Urbanite'' Rays and Sharks: Presence, Habitat Use

Total Page:16

File Type:pdf, Size:1020Kb

Urbanite'' Rays and Sharks: Presence, Habitat Use Regional Studies in Marine Science 37 (2020) 101342 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma ``Urbanite'' rays and sharks: Presence, habitat use and population structure in an urban semi-enclosed lagoon ∗ Fernando Tuya a, , Maite Asensio b, Alberto Navarro b a Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Marine Scientific and Technological Park, Crta. Taliarte s/n, 35214 Telde, Spain b Snorkeling Experience, Av./ Mesa y López 57, 15A, 35010, Las Palmas de G.C., Spain article info a b s t r a c t Article history: There is a vital necessity to provide more biological data on rays and sharks to promote efficient Received 7 January 2020 conservation. In this study, we assembled a database of weekly sightings to describe temporal Received in revised form 12 June 2020 (seasonal) patterns in the presence of elasmobranchs within an urban, semi-enclosed, landscape (Las Accepted 20 June 2020 Canteras beach, Gran Canaria Island, eastern Atlantic). Data also provided insight into their habitat Available online 29 June 2020 use and population structure. From October 2015 to October 2018, eight species, either endangered Keywords: or ``data deficient'' according to the IUCN red list, were reported, including: the common eagle ray, Biodiversity Myliobatis aquila, the common stingray, Dasyatis pastinaca, the round stingray, Taeniurops grabatus, Chondrichthyans the spiny butterfly ray, Gymnura altavela, the bull ray, Aetomylaeus bovinus, the angel shark, Squatina Batoids squatina, the marbled electric ray, Torpedo marmorata and the hammerhead shark, Sphyrna zygaena. Conservation All species were predominantly observed at night. The species varied in their habitat use; D. pastinaca, Seasonality G. altavela and S. squatina dominated in sandy and mixed bottoms, while M. aquila and T. grabatus Atlantic ocean were mostly found in rocky and mixed bottoms. Both D. pastinaca and T. grabatus did not show any seasonal pattern, with consistent records all year around. In contrast, M. aquila, G. altavela and S. squatina showed some degree of seasonality. For five species, small-sized individuals were observed. If semi-enclosed embayments at oceanic islands, under intense human presence, are used by juveniles of endangered rays and sharks, proper management, e.g. limitation of putative human interactions, need to be considered to avoid disturbances. ' 2020 Elsevier B.V. All rights reserved. 1. Introduction describing patterns of distribution, foraging, reproduction, pup- ping and habitat use is a key factor to optimize management Elasmobranchs encompass a wide group of carnivorous and of these species (Le Port et al., 2012). Importantly, knowledge detritivorous fish distributed worldwide, from shallow waters to on the ecology of rays and sharks is relevant in areas of strong abyssal depths. About 25% of rays and sharks face extinction risk, interactions with humans, as is the case of urban environments, with recent declines in the abundance of certain species in the where a range of human actions (fishing, industrial activities, last few decades, mostly as a result of overfishing (Dulvy and For- tourism and leisure,) takes place (Gonçalves Silva and Vianna, rest, 2010; Dulvy et al., 2014; Lawson et al., 2019). Batoid species 2018). are particularly at risk of extinction, due to increasing anthro- Certain areas of the world are rich, not only in terms of pogenic threats, e.g. overfishing (Martins et al., 2018). In addition, the diversity of elasmobranchs, but also in the frequency of a large number of elasmobranchs are biologically and ecologically observations along nearshore waters. The Canary Islands is a unknown, e.g. abundance patterns and habitat uses, from most clear example; this Atlantic archipelago is the last worldwide of their distribution ranges. In this sense, a considerable number stronghold of the angel