tanaka, A., Tano, S., Chantes, T., Yokota, Y., Shikazono, N., and Watanabe, H. 1997b. A new Arabidopsis mutant induced by ion beams affects ¡avonoid synthesis with spotted pigmentation in testa. Genes Genet. Syst. 72: 141–148.

T anaka, S. , Fu kuda, M. , Ni shimura, K. , Wa tanabe, H. , an d Ya mano, N. 19 97c. IR ACM: A co de sy stem to ca lculated in duced ra dioactivity pr oduced by io ns an d ne utrons. JA ERI-Data/Code 97 -019.

Tanaka, A., Sakamoto, A., Ishigaki, Y., Nikaido, O., Sung, G., Hase, Y., Shikazono, N., Tano, S., and Watanabe, H. 2002. An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol . 129: 64–71.

Ueno, K., Nagayoshi, S., Shimonishi, K., Hase, Y., Shikazono, N., and Tanaka, A. 2002. Effects of ion beam irradiation on chrysanthemum leaf discs and sweet potato callus. J AERI-Rev. 2002-035: 44–46.

Ueno, K., Nagayoshi, S., Hase, Y., Shikazono, N., and Tanaka, A. 2004. Additional improv ement of chrysanthemum using ion beam re-irradiation. J AERI-Rev. 25: 53–55.

Y amaguchi, H., Nagatomi, S., Mrishita, T., Degi, K., Tanaka, A., Shikazono, N., and Hase, Y. 2003. Mutation induced with ion beam irradiation in rose. Nucl. Instrum. Methods Phys. Res. B 206: 561–564.

Y amaguchi, H., Hase, Y., Tanaka, A., Shikazono, N., Degi, K., Shimizu, A., and Morishita, T. 2009a. Mutagenic effects of ion beam irradiation on rice. Br eed. Sci. 59: 169–177.

Y amaguchi, H., Shimizu, A., Hase, Y., Degi, K., Tanaka, A., and Morishita, T. 2009b. Mutation induction with ion beam irradiation of lateral buds of chrysanthemum and analysis of chimeric structure of induced mutants. Euphytica 165: 97–103.

Y amashita, T., Inoue, M., Watanabe, H., Tanaka, A., and Tano, S. 1995. Comparativ e analysis of interspeci�c hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by the cross with 4 He 2+ -irradiated pollen. J AERI-Rev. 95-019: 37–39.

Y amashita, T., Inoue, M., Watanabe, H., Tanaka, A., and Tano, S. 1997. Effective production of interspeci�c hybrids between Nicotiana gossei Domin and N. tabacum L., by the cross with ion beam-irradiated pollen. J AERI-Rev. 96-017: 44–46.

Y okota, Y., Yamada, S., Hase, Y., Shikazono, N., Narumi, I., Tanaka, A., and Inoue, M. 2007. Initial yields of DNA double-strand breaks and DNA fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Radiat. Res . 167: 94–101.

Y okota, Y., Wada, S., Hase, Y., Funayama, T., Kobayashi, Y., Narumi, I., and Tanaka, A. 2009. Kinetic analysis of double-strand break rejoining reveals the DNA reparability of γ-irradiated tobacco cultured cells. J. Radiat. Res. 50: 171–175. 34 Chapter 34. Radiation Chemistry in Nuclear Engineering

Abdelouas, A., Ferrand, K., Grambow, B., Mennecart, T., Fattahi, M., Blondiaux, G., and Houée-Lévin, C. 2004. Effect of gamma and alpha irradiation on the corrosion of the french borosilicate glass SON68. Mater. Res. Soc. Symp. Proc. 807: 175–180.

Adamo v, V. M., Andreev, V. I., Belyaev, B. N., Lyubtsev, R. I., Markov, G. S, Polyakov, M. S., Ritari, A. É., Shil’nikov, A. Yu. Sov. Radiochem. 1987. Radiolysis of an extraction system based on solutions of trinormal-butylphosphate in h ydrocarbon diluents. So v. Radiochem. 29: 775–781.

A damov, V. M., Andreev, V. I., Belyaev, B. N., Markov, G. S., Polyakov, M. S., Ritari, A. É., Shil’nikov, and A. Yu . Ke rntechnik. 19 90. Id enti�cation of de composition pr oducts of ex traction sy stems ba sed on tr i-normal-butyl ph osphate in al iphatic-hydrocarbons. Ke rntechnik 55 : 13 3–137.

AESJ. 2000a. Overvie w of nuclear power plants. In Handbook of Water Chemistry of Nuclear Reactor System (in Japanese), K. Ishigure (ed.). Tok yo, Japan: Atomic Ener gy Society of Japan.

AESJ. 2000b. Water chemistry control of PWR primary coolant, In Handbook of Water Chemistry of Nuclear Reactor System (in Japanese) K. Ishigure (ed.), Tokyo, Japan: Atomic Ener gy Society of Japan.

AESJ. 2000c. Water chemistry control of BWR primary coolant, In Handbook of Water Chemistry of Nuclear Reactor System (in Japanese) K. Ishigure (ed.). Tokyo, Japan: Atomic Ener gy Society of Japan.

Alf assi, Z. B. 1997. P eroxyl Radicals. Ne w York: John Wiley & Sons.

Allard, Th. and Calas, G. 2009. Radiation ef fects on clay mineral properties. Appl. Clay Sci . 43:143–149.

Andersson, G., Rasmuson, A., and Neretnieks, I. 1982. Migration model for the near �eld. Final report. SKBF/ KBS Teknisk rapport 82-24, Stockholm, Sweden.

A ndreichuk, N. N., Rotmanov, K. V., Frolov, A. A., and Vasilev, V. Y. 1984. Effect of alpha-irradiation on the valence states of actinides. 4. Kinetics of HNO 2 formation in nitric-acid solutions. Sov. Radiochem. 26: 701–706.

Andresen, P. L. 1992. Irradiation-assisted stress–corrosion cracking. In Stress–Corrosion Cracking. R. H. Jones (ed.), pp. 181–210. Materials P ark, OH: ASM International.

Andresen, P. L., Ford, F. P., Murphy, S. M., and Perks, J. M. 1989. State of knowledge of radiation effects on environmental cracking in light water reactor core materials. In Proceedings of the Fourth International Symposium on Degradation of Materials in Nuclear Power Systems—Water Reactors, D. Cubicciotti (ed.), Jek yll Island, GA, pp. 1-83–1-120. Houston, TX: N ACE.

Ashida, S., Takagi, J., Ichikawa, N., and Morikawa, Y. 1992. First experience of hydrogen water chemistry at a Japanese BWR. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 6, Bournemouth, U.K. v ol. 2, pp. 103–110. London, U.K.: BNES.

Baile y, M. G., Johnson, L. H., and Shoesmith, D. W. 1985. The effects of the alpha-radiolysis of water on the corrosion of UO 2 . Corrosion Sci. 25: 233–238.

Barkatt, A., Barkatt, A., and Sousanpour, W. 1983. Gamma radiolysis of aqueous media and its effects on the leaching processes of nuclear w aste disposal materials. Nucl. Technol. 60: 218–227.

Beck er, R., Stieglitz, L., and Bautz, H. 1983. Untersuchung der strahlenchemischen TBP-Zersetzung unter den Bedingungen des PURX-Prozesses. Report KfK3639.

Benndict, M., Pigford, T. H., and Levi, H. W. 1981. Nuclear Chemical Engineering, 2nd edn. New York: McGraw-Hill.

Berger, F. P. and Hau, K.-F. F.-L. 1977. Mass transfer in turbulent pipe ¡ow measured by the electrochemical method. Int. J . Heat Mass Transfer 20:1185–1194.

Berthon, L., Morel, J. M., Zorz, N., Nicol, C., Virelizier, H., and Madic, C. 2001. Diamex process for minor actinide partitioning: Hydrolytic and radiolytic degradations of malonamide extractants. Sep. Sci. T echnol. 36: 709–728.

B erthon, L., Journet, S., Lalia, V., Morel, J. M., Zorz, N., Berthon, C., and Amerkraz, B., 2004. Use of chromatographic te chniques to st udy a de graded so lvent fo r mi nor ac tinides pa rtitioning: Qu alitative an d qu antitative an alysis. In At alante-2004, P2 -08, Nî mes, Fr ance, pp . 1– 4.

