Philip Lenard Alias Lenard Fulop
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Einstein and Physics Hundred Years Ago∗
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 1 EINSTEIN AND PHYSICS HUNDRED YEARS AGO∗ Andrzej K. Wróblewski Physics Department, Warsaw University Hoża 69, 00-681 Warszawa, Poland [email protected] (Received November 15, 2005) In 1905 Albert Einstein published four papers which revolutionized physics. Einstein’s ideas concerning energy quanta and electrodynamics of moving bodies were received with scepticism which only very slowly went away in spite of their solid experimental confirmation. PACS numbers: 01.65.+g 1. Physics around 1900 At the turn of the XX century most scientists regarded physics as an almost completed science which was able to explain all known physical phe- nomena. It appeared to be a magnificent structure supported by the three mighty pillars: Newton’s mechanics, Maxwell’s electrodynamics, and ther- modynamics. For the celebrated French chemist Marcellin Berthelot there were no major unsolved problems left in science and the world was without mystery. Le monde est aujourd’hui sans mystère— he confidently wrote in 1885 [1]. Albert A. Michelson was of the opinion that “The more important fundamen- tal laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote . Our future dis- coveries must be looked for in the sixth place of decimals” [2]. Physics was not only effective but also perfect and beautiful. Henri Poincaré maintained that “The theory of light based on the works of Fresnel and his successors is the most perfect of all the theories of physics” [3]. -
EINSTEIN and NAZI PHYSICS When Science Meets Ideology and Prejudice
MONOGRAPH Mètode Science Studies Journal, 10 (2020): 147-155. University of Valencia. DOI: 10.7203/metode.10.13472 ISSN: 2174-3487. eISSN: 2174-9221. Submitted: 29/11/2018. Approved: 23/05/2019. EINSTEIN AND NAZI PHYSICS When science meets ideology and prejudice PHILIP BALL In the 1920s and 30s, in a Germany with widespread and growing anti-Semitism, and later with the rise of Nazism, Albert Einstein’s physics faced hostility and was attacked on racial grounds. That assault was orchestrated by two Nobel laureates in physics, who asserted that stereotypical racial features are exhibited in scientific thinking. Their actions show how ideology can infect and inflect science. Reviewing this episode in the current context remains an instructive and cautionary tale. Keywords: Albert Einstein, Nazism, anti-Semitism, science and ideology. It was German society, Einstein said, that revealed from epidemiology and research into disease (the to him his Jewishness. «This discovery was brought connection of smoking to cancer, and of HIV to home to me by non-Jews rather than Jews», he wrote AIDS) to climate change, this idea perhaps should in 1929 (cited in Folsing, 1998, p. 488). come as no surprise. But it is for that very reason that Shortly after the boycott of Jewish businesses at the the hostility Einstein’s physics sometimes encountered start of April 1933, the German Students Association, in Germany in the 1920s and 30s remains an emboldened by Hitler’s rise to total power, declared instructive and cautionary tale. that literature should be cleansed of the «un-German spirit». The result, on 10 May, was a ritualistic ■ AGAINST RELATIVITY burning of tens of thousands of books «marred» by Jewish intellectualism. -
Particle Detectors Lecture Notes
Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2! -
The Collaboration of Mileva Marić and Albert Einstein
Asian Journal of Physics Vol 24, No 4 (2015) March The collaboration of Mileva Marić and Albert Einstein Estelle Asmodelle University of Central Lancashire School of Computing, Engineering and Physical Sciences, Preston, Lancashire, UK PR1 2HE. e-mail: [email protected]; Phone: +61 418 676 586. _____________________________________________________________________________________ This is a contemporary review of the involvement of Mileva Marić, Albert Einstein’s first wife, in his theoretical work between the period of 1900 to 1905. Separate biographies are outlined for both Mileva and Einstein, prior to their attendance at the Swiss Federal Polytechnic in Zürich in 1896. Then, a combined journal is described, detailing significant events. In additional to a biographical sketch, comments by various authors are compared and contrasted concerning two narratives: firstly, the sequence of events that happened and the couple’s relationship at particular times. Secondly, the contents of letters from both Einstein and Mileva. Some interpretations of the usage of pronouns in those letters during 1899 and 1905 are re-examined, and a different hypothesis regarding the usage of those pronouns is introduced. Various papers are examined and the content of each subsequent paper is compared to the work that Mileva was performing. With a different take, this treatment further suggests that the couple continued to work together much longer than other authors have indicated. We also evaluate critics and supporters of the hypothesis that Mileva was involved in Einstein’s work, and refocus this within a historical context, in terms of women in science in the late 19th century. Finally, the definition of, collaboration (co-authorship, specifically) is outlined. -
Models of the Atom