shark, Squatina squatina (Linnaeus, 1758) of rays and sharks are considered by the International Union for (Meyers et al., 2018; Lawson et al., 2019) and large aggregations the Conservation of Nature (IUCN) red list as ``data deficient''. of elasmobranchs are spotted near the shore (Assis et al., 2008; Clearly, there is a vital necessity to provide more biological data Narváez, 2013), even linked to human facilities, such as sea-cage on this fauna to promote conservation strategies (Dulvy et al., fish farms (Dempster et al., 2005; Tuya et al., 2006). The lack 2014; Martins et al., 2018; Lawson et al., 2019). For example, of bottom-trawling, as a result of a reduced continental shelf, is a key mechanism explaining the large abundance of rays and ∗ Corresponding author. sharks in this oceanic Archipelago (Brito et al., 2002). Coastal E-mail address: [email protected] (F. Tuya). landscapes of the Canary Islands typically include a mosaic of https://doi.org/10.1016/j.rsma.2020.101342 2352-4855/' 2020 Elsevier B.V. All rights reserved. 2 F. Tuya, M. Asensio and A. Navarro / Regional Studies in Marine Science 37 (2020) 101342 habitats, such as rocky reefs, seagrass meadows, unvegetated sed- iments (sandy bottoms), which offer suitable habitat for different life history stages of marine fish (Espino et al., 2015a), including elasmobranchs (Brito et al., 2002; Espino et al., 2015b). In this study, we assembled a database of species records (sightings) through weekly tours carried out by an ecotourism (snorkeling) enterprise to describe temporal (seasonal) patterns in the presence of elasmobranchs. More specifically, we used a 3 years-database (from October 2015 to October 2018) to assess whether seasonality affected the presence of elasmobranchs and to provide insight into their habitat use and population structure within a highly populated urban landscape (Las Canteras beach, Gran Canaria Island, northeastern Atlantic) that include several habitats (Tuya et al., 2019). This data may be relevant, for exam- ple, to infer potential movement of adults, as well to determine their reproductive, parturition, pupping seasons. From a manage- ment perspective, this biological data is valuable to help con- servation actions; for example, protection of juveniles at certain seasons, or restriction of certain human activities in the seasons of large aggregations of elasmobranchs (Heupel et al., 2007; Lawson et al., 2019). This is particularly pertinent in our case-study, as all analyzed species are either endangered or considered as ``data deficient'' by the IUCN red list. 2. Materials and methods 2.1. Study site This research was undertaken at Las Canteras beach, a nearshore semi-enclosed lagoon system located in the metropoli- tan area of Las Palmas de Gran Canaria, at the northern side of Gran Canaria Island (northeastern Atlantic Ocean) (Fig.1a). The city has approximately 400,000 inhabitants and the beach is a pivotal core for its social and economic progress, with more than 300,000 tourists, on average, visiting the beach every year (www.grancanaria.com/turismo/es). The beach is about 3 km long and is used by hundreds to thousands of people every day for sunbathing, swimming, snorkeling, diving, paddling or surfing. Sandy bottoms and rocky reefs are interconnected as irregular mosaics, typically between zero and three meters of depth (Fig. 1A, Tuya et al., 2019). An offshore sedimentary bar (ca. 2 km long) delimits the system's seaward extent (Fig.1b, Fig. 1A); the bar is Fig. 1. Location of (a) the study site (Las Canteras beach) at Gran Canaria Island fragmented at several places and ranges between 200 and 300 (eastern Atlantic), including (b) an aerial view of the semi-enclosed lagoon m offshore. At low tide, the bar is above the surface, providing (source: Google Earth). protection against swells. This semi-lagoon embayment has a maximum depth of 4 m; most of the study area is uniformly between 1 to 3 m depth. At high tide, however, the system is are carried