Bhattacharyya, P. K. and Saini, R. D. 1973. Radiolytic yields G(HNO 2 ) and G(H 2 O 2 ) in the aqueous nitric acid system. Int. J . Radiat. Phys. Chem. 5: 91–99.

Bhattacharyya, P. K. and Veeraraghavan, R. 1977. Reaction between nitrous acid and hydrogen peroxide in perchloric acid medium. Int. J . Chem. Kinetics 9: 629–640.

Bibler , N. E. 1974. Curium-244 alpha radiolysis of nitric acid. Oxygen production from direct radiolysis of nitrate ions. J . Phys. Chem. 78: 211–215.

Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., and Ross, A. B. 1985. Reactivity of HO 2 /O 2 − radicals in aqueoussolution. J . Phys. Chem. Ref. Data 14: 1041–1100.

B isel, I., Camès, B., Faucon, M., Rudloff, D., and Saucerotte, B. 2007. DIAMEX-SANEX solvent behavior under continuous degradation and regeneration operation. In Global-2007, Boise, ID, 2007, pp. 1857–1860.

Bishop, W. P . and Firestone, R. F . 1970. Radiolysis of liquid n-pentane. J . Phys. Chem. 74: 2274–2284.

Blak e, C. A., Davis, W. Jr., and Schmitt, J. M. 1963. Properties of degraded TBP-amsco solutions and alternative e xtractant-diluent systems. Nucl. Sci. Eng . 17: 626–637.

Boro vkov, V. I. 2008. Excess electrons scavenging in n-dodecane solution: The role of tunneling of electron from its localized state to acceptor . Radiat. Phys. Chem . 77: 1190–1197.

B oullis, B. 2008. Future nuclear fuel cycles: Prospects and challenges. In ISEC 2008, International Solvent Extraction Conference, B. A. Moyer (ed.), Tucson, AZ, 2008, pp. 29–41. Tucson, AZ: Cognis Co rporation.

Bradbury, M. H. and Baeyens, B., 2002. Pore water chemistry in compacted re-saturated MX-80 bentonite: Physicochemical characterization and geochemical modelling. PSI Bericht 02-10, Villigen PSI and NTB 01-08, Nagra, Wettingen, Switzerland.

Broczk owski, M. E., Noël, J. J., and Shoesmith, D. W. 2005. The inhibiting effects of hydrogen on the corrosion of uranium dioxide under nuclear w aste disposal conditions. J . Nucl. Mater. 346: 16–23.

Bruno, J., Cera, E., Griv é E. M., Eklund, U.-B., and Eriksen, T. 1999. Experimental determination and chemical modeling of radiolytic processes at the spent fuel/water interface. SKB Technical Report TR-99–26, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Bruno, J., Cera, E., Grivé, E. M., Duro, L., and Eriksen, T. 2003. Experimental determination and chemical modeling of radiolytic processes at the spent fuel/water interface. Experiments carried out in carbonate solutions in absence and presence of chloride. SKB Technical Report TR-03-03, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Buchholz, B. A., Nunez, L., and Vandegrift, G. F. 1996. Effect of alpha-radiolysis on TRUEX-NPH solvent. Sep. Sci. Technol. 31: 2231–2243.

Bug aenko, L. T. and Roshchektaev, B. M. 1971. Radiolytic conversions of nitrate ion in nitric acid solutions. Khimiya Vysokikh Energii 5: 424–425.

Burns, W. G. and Moore, P. B. 1976. Water radiolysis and its effect upon in-reactor zircaloy corrosion. Radiat. Effects 30: 233–242.

Burns, W. G., Hughes, A. E., Marples, J. A. C., Nelson, R. S., and Stoneham, A. M. 1982. Effects of radiation on the leach rates of vitri�ed radioacti ve w aste. J . Nucl. Mater. 107: 245–270.

Burns, W. G., Marsh, W. R., and Walters, W. S. 1983. The γ irradiation-enhanced corrosion of stainless and mild steels by w ater in the presence of air , ar gon and h ydrogen. Radiat. Phys. Chem . 21: 259–279.

Burr , J. G. 1958. The radiolysis of trib utyl phosphate. Radiat. Res . 8: 214–221.

Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B. 1988. Critical-revie w of rate constants for re actions of hy drated el ectrons, hy drogen-atoms an d hy droxyl ra dicals ( • OH/O − ) in aqueous-solution. J. Phys. Chem. Ref. Data 17: 513–886.

Cachoir , C. and Lemmens, K. 2004. Static dissolution of α-doped UO 2 in boom clay conditions: Preliminary results. Mater . Res. Soc. Symp. Proc. 807: 59–64.

Carbol, P., Cobos, J., Glatz, J. P., Ronchi, C., Rondinella, V., Wegen, D, Wiss, T., Loida, A., Metz, V., Kienzler, B., Grambow, B., Quinones, J., and Martinez, A. 2005. The effect of dissolved hydrogen on the dissolution of 233 U Doped UO 2 (s). High burn-up spent fuel and MOX fuel. SKB Technical Report 05-09, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Carbol, P., Fors, P., Gouder, T., and Spahiu, K. 2009. Hydrogen suppresses UO 2 corrosion. Geochim. Cosmochim. Acta 73: 4366–4375.

Cera, E., Bruno, J., Duro, L., and Eriksen, T. 2006. Experimental determination and chemical modeling of radiolytic processes at the spent fuel/water interface. Long contact time experiments. SKB Technical Report 06-07, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Chiarizia, R. and Horwitz, E. P. 1986. Hydrolytic and radiolytic degradation of octyl(phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide and related-compounds. Solvent Extr . Ion Exc. 4: 677–723.

Christensen, H. 1998. Calculations simulating spent-fuel leaching e xperiments. Nucl. Technol. 124: 165–174.

Christensen, H. 2006. Calculation of corrosion rates of alpha-doped UO 2 . Nucl. Technol. 155: 358–364.

Christensen, H. and Bjergbakke, E. 1982a. Radiolysis of groundwater from HLW stored in copper canisters. SKBF/KBS Teknisk rapport 82-02, Swedish Nuclear Fuel Supply Co., Stockholm, Sweden.

Christensen, H. and Bjergbakke, E. 1982b. Radiolysis of ground water from spent fuel. SKBF/KBS Teknisk rapport 82–18, Swedish Nuclear Fuel Supply Co., Stochk olm, Sweden.

C hristensen, H. and Bjergbakke, E. 1987. Radiation induced dissolution of UO 2 . Mater. Res. Symp. Proc. 84: 115–122.

Christensen H. and Sunder, S. 2000. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion. Nucl. Technol. 131: 102–123. Christensen, H., Sunder, S., and Shoesmith, D. W. 1994. Oxidation of nuclear fuel (UO 2 ) by the products of water radiolysis: De velopment of a kinetic model. J . Alloys Compd. 213/214: 93–99.

Clay , P. G. and Witort, M. 1974. Radiolysis of tri-n-butyl phosphate in aqueous solution. Radiochem. Radioanal. Lett. 19: 101–107.

Clozel, B., Allard, T., and Muller, J.-P. 1994. Nature and stability of radiation-induced defects in natural kaolinites: Ne w results and a reappraisal of published w orks. Clays Clay Miner . 42: 657–666.

Cobos, J., Hav ela, L., Rondinella, V. V., De Pablo, J., Gouder, T., Glatz, J. P., Carbol, P., and Matzke, Hj. 2002. Corrosion and dissolution studies of UO 2 containing α-emitters. Radiochim. Acta 90: 597–602.

Corbel, C., Sattonnay, G., Luccini, J. F., Ardois, C., Barthe, M. F., Huet, F., Dehaudet, P., Hicke, B., and Jégou, C. 2001. Increase of the uranium release at an UO 2 /H 2 O interface under He 2+ ion beam irradiation. Nucl. Instrum. methods Phys. Res. B 179: 225–229.

Corbel, B., Sattonnay, G., Guilbert, S., Garrido, F., Barthe, M.-F., and Jégou, C. 2006. Addition versus radiolytic production ef fects of h ydrogen peroxide on aqueous corrosion of UO 2 . J. Nucl. Mater. 348: 1–17.