David Sang Models of the atom Today we are very familiar with the picture of the atom as a particle with a tiny nucleus at its centre and a cloud of electrons orbiting around the nucleus. But where did this model come from? What were scientists trying to explain using their models of the atom? To find out, we have to go back to the early years of the twentieth century. A model of the atom. But does the nucleus glow like this? No. And are electrons blue? No. Discovering radioactivity and the electron By the 1890s, most physicists were convinced that matter was made up of atoms. The idea of vast In this photo, an electron beam is bent along a circular path by a magnetic field. numbers of tiny, moving particles could explain The beam is produced at the bottom in an ‘electron gun’ and follows a clockwise many things, including the behaviour of gases and path inside the evacuated tube. A small amount of gas has been left in the tube; the differences between the chemical elements. this glows to show up the path of the beam. Then, in 1896, Henri Becquerel discovered radioactivity. He was investigating uranium salts, The importance of these two discoveries was that many of which glow in the dark. To his surprise, he they suggested that atoms were not indestructible. Key words Atoms are tiny but they are made of still smaller found that all the uranium-containing substances model that he tested produced invisible radiation that particles. could blacken photographic paper. -
Absolute Zero, Absolute Temperature. Absolute Zero Is the Lowest
Contents Radioactivity: The First Puzzles................................................ 1 The “Uranic Rays” of Henri Becquerel .......................................... 1 The Discovery ............................................................... 2 Is It Really Phosphorescence? .............................................. 4 What Is the Nature of the Radiation?....................................... 5 A Limited Impact on Scientists and the Public ............................ 6 Why 1896? .................................................................. 7 Was Radioactivity Discovered by Chance? ................................ 7 Polonium and Radium............................................................. 9 Marya Skłodowska .......................................................... 9 Pierre Curie .................................................................. 10 Polonium and Radium: Pierre and Marie Curie Invent Radiochemistry.. 11 Enigmas...................................................................... 14 Emanation from Thorium ......................................................... 17 Ernest Rutherford ........................................................... 17 Rutherford Studies Radioactivity: ˛-and ˇ-Rays.......................... 18 ˇ-Rays Are Electrons ....................................................... 19 Rutherford in Montreal: The Radiation of Thorium, the Exponential Decrease........................................... 19 “Induced” and “Excited” Radioactivity .................................... 20 Elster -
The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number. -
Philipp Lenard and Johannes Stark Fathi Habashi
Laval University From the SelectedWorks of Fathi Habashi 2012 The asC e of Nobelists: Philipp Lenard and Johannes Stark Fathi Habashi Available at: https://works.bepress.com/fathi_habashi/491/ '18-79 78 Chen. Educator2012,17, The Caseof NobelistsPhilipp Lenard and JohannesStark Fathi Habashi Laval Univers ity, QuebecC ity, Canada, FahL Hab(tshi@prul. ulwal.ca ReceiverlApril 27,20I2. AcceptedMay I6,20l2. Abstract A Nobel laureatehas become a symbolofexcellence, a g€niusthat deserves respect and honour from the royalties,scholars, and laymen,While this is absolutelytrue yet few laureatesdid not standto this standard. This may be strang€but this happenedin turbulenttimes in Germanywhen the Nazi ideologyprevailed. philipp Lenardand JohannesStark two distinguishedCerman scientists were an€sted at the end of World War II and tried for misconduct, lntroduclion completelyevacuated. He wasable to convenientlydetect the rays and measuretheir intensityby meansof papersheets Two Nob€l Prize winnersw€re conffov€rsial figures in the coatedwith phosphorescentmaterials. 1930sand 40s.Philipp EduardAnton von Lenard(Figure l), He confirmedsome of J. J. Thomson'swork, which winnerof the Nobel Prizefor Physicsin 1905for his research ultimatelyarrived at the understandingthat cathoderays were on cathoderays, and JohannesStark (Figure2) Nobel Prize streamsof energeticelectrons. In conjunctionwith his and laureatein l9l9 fbr his discoveryof the DopplerEfl'ect in other earlier experimentson the absorptionof the rays in canalrays and the splittingof spectrallines -
Biographies in the History of Physics: Actors, Institutions, and Objects The