out per week, always at low tide, during both day open to offshore waters. The study site is protected within the and night. Snorkeling guides collected data of occurring elas- framework of a ``Special Area of Conservation'' (code ES7010037, mobranchs on each tour, which typically took ca. 80–90 min, EU ``Natura 2000'' framework) (www.miteco.gob.es/es/costas/tem following the same routes (Fig. 1A). During this period, a total as/proteccion-medio-marino/biodiversidad-marina/espacios-mar of 671 tours (ca. 900 h of underwater observation) were carried inos-protegidos/red-natura-2000-ambito-marino/zec-es7010037. out. About 60% of this sampling effort was at daytime and 40% aspx). Commercial and recreational fishing is banned across the at nighttime. Seawater visibility typically ranged between 10 and entire beach. In addition, the beach holds the environmental qual- 25 m. Underwater torches were used at night. For each observa- ity certification UNE-EN ISO 14001 (AENOR). Seawater surface tion, the habitat around each elasmobranch was recorded. Three temperatures ranged between 18oC in winter (March–April) and habitat types were considered: sandy (interior of sandy bottoms 24.5oC in summer (September–October) through the study period located at least > 25 m from sandy–rocky transitions), mixed (Fig. 2A). (sandy–rocky transitions) and rocky bottoms (interior of rocky bottoms at > 25 m from sandy–rocky transitions) (Tuya et al., 2.2. Data compilation 2019). We also visually estimated the size of each elasmobranch (in intervals of 10 cm for adults and 5 cm for juveniles). Initially, Data on the presence of elasmobranchs (Fig. 3A) was pro- we validated length measurements by taking underwater pictures vided by tours (2–3 persons) carried out by the ecotourism en- with a marked (scale) of known length. For semi-rhomboidal terprise Snorkeling Experience (www.snorkelingexperience.com), rays: the common eagle ray, Myliobatis aquila (Linnaeus, 1758), from October 2015 to October 2018, including in all months the common stingray, Dasyatis pastinaca (Linnaeus, 1758), the through 3 successive years. Normally, 2 to 4 snorkeling tours spiny butterfly ray, Gymnura altavela (Linnaeus, 1758), and the F.
Recommended publications
  • Gymnuridae 575
    click for previous page Rajiformes: Gymnuridae 575 GYMNURIDAE Butterfly rays by J.D. McEachran, TexasA&MUniversity, USA and M.R. de Carvalho, American Museum of Natural History, New York, USA iagnostic characters:Medium to large-sized stingrays (maximum disc width over 2 m).Body strongly de- Dpressed, with head, trunk, and broadly expanded pectoral fins forming rhomboid disc. Disc at least 1.5 times broad as long. Tail very slender and short (shorter than disc), distinctly demarcated from disc.Pec- toral fins continuous along sides of head, not forming subrostral lobes or cephalic fins.Eyes and spira- cles on top of head. Some species have spiracular tentacles. Snout obtuse and angular. Nasal curtains are broadly expanded and continuous across narrow isthmus in front of mouth and are smooth-edged (with rare exceptions). Mouth is slightly arched and lacks papillae on floor. Jaws bear many small teeth in bands. Cau- dal fin always absent, dorsal fin absent in all Western Central Atlantic representatives. Pectoral fins extend distinctly posterior to origin of pelvic fins. Pelvic fins are moderately laterally expanded and not divided into anterior and posterior lobes. Some species have 1 or more long, serrated spines. Tail with longitudinal folds on upper and/or lower surfaces. Skin of upper side naked in most species, but with a variable num- ber of tubercles in large individuals of others. Colour: dorsal surface grey, light green, olive, purple, or dark brown, sometimes with a reddish cast, often marked with spots or lines; ventral surface white, sometimes with a bronze or rusty cast. disc at least 1.5 times broad as long smooth nasal curtain nostril tail slender and short mouth detail of mouth Habitat, biology, and fisheries: Butterfly rays are cosmopolitan in tropical and warm-temperate waters, usu- ally inhabiting sandy and muddy bottoms in shallow coastal waters, including estuaries and river mouths.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • By Species Items