Cuillerdier, C., Musikas, C., Hoel, P., Nigond, L., and Vitart, X. 1991. Malonamides as new extractants for nuclear w aste solutions. Sep. Sci. Technol. 26: 1229–1244.

Daniels, M. 1968. Radiolysis and photolysis of the aqueous nitrate system. Adv . Chem. Ser. 82: 153–163.

Da vis, W. Jr. 1984. Radiolytic behavior. In Science and Technology of Tributyl Phosphate, W.W. Schulz and J.D. Na vratil, (eds.), v ol. 1, pp. 221–266. Boca Raton, FL: CRC Press.

De whurst, H. A. 1958. Radiation chemistry of organic compounds. III. Branched chain alkanes. J. Chem. Soc. 80: 5607–5610.

Dorfman, L. M. and Adams, G. E. 1973. Reactivity of the hydroxyl radical in aqueous solution. National Standard Reference Data Series, National Bureau of Standards (US), Washington, DC.

Dzengel, J., Theurich, J., and Bahnemann, D. W. 1999. Formation of nitroaromatic compounds in advanced oxidation processes: Photolysis v ersus photocatalysis. En viron. Sci. Technol. 33: 294–300.

Eberhardt, M. K. 1975. Radiation-induced homolytic aromatic substitution. III. Hydroxylation and nitration of benzene. J . Phys. Chem. 79: 1067–1069.

Egoro v, G. F., Afanas’ev, O. P., Zilberman, B. Y., and Makarychev-Mikhailov, M. N. 2002. Radiation-chemical behavior of TBP in hydrocarbon and chlorohydrocarbon diluents under conditions of reprocessing of spent fuel from nuclear po wer plants. Radioc hemistry 44: 151–156.

Egorov, G. F., Tkhorzhnitskii, G. P., Zilberman, B. Y., Schmidt, O. V., and Goletskii, N. D. 2005. Radiation chemical behavior of tributyl phosphate, dibutylphosphoric acid, and its zirconium salt in organic solutions and tw o-phase systems. Radioc hemistry 47: 392–397.

Ek eroth, E., and Jonsson, M. 2003. Oxidation of UO 2 by radiolytic oxidants. J. Nucl. Mater. 322: 242–248.

Ekeroth, E., Roth, O., and Jonsson, M. 2006. The Relative impact of radiolysis products in radiation induced oxidative dissolution of UO 2 . J. Nucl. Mater. 355: 38–46.

Elliot, A. J. 1989. A pulse-radiolysis study of the temperature-dependence of reactions involving H, OH and e aq − in aqueous-solutions. Radiat. Phys. Chem. 34: 753–758.

Elliot, A. J. 1994. Rate constants and G-values for the simulation of radiolysis of light water over the range 0–300°C. AECL-11073. Atomic Ener gy of Canada Ltd., Chalk Ri ver, ON.

Elliot, A. J., Chenier, M. P., and Quellette, D. C. 1993. Temperature dependence of g values for H 2 O and D 2 O irradiated with lo w linear ener gy transfer radiation. J . Chem. Soc. Faraday Trans. 89: 1193–1197.

Eriksen, T. 1996. Radiolysis of water within a ruptured fuel element. SKB Progress Report U-96-29, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Eriksen, T. and Jacobsson, A. 1983. Radiation effects on the chemical environment in a radioactive waste repository. SKBF/KBS Teknisk rapport 83–27, Swedish Nuclear Fuel Supply Co., Stockholm, Sweden.

Eriksen, T. E. and Ndalamba, P. 1988. On the formation of a moving redox-front by α-radiolysis of compacted water saturated bentonite. SKB-Technical Report TR-88-27, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Eriksen, T. E., Christensen, H., and Bjergbakk e, E. 1987. Hydrogen production in α-irradiated bentonite. J. Radioanal. Nucl. Chem . 116: 13–25.

Eriksen, T., Eklund, U.-B., Werme, L., and Bruno, J. 1995. Dissolution of irradiated fuel: A radiolytic mass balance study . J . Nucl. Mater. 227: 76–82.

Ersho v, B. G., Gordeev, A. V., Bykov, G. L., Zubkov, A. A., and Kosareva, I. M. 2007. Synthesis of nitromethane from acetic acid by radiation-induced nitration in aqueous solution. Mendelee v Commun. 17: 289–290.

European Commission. 2007. Integrated in situ corrosion test on α-acti ve high-lev el waste (HLW) glass— Phase 2 (CORALUS-2). Contract No FIKW -CT-2000-00011 Final report.

Gasparini, G. M. and Grossi, G. 1986. Long-chain disubstituted aliphatic amides as extracting agents in industrial applications of solv ent-extraction. Solvent Extr . Ion Exc. 4: 1233–1271.

G ogolev, A. V., Shilov, V. P., Fedoseev, A. M., and Pikaev, A. K. 1986. A pulse-radiolysis study of the reactivity of neptunoyl ions relative to inorganic free-radicals. Bull. Acad Sci. USSR. Div. Chem. Sci. 35, 422–424.

Gogolev, A. V., Shilov, V. P., Fedoseev, A. M., Makarov, I. E., and Pikaev, A. K. 1988. Reactivity of neptunium and plutonium with inor ganic free radicals in aqueous solutions. So v. Radiochem. 30: 721–725.

Gogole v, A. V., Shilov, V. P., Fedoseev, A. M., and Pikaev, A. K. 1991. The study of reactivity of actinide ions towards hydrated electrons and hydrogen atoms in acid aqueous solutions by a pulse radiolysis method. Radiat. Phys. Chem. 37: 531–535.

Gordon, S., Hart, E. J., and Thomas, J. K. 1964. The ultraviolet spectra of transients produced in the radiolysis of aqueous solutions. J . Phys. Chem. 68: 1262–1264.

Gournis, D., Mantaka-Marketou, A. E., Karakassides, M. A., and Petridis, D. 2000. Effect of γ-irradiation on clays and or ganoclays: A Mössbauer and XRD study . Phys. Chem. Miner . 27: 514–521.

G rätzel, M. , He nglein, A. , Li lie, J. , an d Be ck, G. 19 69. Pu lsradiolysische Un tersuchung ei niger El ementarproz esse der Oxydation und Reduktion des Nitritions. Ber. Bunsenges. Phys. Chem. 73: 646–653.

Grätzel, M., Henglein, A., and Taniguchi, S. 1970. Pulsradiolsytische beobachtungen über die Reduktion des NO 3 − Ions und über Bildung und erfall der persalpetrigen Säure in wässriger Lösung. Ber. Bunsenges. Phys. Chem. 74: 292–298

Gromo v, V. 1981. Dissolution of uranium oxides in the gamma-radiation �eld. Radiat. Phys. Chem. 18: 136–146.

Gu, B. X., Wang, L. M., Minc, L. D., and Ewing, R. C. 2001. Temperature effects on the radiation stability and ion e xchange capacity of smectites. J . Nucl. Mater. 297: 345–354.

Haase, K. D., Schulte-Frohlinde, D., Kou řím, P., and Vacek, K. 1973. Low-temperature radiolysis of org anic phosphates studied by electron spin resonance. Radiat. Phys. Chem . 5: 351–360.

He, H., Lin, M. Z., Muroya, Y., Kudo, H., and Katsumura, Y. 2004. Laser photolysis study on the reaction of nitrate radical with tributylphosphate and its analogues—Comparison with sulfate radical. Phys. Chem. Chem. Phys. 6: 1264–1268.

Hemmi, Y., Uruma, Y., and Ichika wa, N. 1994. J . Nucl. Sci. Technology 31:443–455.

Huang, H. X., Zhu, G. H., and Hou, S. B. 1989. Retention of ruthenium-nitrosyl complexes in 30-percent TBPkerosene-laurohydroxamic acid. Radioc him. Acta 46: 159–162.

Hurst, P. and Tyzack, C. 1974. Water radiolysis its effect upon in-reactor zircaloy corrosion. In Proceedings of BNES Conference on Effect of Environment on Material Properties in Nuclear Systems, 37, London, U.K: BNES, London, U.K.

IAEA. 2004. Implications of partitioning and transmutation in radioactive waste management. Technical Report Series, Vienna, Austria.