    1 Fish, crustaceans, molluscs, etc Capture production by species items Mediterranean and Black Sea C-37 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Méditerranée et mer Noire (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Mediterráneo y Mar Negro English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 1998 1999 2000 2001 2002 2003 2004 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 495 335 336 108 47 7 10 Common carp Cyprinus carpio 11 3 1 - 2 3 4 4 Roach Rutilus rutilus 11 1 1 2 7 11 12 5 Roaches nei Rutilus spp 11 13 78 73 114 72 83 47 Sichel Pelecus cultratus 11 105 228 276 185 147 52 39 Cyprinids nei Cyprinidae 11 - - 167 159 95 141 226 European perch Perca fluviatilis 13 - - - 1 1 - - Percarina Percarina demidoffi 13 - - - - 18 15 202 Pike-perch Stizostedion lucioperca 13 3 031 2 568 2 956 3 504 3 293 2 097 1 043 Freshwater fishes nei Osteichthyes 13 - - - 17 - 249 - Danube sturgeon(=Osetr) Acipenser gueldenstaedtii 21 114 36 20 8 10 3 3 Sterlet sturgeon Acipenser ruthenus 21 - - 0 - - - - Starry sturgeon Acipenser stellatus 21 13 11 5 3 5 1 1 Beluga Huso huso 21 12 10 1 0 4 1 3 Sturgeons nei Acipenseridae 21 290 185 59 22 23 14 8 European eel Anguilla anguilla 22 917 682 464 602 642 648 522 Salmonoids nei Salmonoidei 23 26 - - 0 - - 7 Pontic shad Alosa pontica 24 153 48 15 21 112 68 115 Shads nei Alosa spp 24 2 742 2 640 2 095 2 929 3 984 2 831 3 645 Azov sea sprat Clupeonella cultriventris 24 3 496 10 862 12 006 27 777 27 239 17 743 14 538 Three-spined stickleback Gasterosteus aculeatus 25 - - - 8 4 6 1 European plaice Pleuronectes platessa 31 - 0 6 7 7 5 5 European flounder Platichthys flesus 31 69 62 56 29 29 11 43 Common sole Solea solea 31 5 047 4 179 5 169 4 972 5 548 6 273 5 619 Wedge sole Dicologlossa cuneata 31 ..
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Feeding Habits of Three Batoids in the Levantine Sea (North-Eastern Mediterranean Sea) Based on Stomach Content and Isotopic Data Emre Yemi‹S‚Ken1, Manuela G
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 8. # Marine Biological Association of the United Kingdom, 2017 doi:10.1017/S002531541700073X Feeding habits of three Batoids in the Levantine Sea (north-eastern Mediterranean Sea) based on stomach content and isotopic data emre yemi‹s‚ken1, manuela g. forero2, persefoni megalofonou3,lu¤tfi‹ye eryilmaz1 and joan navarro2 1Department of Biology, Section of Hydrobiology, Faculty of Science, Istanbul University, Turkey, 2Department of Conservation Biology, Estacio´n Biolo´gica de Don˜ana (EBD-CSIC), Avda. Ame´rico Vespucio s/n, Sevilla 41092, Spain, 3Department of Biology, Section of Zoology Marine Biology, National and Kapodıstrıan University of Athens, Greece Understanding the diet of marine predators is essential to defining their trophic role in an ecosystem. Elasmobranchs (sharks and batoids) are considered pivotal components of marine food webs, and are often included in the top predator or mesopre- dator groups. However, in comparison with other Mediterranean areas, research focusing on marine predators inhabiting the Levantine Sea (eastern Mediterranean Sea) is very limited. Here, we examined the feeding habits (diet, trophic width and trophic position) of three endangered batoids (Gymnura altavela (Linnaeus, 1758), Raja asterias Delaroche, 1809 and Raja clavata, Linnaeus, 1758) coexisting in Iskenderun Bay (north-eastern Levantine Sea, Mediterranean Basin) by combin- ing stomach content and stable isotope analyses. The results revealed clear differences in the trophic habits between them. Stomach contents showed differences in the diet between species, showing a clear feeding preference for teleosts in the case of G. altavela and a diet composed of fish and crustaceans in the case of R.