Ichikawa, N. and Takagi, J. 1998. Effect of g-value and reactions on radiolysis simulation of high temperature water. In Proceedings 1998 JAIF Water Chemistry in Nuclear Power Plants, Kashiwazaki, Japan, pp. 854–857. Tokyo: Japan Atomic Industrial F orum.

Ichikawa, N., Hemmi, Y., Fukushima, T., Uruma, Y., Kamata, T., Nakayama, Y., and Nagao, H. 1987. Effect of dissolved oxygen on corrosion behavior of stainless steell in gamma ray irradiation environment. In Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, G. J. Theus and J. R. Weeks (eds.), Traverse City, MI, pp. 323–331. AIME.

Ichikawa, N., Hemmi, Y., and Takagi, J. 1992. Estimation on corrosion potential of stainless steel in BWR primary circuit. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 6, Bournemouth, U.K., vol. 2, pp. 127–132. London, U.K.: BNES.

Ichika wa, N., Hemmi Y., and Takagi, J. 1994. Effects of water chemistry and water ¡owrate on corrosion potential of stainless steel in high temperature water . In Proceedings of the International Conference on Chemistry in Water Reactors: Op erating Experience & New Developments, vo l. 1, Ni ce, Fr ance, pp . 307–314. Paris, France: SFEN.

Ichika wa, N., Hemmi, Y., and Takagi, J. 1996. Evaluation of hydrogen water chemistry effecti veness on materials in reactor pressure vessel bottom of a BWR. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 7, v ol. 2, Bournemouth, U.K., pp. 230–235. London, U.K.: BNES.

Ichika wa, N., Nakada, K., and Takagi, J. 2002. Precise evaluation of rater radiolysis and ECP under complex water ¡ow condition. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 2002, Avignon, France, paper 3-06. P aris, France: SFEN.

I RI. 20 05. Ra diation ef fects on ba rrier sy stems in hi gh le vel ra dioactive wa ste di sposal, Re search Pr oject An nual Re port, In stitute of Re search an d In novation, To kyo, Ja pan. Ishigure, K. , Fu jita, N. , Ta mura, T. , an d Os hima, K. 19 80. Ef fect of ga mma ra diation on th e re lease ra te of co rrosion pr oducts fr om ca rbon st eel an d st ainless st eel in hi gh te mperature wa ter. Nu cl. Technol. 50 : 16 9–177.

Ito, M., Okamoto, M., Shibata, M., Sasaki, Y., Danhara, T., Suzuki, K., and Watanabe, T. 1993. Mineral composition analysis of bentonite. PNC TN8430 93-003 (in Japanese). Power Reactor and Nuclear Fuel Development Co., Tokyo, Japan.

Jé gou, C., Broudic, A., Poulesquen, A., and Bart, J. M. 2004. Effect of α and γ radiolysis of water on alteration of the spent UO 2 nuclear fuel matrix. Mater. Res. Soc. Symp. Proc. 807: 391–396.

Jiang, P. Y., Nagaishi, R., Yotsuyanagi, T., Katsumura, Y., and Ishigure, K. 1994. γ-radiolysis study of concentrated nitric-acid solutions. J . Chem. Soc.-Faraday Trans. 90: 93–95.

Jin, H. F., Wu, J. L., Zhang, X. J., Xingwang, F., Side, Y, Zhihua, Z., Lin, N., ianyun. 1999. The examination of TBP e xcited state by pulse radiolysis. Radiat. Phys . Chem. 54: 245–251.

JNC. 2000. H12: Project to establish the scienti�c and technical basis for HLW disposal in Japan. Supporting Report 2: Repository Design and Engineering Technology . JNC-TN1410-2000-003, Japan Nuclear Cycle Development Institute, Tokaimura, Japan.

JNC. 2005. H17: Development and management of the technical knowledge base for the geological disposal of HLW. Knowledge Management Report, JNC-TN1400-2005-022, Japan Nuclear Cycle Development Institute, Tokaimura, Japan.

Johnson L. H. and Shoesmith, D. W. 1988. Spent fuel. In Radioactive Waste Forms for the Future, W. B. Lutze and R. C. Ewing (eds.), pp. 635–698. Amsterdam, the Netherlands: Else vier Scienti�c Publishers.

Johnson L. H. and Smith, P. A. 2000. The interaction of radiolysis products and canister corrosion products and the implications for spent fuel dissolution and radionuclide transport in a repository for spent fuel. Nagra NTB 00-04, Nagra, Wettingen, Switzerland.

Johnson, L. H., Stroes-Gascoyne, S., Shoesmith, D. W., Bailey, M. G., and Sellinger, D. M. 1983. Leaching and radiolysis studies on UO 2 fuel. AECL-8175, Atomic Energy of Canada Ltd., Ottawa, Canada.

Jonsson, M., Nielsen, F., Roth, O., Ekeroth, E., Nilsson, S., and Hossain, M. M. 2007. Radiation induced spent nuclear fuel dissolution under deep repository . En viron. Sci. Technol. 41: 7087–7093.

Kalina, D. G., Horwitz, E. P., Kaplan, L., and Muscatello, A. C. 1981. The extraction of Am(III) and Fe(III) by selected dihexyl N,N-dialkylcarbamoylmethyl-phosphonates, phosphinates and phosphine oxides from nitrate media. Sep. Sci. Technol. 16: 1127–1145.

Katsumura, Y. 1998. and radicals in radiolysis of nitric acid solutions. In N-Centered Radicals, Z. B. Alfassi (ed.), pp. 393–412. Ne w York: John Wiley & Sons.

Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., and Yoshida, Y. 1991. Pulse-radiolysis study of aqueous nitric-acid solutions—Formation mechanism, yield, and reactivity of NO 3 radical. J. Phys. Chem. 95: 4435–4439.

K elm, M. and Bohnert, E. 2000a. Radiation chemical effects in the near �eld of a �nal disposal site—I: Radiolytic products formed in concentrated NaCl solutions. Nucl. Technol. 129: 119–122.

K elm, M. and Bohnert, E. 2000b. Radiation chemical effects in the near �eld of a �nal disposal site—II: Simulation of the radiolytic processes in concentrated NaCl solutions. Nucl. Technol. 129: 123–130.

Khaikin, G. I. 1998. Reactions of trialkyl phosphates with hydroxyl radicals and hydrated electrons. High Energy Chem. 32: 287–289.

King F. and Shoesmith, D. W. 2004. Electrochemical studies of the effect of H 2 on UO 2 dissolution. SKB Technical Report TR-04-20, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

King, F., Litke, C. D., and Ryan, S. R. 1992. A mechanistic study of the uniform corrosion of copper in compacted Na-montorillonite/sand mixtures. Corr osion Sci. 33: 1979–1995.

King, F. Ahonen, L., Tax én, C., Vuorinen, U., and Werme, L. 2001. Copper corrosion under expected conditions in a deep geologic repository. SKB Technical Report TR-01-23, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Ladriere, J., Dussart, F., Dabi, J., Haulotte, O., Verhae ghe, S., and Regout, J. 2009. Mössbauer study of the boom clay, a geological formation for the storage of radioactiv e wastes in Belgium. Hyper�ne Interact. 191: 1–9.

Laidler , J. J. 2008. An ov erview of spent-fuel processing in the global nuclear-ener gy partnership. In ISEC 2008, International Solvent Extraction Conference, B. A. Moyer (ed.), Tucson, AZ, pp. 695–702. Cognis Corporation.

Lammel, G., Perner, D., and Warneck, P. 1990. Decomposition of pernitric acid in aqueous-solution. J. Phys. Chem. 94: 6141–6144.

Lane, E. S. 1963. Performance and degradation of diluents for TBP and the cleanup of degraded solvents. Nucl. Sci. Eng. 17: 620–625.

LaV erne, J. A. 2005. H 2 formation from the radiolysis of liquid water with zirconia. J. Phys. Chem. B 109: 5395–5397.

LaVerne, J. A., and Tonnies, S. E. 2003. H 2 production in the radiolysis of aqueous SiO 2 suspensions and slurries. J . Phys. Chem. B 107: 7277–7280.

Lefort, M. and Tarrago, X. J. 1959. Radiolysis of water by particles of high linear energy transfer. The primary chemical yields in aqueous acid solutions of ferrous sulfate, and in mixtures of thallous and ceric ions. J. Phys. Chem . 63: 833–836.

Lesage, D., Virelizier , H., and Janko wski, C. K. 1997. Identi�cation of minor products obtained during radiolysis of trib utylphosphate (TBP). Spectr ose: Int. J . 13: 275–290.

Lierse, C., Schmidt, K. H., and Sulliv an, J. C. 1988. Reactions of radiolytically produced OH radicals with selected actinides in solution. Radioc him. Acta 44/45: 71–72.

Linacre, J. K. and Marsh, W. R. 1981. The radiation chemistry of heterogeneous and homogeneous nitrogen and w ater systems. AERE-R 10027, HMSO, London, U.K.

Liu, J. and Neretnieks, I. 2001a. Ef fect of w ater radiolysis caused by dispersed radionuclides on oxidati ve dissolution of spent fuel in a �nal repository . Nucl. Technol. 135: 154–161.

Liu, L. and Neretnieks, I. 2001b. A coupled model for oxidative dissolution of spent fuel and transport of radionuclides from an initially defecti ve canister . Nucl. Technol. 135: 273–285.

Liu, L. and Neretnieks, I. 2001c. A reactive transport model for oxidative dissolution of spent fuel and release of nuclides within a defecti ve canister . Nucl. Technol. 137: 228–240.

Liu, L. and Neretnieks, I. 2002. The effect of hydrogen on oxidativ e dissolution of spent fuel. Nucl. T echnol. 138: 69–78.

Liu, J., Neretnieks, I., and Strömberg, B. H. E. 2003. Study on the consequences of secondary water radiolysis surrounding a defecti ve canister . Nucl. Technol. 142: 294–305.

L øgager, T. an d Se hested, K. 19 93. Fo rmation an d de cay of pe roxynitrous ac id: a pu lse ra diolysis st udy. J. Phys. Chem. 97: 6664–6669.

Loida, A., Metz, V., Kienzler, B., and Geckeis, H. 2005. Radionuclide release from high burnup spent fuel during corrosion in salt brine in the presence of h ydrogen o verpressure. J . Nucl. Mater. 346: 24–31.

Lucuta, P. G., Verrall, R. A., Matzke, Hj, and Palmer , B. J. 1991. Microstructural features of SIMFUEL— Simulated high-b urnup UO 2 -based nuclear fuel. J. Nucl. Mater. 178: 48–60.

Macadamas, W. H. 1954. Heat Transmission, 3rd edn. Ne w York: McGra w Hill.

Macášek, F. and Čech, R. 1984. Macrokinetics of radiolysis in systems with liquid-liquid partition of substrates. 1. A general-approach to mathematical-models of simulated solvent-e xtraction systems. Radiati Phys. Chem 23: 473–479.

Macdonald, D. D. 1992. Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactors. Corr osion 48: 194–205.

Macdonald, D. D. and Urquidi-Macdonald, M. 1990. Thin-layer mixed-potential model for the corrosion of high-lev el nuclear w aste canisters. Corr osion 46:380–390.

Marsh, G. P., Harker , A. H., and Taylor , K. J. 1989. Corrosion of carbon steel nuclear waste containers in marine sediment. Corr osion 45: 579–589.

Martínez Esparza, A., Cuñado, M. A., Gago, J. A., Quiñones, J., Iglesias, E., Cobos, J., González de la Huebra A., Cera, E., Merino, J., Bruno, J., de Pablo, J., Casas, I., Clarens, F., and Giménez, J. 2005. Development of a matrix alteration model(MAM). ENRESA PT 01/2005, Nacional Radioactiv e Waste Company , Madrid, Spain.

Mathur , J. N., Murali, M. S., and Nash, K. L. 2001. Actinide partitioning—A revie w, Solvent Extr . Ion Exch. 19: 357–390.

Matthe ws, R. W., Mahlman, H. A., and Sworski, T. J. 1972. Elementary processes in the radiolysis of aqueous nitric acid solutions. Determination of both G OH and G NO 3 . J. Phys. Chem. 19: 2680–2684.

McVay, G. L. and Pederson, L. R. 1981. Effect of gamma radiation on glass leaching. J. Am. Ceram. Soc. 64: 154–158.

Mennecart, T., Grambow, B., Fattahi, M., Blondiaux, G., and Andriambololona, Z. 2004a. Effect of alpha radiolysis on UO 2 dissolution under reducing conditions. Mat. Res. Soc. Symp. Proc. 807: 403–408.

Mennecart, T., Grambow, B., Fattahi, M., and Andriambololona, Z. 2004b. Effect of alpha radiolysis on UO 2 dissolution under reducing conditions. Radioc him. Acta 92: 611–615.

Metz, V., Loida, A., Bohnert, E., Schild, D., and Dardenne, K. 2008. Effects of hydrogen and bromide on the corrosion of spent nuclear fuel and γ -irradiated UO 2 (s) in NaCl brine. Radiochim. Acta 96: 637–648.

Miguirditchian, M., Sorel, C., Camès, B., Bisel, I., and Baron, P., 2008. Extraction of uranium(VI) by N,N-di(ethylhexyl)isobutyramide (DEHIBA): From the batch experimental data to the countercurrent process, In ISEC 2008, International Solvent Extraction Conference, B. A. Moyer (ed.), Tucson, AZ, pp. 721–726.

Mincher, B. J. and Mezyk, S. P. 2009. Radiation chemical effects on radiochemistry: A review of examples important to nuclear po wer. Radioc him. Acta 97: 519–534.

Mincher , B. J., Mezyk, S. P., and Martin, L. R. 2008. A pulse radiolysis inv estigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J. Phys. Chem. A 112: 6275–6280.

Mincher, B. J., Modolo, G., and Mezyk, S. P . 2009a. Re view article: The ef fects of radiation chemistry on solv ent e xtraction: 2. A re view of �ssion-product e xtraction. Solvent Extr . Ion Exch. 27: 331–353.

Mincher , B. J., Elias, G., Martin, L. R., and Mezyk, S. P. 2009b. Radiation chemistry and the nuclear fuel cycle. J. Radioanal. Nucl. Chem. 282: 645–649.

Mincher , B. J., Modolo, G., and Mezyk, S. P. 2009c. The effects of radiation chemistry on solvent extraction: 3, A re view of actinide and lanthanide e xtraction, Solvent. Extr . Ion Exch. 27: 579–606.

Miyak e, C., Hirose, M., Yoshimura, T., Ikeda, M., Imoto, S., and Sano, M. 1990. The 3rd phase of extraction processes in fuel-reprocessing.1. Formation conditions, compositions and structures of precipitates in Zr-degradation products of TBP systems. J . Nucl. Sci. Technol. 27: 157–166.

Modolo, G., Vijgen, H., Malmbeck, R., Magnusson, D., and Sorel, C. 2008. Partitioning of trivalent actinides from a PUREX raf�nate using a TODGA-based solvent-extraction process, In ISEC 2008, International Solvent Extraction Conference, B. A. Mo yer (ed.), Tucson, AZ, pp. 521–526.

Mo wafy, E. A. 2004. The effect of previous gamma-irradiation on the extraction of U(VI), Th(IV), Zr(IV), Eu(III) and Am(III) by v arious amides. J . Radioanal. Nucl. Chem. 260: 179–187.

Mo wafy, E. A. 2007. Evaluation of selectivity and radiolysis behavior of some promising isonicotinamids and dipicolinamides as e xtractants. Radioc him. Acta 95: 539–545.

Müller -Vonmoos, M. and Kahr, G. 1983. Mineralogische untersuchungen von Wyoming bentonite MX-80 und Montigel. N AGRA Technischer Bericht 83–12, Wettingen, Switzerland.

M uroya, Y., Lin, M., Han, Z., Kumagai, Y., Sakumi, A., Ueda, T., and Katsumura, Y., 2008. Ultra-fast pulse radiolysis: A review of the recent system progress and its application to study on initial yields and solvation processes of solvated electrons in various kinds of alcohols. Radiat. Phys. Chem. 77: 1176–1182.

Muzeau, B., Jégou, C., Delaunay, F., Broudic, V., Brevet, A., Catalette, H., Simoni, E., and Corbel, C. 2009. Radiolytic oxidation of UO 2 pellets doped with alpha-emitters ( 238/239 Pu). J. Alloy Comp. 467: 578–589.