    [Show full text]
  • Press Release
    press release One of the World’s Rarest Rays Debuts at S.E.A. Aquarium S.E.A. Aquarium is the world’s first wildlife institution to feature the endangered ornate eagle ray Discover new fishy friends, catch Scuba Santa and Elves’ underwater adventures and join Guardians of the S.E.A.A. as part of Merry Fishmas festivities This December, have a Merry Fishmas at S.E.A. Aquarium and discover five new fishy residents, including the endangered ornate eagle ray (left) – the first of its kind to be featured in a wildlife institution. In addition to the new residents, crowd favourites such as Scuba Santa (right) and Elves will make a comeback with their cheeky underwater antics as they dive amongst sharks, manta rays and hundreds of schooling fish to provide treats for the animals. PHOTO CREDITS: RESORTS WORLD SENTOSA. SINGAPORE, 23 November 2017 – This holiday season, one of the world’s rarest rays – the ornate eagle ray – will make its debut at S.E.A. Aquarium in Resorts World Sentosa. The endangered species is the first of its kind to be featured in zoos and aquariums worldwide, and guests can look forward to learning more about this strikingly beautiful but elusive animal at S.E.A. Aquarium’s annual Merry Fishmas celebrations. From 1 December 2017 to 1 January 2018, S.E.A. Aquarium transforms into a water wonderland with sparkling displays, interactive activities, Scuba Santa and Elves’ underwater adventures and more. In addition to the educational and fun festivities for the whole family, guests can embark on a trail to spot five of the aquarium’s latest additions: the ornate eagle ray, Argentine humphead, Mauritius triggerfish, honeycomb cowfish and bat ray.
    [Show full text]
  • SSD Fish Monitoring Briefing 2013
    The Stingray Shore: The common stingray in the UK and why the New Forest shore is a stronghold. Dr. Georgina Samoluk (on behalf of Dom Longley) January 2020 Common stingray: Dasyatis pastinaca IUCN status: “Data deficient” Declared “Near threatened” in certain areas of the Mediterranean & NE Atlantic. May have disappeared from the Bay of Biscay Several protected sites in the Balearics Difficult species to study – no formal UK research. Range: Anatomy: dorsal Spiracles (breathing inlets) Stingers (usually 2) “Claspers”: male sex organs Pectoral fin / “wing” (thick & muscular compared with other rays) Anatomy: ventral Mouth: teeth form two rough, crushing pads, consisting of modified scales Nostrils Breathing: the primary route for Gill slits water intake is the mouth – the spiracles are less efficient & are used when the ray is at rest on the seabed or is buried with only eyes & spiracles protruding. Skeleton: As an Elasmobranch (sharks, skates, rays & sawfishes) the common stingray has an entirely cartilaginous skeleton. With no swim bladder, buoyancy is aided by the large, oily liver General ecology: Diet: • Crabs, worms, molluscs, fish, cephalopods, carrion Breeding: • Migrate into warm, shallow coastal waters in late spring • Aplacental viviparous: embryos develop inside eggs that remain in the mother's body until they are ready • Two litters of 4-9 “pups” each summer, in warm, shallow coastal waters “The Stingray Shore”: Lymington to Lepe – why such a special habitat? • Shallow • Warm • Sheltered • Food-rich • Relatively unmodified • Relatively undisturbed • Sowley & Park shores fishing hotspots Stingray food Food heaven: …peeler, or “softback” crab (moulting shore crab) Tabloid nonsense: Earliest known depiction of a stingray in Europe; 1553 (they’re common in aboriginal art) Were they known to the medieval inhabitants of the New Forest? Old English name is “Fire Flaire” • Sting is defensive only – muscular tail operates like a scorpion tail, curling over to protect vulnerable back.