Nagaishi, R., Jiang, P. Y., Katsumura, Y., and Ishigure, K. 1994. Primary yields of water radiolysis in concentrated nitric-acid solutions. J . Chem. Soc.-Faraday Trans. 90: 591–595.

Nash, K. L., Gatrone, R. C., Clark, G. A., Rickert, P. G., and Horwitz, E. P. 1988. Hydrolytic and radiolytic degradation of O-Phi-D(Ib) Cmpo—continuing studies. Sep. Sci. Technol. 23: 1355–1372.

Nash, K. L., Rickert, P. G., and Horwitz, E. P. 1989. Degradation of truex-dodecane process solvent. Solvent Extr. Ion Exch. 7: 655–675.

Nash, K. L., Madic, C., Mathur, J., and Lacquement, J. 2006. Actinide separation science and technology. In The Chemistry of the Actinide and Transactinide Elements, 3rd edn., L. R. Morss, N. M. Edelstein, J. Fuger (eds.), Dordrecht, the Netherlands: Springer .

Neace, J. C. 1983. Diluent de gradation products in the pure x solv ent. Sep. Sci. Technol. 18: 1581–1594.

Ne gron, A., Ramos, S., Blumenfeld, A. L., Pacheco, G., and Fripiat, J. J. 2002. On the structural stability of montmorillonite submitted to hea vy γ -irradiation. Clays Miner . 50: 35–37.

Neretnieks, I. 1983. The movement of a redox front downstream from a repository for nuclear waste. Nucl. Technol. 62: 110–115.

Neta, P. and Huie, R. E. 1986. Rate constants for reactions of NO 3 radicals in aqueous-solutions. J. Phys. Chem. 90: 4644–4648.

Neta, P., Huie, R. E., and Ross, A. B. 1988. Rate constants for reactions of inorg anic radicals in aqueoussolution. J . Phys. Chem. Ref. Data 17: 1027–1284.

Nicol, C., Cames, B., Margot, L., and Ramain, L. 2000. DIAMEX regeneration studies. In Atalante-2000, P3-22, Avignon, France, pp. 1–4.

Nielsen, F. and Jonsson, M. 2006. Geometrical αand β-dose distributions and production rates of radiolysis products in w ater in contact with spent nuclear fuel. J . Nucl. Mater. 359: 1–7.

Nilsson, S. and Jonsson, M. 2008. On the catalytic effects of UO 2 (s) and Pd(s) on the reaction between H 2 O 2 and H 2 in aqueous solution. J. Nucl. Mater. 372: 160–163.

Nielsen, F., Lundahl, K., and Jonsson, M. 2008a. Simulations of H 2 O 2 concentration pro�les in the water surrounding spent nuclear fuel. J . Nucl. Mater. 372: 32–35.

Nielsen, F., Ekeroth, E., Eriksen, T. E., and Jonsson, M. 2008b. Simulation of radiation induced dissolution of spent nuclear fuel using the steady-state approach. A comparison to experimental data. J. Nucl. Mater. 374: 286–289.

No wak, Z. 1977. Radiolytic degradation of extractant-diluent systems used in the PUREX process. Nukleonika 22: 155–172.

Oda, C., Shibata, M., and Yui, M. 1999. Calculation of porew ater chemistry in compacted bentonite for 2nd progress report. JNC TN8400 99-078 (in Japanese), Japan Nuclear Cycle Dev elopment Institute, Tokaimura, Japan.

OECD-NEA. 1999. Actinide and Fission Product Partitioning and Transmutation—Status and Assessment Report, OECD Nuclear Ener gy Agency, P aris, France.

Ohw ada, K. 1968. On the identi�cation of hydroxamic acids formed by nitric acid degradation of kerosene and i-dodecane. J . Nucl. Sci. Technol. 5: 163–167.

Olah, G. A., Lin, H. C., Olah, J. A., and Narang, S. C. 1978. Electrophilic and free radical nitration of benzene and toluene with v arious nitrating agents. Pr oc. Natl. Acad. Sci. U S A 75: 1045–1049. Ollila, K. 1992. SIMFUEL dissolution studies in granitic groundw ater. J . Nucl. Mater. 190: 70–77.

Ollila, K., Albinsson, Y., Oversby, V., and Cowper, M. 2003. Dissolution rates of unirradiated UO 2 , UO 2 doped with 233 U, and spent fuel under normal atmospheric conditions and under reducing conditions using an isotope dilution method. SKB Technical Report TR-03-13, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

P ark, J. Y. and Lee, Y. N. 1988. Solubility and decomposition kinetics of nitrous-acid in aqueous-solution. J. Phys. Chem. 92: 6294–6302.

P astina, B. and LaV erne, J. A. 1999. Hydrogen peroxide production in the radiolysis of w ater with hea vy ions. J. Phys. Chem. A 103: 1592–1597.

P astina, B. and LaVerne, J. A. 2001. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A 105:9316–9322.

Pederson, L. R. and McVay, G. L. 1983. In¡uence of gamma irradiation on leaching of simulated nuclear waste glass: Temperature and dose rate dependence in deaerated w ater. J . Am. Ceram. Soc. 66: 863–867.

Peuget, S., Broudic, V., Jégou, C., Frudier, P., Roudil, D., Deschantels, X., Rabiller, H., and Noel, P. M. 2007. Effect of alpha radiation on the leaching beha vior of nuclear glass. J . Nucl. Mater. 362: 474–479.

Pikae v, A. K., Kabakchi, S. A., and Egorov, G. F. 1988. Some radiation chemical aspects of nuclear-engineering. Radiat. Phys. Chem . 31: 789–803.

Plotze, M., Kahr, G., and Hermanns Stengele, R. 2003. Alteration of clay minerals-gamma-irradiation effects on ph ysicochemical properties. Appl. Clay Sci . 23: 195–202.

Poinssot, C., Ferry, C., Lovera, P., Jegou, C., and Gras, J.-M. 2005. Spent fuel radionuclide source term model for assessing spent fuel performance in geological disposal. Part II: Matrix alteration model and global performance. J . Nucl. Mater. 346: 66–77.

Poulesquen, A. and Jégou, C. 2007. In¡uence of alpha radiolysis of water on UO 2 matrix alteration: Chemical/ transport model. Nucl. Technol. 160: 337–345.

Pusch, R., Karnland, O., Lajudie, A., and Decarreau, A. 1992. MX80 clay exposed to high temperatures and gamma radiation. SKB Technical Report 93-03, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

Pushkare va, R., Kalinichenko, E., Lytovchenko, A., Pushkarev, A., Kadochnikov, V., and Plastynina, M. 2002. Irradiation ef fect on ph ysic-chemical properties of clay minerals. Appl. Clay Sci . 21: 117–123.

Reif, D. J. 1988. Restoring solv ent for nuclear separation processes. Sep. Sci. Technol. 23: 1285–1295.

Rochoñ, A. M. 1980. Study on composition of zirconium binding-compounds in irradiated purex-solv ents. Radiochem. Radioanal. Lett . 44: 277–285.

Röllin, S., Spahiu, K., and Eklund, U.-B. 2001. Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a ¡ow-through experiment. J. Nucl. Mater. 297: 231–243.

Rondinella, V. V., Matzke, Hj., Cobos, J., and Wiss, T. 2000. Leaching behavior of UO 2 containing α-emitting actinides. Radioc him. Acta 88: 527–531.

Roth, O. and Jonsson, M. 2009. On the impact of reactive solutes on radiation induced oxidative dissolution of UO 2 . J. Nucl. Mater. 385: 595–600.

Ruikar, P. B., Nagar, M. S., and Subramanian, M. S. 1991. Quantitative-analysis of Some extractants by infrared spectrometry . J . Radioanal. Nucl. Chem.-Lett. 155: 371–376.

Ruikar , P. B., Nagar, M. S., and Subramanian, M. S. 1993. Extraction of uranium, plutonium and some �ssionproducts with gamma-irradiated unsymmetrical and branched-chain dialkylamides. J. Radioanal. Nucl. Chem.-Lett. 176:103–111.

Saito, N., Ichikaw a, N., Hemmi, Y., Sudo, A., Ito, M., and Okada, T. 1990. Effects of gamma-ray irradiation and sodium sulfate on the intergranular stress corrosion cracking susceptibility of sensitized type 304 stainless steel in high-temperature w ater. Corr osion 46: 531–536.