    [Show full text]
  • Batoid Abundances, Spatial Distribution, and Life History Traits
    animals Article Batoid Abundances, Spatial Distribution, and Life History Traits in the Strait of Sicily (Central Mediterranean Sea): Bridging a Knowledge Gap through Three Decades of Survey Michele Luca Geraci 1,2 , Sergio Ragonese 2,*, Danilo Scannella 2, Fabio Falsone 2, Vita Gancitano 2 , Jurgen Mifsud 3, Miriam Gambin 3, Alicia Said 3 and Sergio Vitale 2 1 Geological and Environmental Sciences (BiGeA)–Marine Biology and Fisheries Laboratory, Department of Biological, University of Bologna, Viale Adriatico 1/n, 61032 Fano, PU, Italy; [email protected] 2 Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council–CNR, Via Luigi Vaccara, 61, 91026 Mazara del Vallo, TP, Italy; [email protected] (D.S.); [email protected] (F.F.); [email protected] (V.G.); [email protected] (S.V.) 3 Department of Fisheries and Aquaculture, Ministry for Agriculture, Fisheries and Animal Rights (MAFA), Ghammieri Government Farm, Triq l-Ingiered, Malta; [email protected] (J.M.); [email protected] (M.G.); [email protected] (A.S.) * Correspondence: [email protected] Simple Summary: Batoid species are cartilaginous fish commonly known as rays, but they also Citation: Geraci, M.L.; Ragonese, S.; include stingrays, electric rays, guitarfish, skates, and sawfish. These species are very sensitive Scannella, D.; Falsone, F.; Gancitano, to fishing, mainly because of their slow growth rate and late maturity; therefore, they need to be V.; Mifsud, J.; Gambin, M.; Said, A.; adequately managed. Regrettably, information on life history traits (e.g., length at first maturity, Vitale, S. Batoid Abundances, Spatial sex ratio, and growth) and abundance are still scarce, particularly in the Mediterranean Sea.
    [Show full text]
  • Review of Migratory Chondrichthyan Fishes
    Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 14 TH MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 14-17 March 2007 CMS/ScC14/Doc.14 Agenda item 4 and 6 REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES (Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat and Defra (UK)) For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES IUCN Species Survival Commission’s Shark Specialist Group March 2007 Taxonomic Review Migratory Chondrichthyan Fishes Contents Acknowledgements.........................................................................................................................iii 1 Introduction ............................................................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Objectives......................................................................................................................... 1 2 Methods, definitions and datasets ............................................................................................. 2 2.1 Methodology....................................................................................................................
    [Show full text]
  • Report on the Status of Mediterranean Chondrichthyan Species
    United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre For Specially Protected Areas REPORT ON THE STATUS OF MEDITERRANEAN CHONDRICHTHYAN SPECIES D. CEBRIAN © L. MASTRAGOSTINO © R. DUPUY DE LA GRANDRIVE © Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2007 United Nations Environment Programme Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 –1080 Tunis CEDEX E-mail : [email protected] Citation: UNEP-MAP RAC/SPA, 2007. Report on the status of Mediterranean chondrichthyan species. By Melendez, M.J. & D. Macias, IEO. Ed. RAC/SPA, Tunis. 241pp The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by : Mª José Melendez (Degree in Marine Sciences) & A. David Macías (PhD. in Biological Sciences). IEO. (Instituto Español de Oceanografía). Sede Central Spanish Ministry of Education and Science Avda. de Brasil, 31 Madrid Spain [email protected] 2 INDEX 1. INTRODUCTION 3 2. CONSERVATION AND PROTECTION 3 3. HUMAN IMPACTS ON SHARKS 8 3.1 Over-fishing 8 3.2 Shark Finning 8 3.3 By-catch 8 3.4 Pollution 8 3.5 Habitat Loss and Degradation 9 4. CONSERVATION PRIORITIES FOR MEDITERRANEAN SHARKS 9 REFERENCES 10 ANNEX I. LIST OF CHONDRICHTHYAN OF THE MEDITERRANEAN SEA 11 1 1.
    [Show full text]