Saito, N., Kikuchi, E., Sakamoto, H., Kuniya, J., and Suzuki, S. 1997. Susceptibility of sensitized type 304 stainless steel to intergranular stress corrosion cracking in simulated boiling-water reactor environments. Corrosion 53: 537–545.

Sasaki, Y., Kitatsuji, Y., Hirata, M., Kimura, T., and Yoshizuka, K. 2008. Extraction of actinides by multidentate diamides and their evaluation with computational molecular modeling, In ISEC 2008, International Solvent Extraction Conference, 2008 , B. A. Mo yer (ed.), Tucson, AZ, pp. 745–750.

S attonnay, C. , Ar dois, C. , Co rbel, C. , Lu cchini, J. F. , Ba rthe, M. F. , Ga rrido, F. , an d Go sset, D. 20 01. Al pha-radiolysis effects on UO 2 alteration in water. J. Nucl. Mater. 288: 11–19.

Schatz, T., Cook, A. R., and Meisel, D. 1998. Charge carrier transfer across the silica nanoparticle/water interface. J . Phys. Chem. B 102: 7225–7230.

Schmidt, K. H., Gordon, S., Thompson, R. C., and Sullivan, J. C. 1980. A pulse radiolysis study of the reduction of neptunium (V) by the h ydrated electron. J . Inorg. Nucl. Chem. 42: 611–615.

Schmidt, K. H., Gordon, S., Thompson, M., Sullivan, J. C., and Mulac, W. A. 1983. The hydrolysis of neptunium(VI) and plutonium(VI) studied by the pulse radiolysis transient conductivity technique. Radiat. Phys. Chem. 21: 321–328.

S chulz, W. W. an d Na vratil, J. D. 19 84. Sc ience and Technology of Tributyl Phosphate, vo l. 1, Bo ca Ra ton, FL : CRC Press.

Selman, J. R. an d To bias, C. W. 19 78. Ma ss-transfer me asurements by th e li miting-current te chnique. In Advances in Chemical Engineering, T. B. Drew (ed.), vol. 10, pp. 212–216. New York: Academic Pr ess.

Shastri, L. V. and Huie, R. E. 1990. Rate constants for hydrogen abstraction reactions of NO 3 in aqueoussolution. Int. J . Chem. Kinet. 22: 505–512.

S hilov, V. P. and Pikaev, A. K. 1982. Investigation of the reactivity of uranium and neptunium ions relative to hy drogen at oms in aq ueous-solutions by th e pu lse ra diolysis me thod. Hi gh Energy Chem. 16 : 372–374.

Shilov, V. P., Fedoseev, A. M., and Pikaev, A. K. 1982. Study of reactivity of neptunium ions toward OH radicals in perchloric-acid solutions by pulse-radiolysis method. Bull. Acad. Sci. USSR, Div. Chem. Sci. 31: 832–834.

Shoesmith, D. W. 2000. Fuel corrosion processes under w aste disposal conditions. J . Nucl. Mater. 282: 1–31.

Shoesmith, D. W. 2007. Used fuel on uranium dioxide dissolution studies—A review. NWMO TR-2007-03, Nuclear Waste Management Or ganization, Toronto, Canada.

Shoesmith, D.W. 2008. The role of dissolved hydrogen on the corrosion/dissolution of spent nuclear fuel. NWMO TR-2008-19, Nuclear Waste Management Or ganization, Toronto, Canada.

Shoesmith, D. W. and King, F. 1999. The effects of gamma radiation of the candidate materials for the fabrication of nuclear w aste packages. AECL-11999, Atomic Ener gy of Canada Ltd., Pina wa, Canada.

Shoesmith, D. W., Kolar, M., and King, F. 2003. A mixed-potential model to predict fuel (uranium dioxide) corrosion within a f ailed nuclear w aste container . Corr osion 59: 802–816.

Siddall, T. H. and Dukes, E. K. 1959. Kinetics of HNO 2 catalyzed oxidation of neptunium(V) by aqueous solutions of nitric acid. J . Am. Chem. Soc. 81: 790–794.

SKB. 2006a. Long-term safety for KBS-3 Reositories at Forsmark and Laxemar – a First Evaluation. Main Report of the SR-Can project. SKB Technical Report TR-06-09, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

SKB. 2006b. Fuel and canister process report for the safety assessment SR-Can. SKB Technical Report TR-0622, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

SKI. 1996. Deep Repository Performance Assessment Project. SKI Report 96:36, Swedish Nuclear Power Inspectorate, Stockholm, Sweden.

Smart, N. R., Rance, A. P., and Werme, L. O. 2008. The effect of radiation on the anaerobic corrosion of steel. J. Nucl. Mater . 379: 97–104.

Sorel, C., Montuir, M., Espinoux, D., Lorrain, B., and Baron, P. 2008. Technical feasibility of the DIAMEX process. In ISEC 2008 , International Solvent Extraction Conference, B. A., Moyer (ed.), Tucson, AZ, pp. 715–720.

Sorieul, S., Allard, Th., Wang, L. M., Grambin-Lapeyre, C., Lian, J., Calas, G., and Ewing, R. C. 2008. Radiation stability of smectite. En viron. Sci. Technol. 42: 8407–8411.

Spahiu, K., Werme, L., and Eklund, U.-B. 2000. The in¡uence of near �eld hydrogen on actinide solubilities and spent fuel leaching. Radioc him. Acta 88: 507–511.

Spahiu K., Cui, D., and Lundström, M. 2004a. The fate of radiolytic oxidants during spent fuel leaching in the presence of dissolv ed near �eld h ydrogen. Radioc him. Acta 92: 625–629.

Spahiu K., Devoy, J., Cui, D., and Lundström, M. 2004b. The reduction of U(VI) by near �eld hydrogen in the presence of UO 2 (s). Radiochim. Acta 92: 597–601.

Spinks, J. W. T. and Woods, R. J. 1990. An Introduction to Radiation Chemistry, 3rd edn. New York: John Wiley & Sons.

Stie glitz, L. and Becker, R. 1985. Chemical and radiolytic solvent degradation in the purex process. Atomkernenergie-Kerntechnik 46: 76–80.

Sug ai, H. and Munakata, K. 1992. Destruction of emulsions stabilized by precipitates of zirconium and tributylphosphate de gradation products. Nucl. Technol. 99: 235–241.

Sugo, Y., Sasaki, Y., and Tachimori, S. 2002. Studies on hydrolysis and radiolysis of N, N,N′,N′-tetraoctyl-3oxapentane-1,5-diamide. Radioc him. Acta 90: 161–165.

Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., and Kudo, H., 2007. In¡uence of diluent on radiolysis of amides in or ganic solution. Radiat. Phys. Chem . 76: 794–800.

Sunaryo, G. R., Katsumura, Y., and Ishigure, K. 1995. Radiolysis of water at elevated temperatures—III. Simulation of radiolytic products at 25 and 250°C under the irradiation with γ-rays and fast neutrons. Radiat. Phys. Chem. 45:703–14.

Sunder , S., Shoesmith, D. W., Christensen, H., and Miller, N. H. 1992. Oxidation of UO 2 fuel by the products of g amma radiolysis of w ater. J . Nucl. Mater. 190: 78–86.

Sunder , S., Boyer, G. D., and Miller, N. H. 1990. XPS studies of UO 2 oxidation by alpha radiolysis of water at 100°C. J . Nucl. Mater. 175: 163–169.

Suzuki, H., Shibata, M., Yamagata, J., Hirose, I., and Terakado K. 1992. Characteristic test of buffer material (I). PNC TN8410 92-057 (in Japanese), Power Reactor and Nuclear Development Fuel Corporation, Tokai-mura, Japan.

Suzuki, T., Abdelouas, A., Grambow, B., Mennecart, T., and Blondiaux, G. 2006. Oxidation and dissolution rates of UO 2 (s) in carbonate-rich solutions under external alpha irradiation and initially reducing conditions. Radioc him. Acta 94: 567–573.

Sw orski, T. J., Matthews, R. W., and Mahlman, H. A. 1968. Radiation chemistry of concentrated NaNO 3 solutions: Dependence of G (HNO 2 ) on NaNO 3 concentration. Adv. Chem. Ser. 82: 164–181.

Tahraoui, A. and Morris, J. H. 1995. Decomposition of solvent-extraction media during nuclear reprocessing— Literature-review. Sep. Sci. Technol. 30: 2603–2630.

T akagi, J. and Ichikawa, N. 1999. Modeling technique for BWR primary system corrosion environment. In Proceedings of the Seminar on Water Chemistry of Nuclear Reactor Systems’99, Tokyo, Japan, pp. 57–61. Tokyo, Japan: Atomic Energy Society of Japan.

Takagi, J. and Ichikawa, N. 2001. Water radiolysis modeling and the prediction of corrosion potentials at actual BWRs. In Proceedings of the Seminar on Water Chemistry of Nuclear Reactor Systems 2001, paper 23, pp. 1–6. Taipei, Taiwan: Chung Hw a Nuclear Society .

Takagi, J., Ichikawa, N., Hemmim, Y., and Nagao, N. 1989. Study on radiolysis behavior and ECP measurement in BWR primary loop conditions. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 5, vol. 2, Bournemouth, U.K., pp. 99–106. London, U.K.: NES.

T akagi, J., Morikawa, Y., Sakamoto, H., Ichikawa, N., Itow, M., Kawamura, S., and Takamori, K. 1996. Long term veri�cation program on hydrogen water chemistry at a Japanese BWR. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 7, pp. 489–495. London, U.K.: BNES.

Takagi, J., Ichikawa N., and Morikawa, Y. 1998. IGSCC mitigation concept for BWRs by preventive water chemistry. In Proceedings of the 1998 JAIF Water Chemistry in Nuclear Power Plants, Kashiwazaki, Japan, pp. 614–618. Tokyo, Japan: Japan Atomic Industrial F orum.

Takagi, J., Urata, H., and Ichikawa, N. 2000. Flow rate effect on corrosion potential of noble metal treated stainless steel. In Proceedings of the Water Chemistry of Nuclear Reactor Systems 8, vol. 2, Bournemouth, U.K., pp. 426–430. London, U.K.: BNES.

T ripathi, S. C. and Ramanujam, A. 2003. Effect of radiation-induced physicochemical transformations on density and viscosity of 30% TBP-n -dodecane-HNO 3 system. Sep. Sci. Technol. 38: 2307–2326.

Tripathi, S. C., Sumathi, S., and Ramanujam, A. 1999. Effects of solvent recycling on radiolytic degradation of 30% trib utyl phosphaten-dodecane-HNO 3 System. Sep. Sci. Technol. 34: 2887–2903.

Tripathi, S. C., Bindu, P., and Ramanujam, A. 2001a. Studies on the identi�cation of harmful radiolytic products of 30% TNP-n-dodecane-HNO 3 by gas-liquid chromatography. I. Formation of diluent degradation products and their role in Pu retention beha vior. Sep. Sci. Technol. 36: 1463–1478.

T ripathi, S. C., Ramanujam, A., Gupta, K. K., and Bindu, P. 2001b. Studies on the identi�cation of harmful radiolytic products of 30% TBP-n-dodecane-HNO 3 by gas-liquid chromatography. II. Formation and characterization of high molecular weight or ganophosphates. Sep. Sci. Technol. 36: 2863–2883.

T rummer, M., Nilsson, S., and Jonsson, M. 2008. On the effects of �ssion product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. J . Nucl. Mater. 378: 55–59.

T rummer, M., Roth, O., and Jonsson, M. 2009. H 2 inhibition of radiation induced dissolution of spent nuclear fuel. J . Nucl. Mater. 383: 226–230.

Urata, H., Ichikawa, N., Takagi, J., and Tanaka, N. 1998. Water ¡ow velocity effect on corrosion potential of structural materials at bottom region of several BWR plants. In Proceedings of the 1998 JAIF Water Chemistry in Nuclear Power Plants, Kashiwazaki, Japan, pp. 850–853. Tokyo, Japan: Japan Atomic Industrial F orum.

Vione, D., Maurino, V., Minero, C., Borghesi, D., Lucchiari, M., and Pelizzetti, E. 2003. New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide. Envir on. Sci. Technol. 37: 4635–4641.

Vladimirov a, M. V. 1995. Mathematical-modeling of the radiation-chemical behavior of neptunium in HNO 3 — Equilibrium states. Radioc hemistry 37: 410–416.

Vladimiro va, M. V. and Milovanova, A. S. 1972. α-radiolysis of HNO 3 solutions and acid NaNO 3 solutions. Khimiya Vysokikh Energii 6: 69–72.

Vladimiro va, M. V., Kulikov, I. A., and Savel’ev, Y. I. 1969. Steady-state concentrations of nitrous acid in γ-irradiated nitric acid solutions. High Ener gy Chem. 3: 526–527.

Vladimiro va, M. V., Fedoseev, D. A., and Artemova, L. A. 1996. Radiation-chemical behavior of neptunium in nitric acid solutions containing or ganic substances. Radioc hemistry 38: 74–77. v on Sonntag, C. and Schuchmann, H.-P. 1997. Peroxyl radicals in aqueous solution. In Peroxyl Radicals, Z. B. Alfassi (ed.), pp. 173–234. Ne w York: John Wiley & Sons. v on Sonntag, C., Ansorge, G., Sigimori, A., Omori, T., Koltzenburg, G., and Schulte-Frohlinde, D. Z. 1972. Alkyl phosphate cleavage of aliphatic phosphates induced by hydrated electrons and by OH radicals. Naturforschung Teil B 27: 71–472.

W agner, R. M. and Towle, L. H., 1958. Radiation stability of organic liquids, Stanford Research Institute Report, Stanford Research Institute, Menlo P ark, CA.

W eber, W. J. 1988. Radiation effects in nuclear waste glasses. Nucl. Instrum Methods Phys. Res. B 32: 471–479.

Weber, W. J., Wald, J. W., and McVay , G. L. 1985. Effect of α-radiolysis on leaching of a nuclear waste glass. J. Am. Ceram. Soc. 68: C253–255.

Weber, W. J., Ewing, R. C., Angell, C. A., Arnold, G. W., Cormack, A. N., Delaye, J. M., Griscom, D. L., Hobbs, L. W., Navrotsky, A., Price, D. L., Stoneham, A. M., and Weinberg, M. C. 1997. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12: 1946–1978.

Werme, L. 1998. Design premises for canister for spent nuclear fuel. SKB Technical Report 98-08, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.

White, A. F., Peterson, M. L., and Hochella, M. F. Jr. 1994. Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geoc him. Cosmochim. Acta 58: 1859–1875.

W ilkinson, R. W. and Williams, T. F. 1961. The radiolysis of Tri-n-alkyl phosphates. J. Chem. Soc. 4098–4107.

Wu, G. Z., Katsumura, Y., Chitose, N., and Zuo, Z. H. 2001. A pulse radiolysis study of oil/water microemulsions. Radiat. Phys. Chem . 60: 643–650.

Y oshida, H., Metcalfe, R., Yamamoto, K., Murakami, Y., Hoshii, D., Kanekiyo, A., Naganuma, T., and Ha yashi, T. 20 08. Re dox fr ont fo rmation in an up lifting se dimentary ro ck se quence: An an alogue fo r re dox-controlling pr ocesses in th e ge osphere ar ound de ep ge ological re positories fo r ra dioactive wa ste. Ap pl. Geochem. 23 : 23 64–2381.

Zaitsev, V. D. an d Kh aikin, G. I. 19 94. Pr ecursors of di butylphosphoric ac id up on ra diolysis of tr ibutyl-phosphate. Hi gh Energy Chem. 28 : 26 9–272.

Zaitsev, V. D. , Ka rasev, A. L. , an d Eg orov, G. F. 19 87. Fo rmation of hy droxamic ac ids in th e ra diolysis of tr i-normal-butyl ph osphate co ntaining ni tric-acid. Sov . Atom. Energy 63 : 52 4–527.

Zhang G., Samper, J., and Montenegro, L. 2008. Coupled hermo-hydro-bio-geochemical reactiv e transport model of CERBER US heating and radiation e xperiment in boom clay . Appl. Geoc hem. 23: 932–949.