Biographies in the History of Physics: Actors, Institutions, and Objects May 22nd to May 25, 2018 Physikzentrum, Bad Honnef, Germany Organization: German Physical Society, Division for the History of Physics PD Dr. habil. Christian Forstner Goethe-Universität Frankfurt am Main SFB 1095„Schwächediskurse und Ressourcenregime“ Gräfstraße 78 | 60486 Frankfurt | Postfach 104 Tel: +49 (0) 171 18 262 13 [email protected] Prof. Dr. Dieter Hoffmann MPI für Wissenschaftsgeschichte Boltmannstr. 22 14195 Berlin [email protected] Prof. Dr. Mark Walker Department of History, Union College 807 Union Street Schenectady, NY,12308 USA [email protected] The workshop is funded by the Wilhelm and Else Heraeus- Foundation and the German Physical Society Program TUESDAY MAY 22 15:00-15:30 Christian Forstner, Welcome Dieter Hoffmann, Mark Walker 15:30-16:15 Thomas Söderqvist Autobiography as history, curriculum vitae, or ars moriendi? 16:15-16:45 Coffee Break 16:45-17:30 Joanna Behrmann Bridging Personal and Professional: Margaret Maltby’s Life in Early Twentieth Century Physics 17:30-18:15 Julia Bloemer The Monastic Natural Philosopher – An Eighteenth Century Scientific Persona 18:15-19:00 Richard Staley Comment WEDNESDAY MAY 23 8:30-9:15 Michael Eckert Ludwig Prandtl: Pioneer of Fluid Mechanics and Science Manager 9:15-10:00 Vanessa Osganian Rudolf Tomaschek: An exponent of the ‘Deutsche Physik’ movement 10:00-10:30 Coffee Break 10:30-11:15 Amelia Bonea Microphotography as Transnational Scientific Method: Ruchi Ram Sahni’s Radioactivity Research -
Nobel Prize Awards in Radiochemistry
Radiochim. Acta 100, 509–521 (2012) / DOI 10.1524/ract.2012.1953 © by Oldenbourg Wissenschaftsverlag, München Nobel Prize awards in Radiochemistry By J.-P. Adloff∗ University of Strasbourg, 63 Rue Saint Urbain, 67100 Strasbourg, France Dedicated to the memory of late Karl H. Lieser, Gerhard L. Stöcklin and Alfred P. Wolf with whom the author shared the editorial work of Radiochimica Acta from 1977 to 1995 (Received October 10, 2011; accepted in revised form January 19, 2012) (Published online March 26, 2012) Nobel Prize / Chemistry / Physics Summary. In 1996 the Editors of Radiochimica Acta brought out a special volume of the journal to celebrate the hundredth anniversary of the discovery of radioactivity [1]. On the occasion of the 50th anniversary of Radiochimica Acta, which follows closely upon the centenary of Marie Curie’s second Nobel Prize in 1911, the author has the privilege to informally review “Radiochemistry and Nobel Prize Awards”, including discoveries of radioelements and new fields in chemistry based on radiochemical methods. 1. The beginning The Nobel Prizes in Physics and Chemistry were estab- lished in 1901, six years after the discovery of radioactivity and three years after the discoveries of the elements polo- Fig. 1. Antoine Henri Becquerel (1852–1908). nium and radium. They are awarded by Kungliga Veten- skapakademien (the Royal Swedish Academy of Sciences) on the basis of proposals made by respective Committees rays when he thought the subject was exhausted. By the end on Physics and Chemistry, which receive recommendations of 1897 radioactivity was something of a dead horse: it was from Swedish and foreign scientists [2]. -
Max Planck in the Social Context
Notice to the reader. This is the provisional Version of a text to be included into a volume on the epistemology of some physieists, edited by John Blackmore. In the text actually submitted, the present author argues with some of his coauthors, Their names have been left out here as their contributions may not be available to the readers of the present text. Second edition. MAX PLANCK IN THE SOCIAL CONTEXT E. Broda Institute of Physical Chemistry Vienna University English Summary on Next Page Zusammenfassung Planck war der Begründer der Quantentheorie und daher der modernen Physik. Außerdem hatte er sowohl durch die Kraft seines Charakters als auch durch seine überragenden Funktionen im wissenschaftlichen Leben starken öffentlichen Einfluß. In bezug auf die Stellung zur Atomistik ging Planck, als er sein Strahlungsgesetz begründete und die Quantisierung einführte, von Mach zu Boltzmann über. Einstein war zeit seines Lebens ein Verfechter der Atomistik, während Mach bis zum Ende ein Gegner blieb. Planck war von Anfang an ein Förderer der Relativitätstheorie und Einsteins. In der Weimarer Republik trat er für Einstein gegen die soge nannte "Deutsche Physik" ein. Er hatte sogar den Mut, Einstein noch unter dem Naziregime in Ansprachen zu würdigen. Stets philosophisch interessiert, stand Planck zuerst im Banne des Positivismus von Mach, doch wandte er sich später ähnlich wie Einstein dem Realismus zu. Boltzmann war schon immer Realist und Materialist ge wesen. Man verdankt Planck auch wichtige Überlegungen zum Problem der Willensfreiheit. In der Politik war Planck vor dem ersten Weltkrieg ein konventio neller, konservativer preußisch-deutscher Patriot. Nach der Machtergrei fung Hitlers ging er jedoch auf Distanz zum Staat. -
The Photoelectric Effect
The Photoelectric Effect MIT Department of Physics (Dated: September 14, 2018) The objective of this experiment is to demonstrate the quantization of energy in electromagnetic waves and to determine Planck's constant h. You will measure the maximum kinetic energy of electrons ejected by the photoelectric effect from an alkali metal surface as a function of frequency. A constant offset in energy is caused by the work function φ of the metal cathode, i.e. the minimum energy needed to eject an electron out of the specific metal. PREPARATORY QUESTIONS to the point where the Einstein photoelectric equation could be tested to high accuracy and used in precise de- −34 Please visit the Photoelectric chapter on the 8.13x web- terminations of Planck's constant h = 6:626 × 10 J·s −15 site at mitx.mit.edu to review the background material = 4:135 × 10 eV·s. for this experiment. Answer all questions found in the In this experiment you will measure the photoelectric chapter. Work out the solutions in your laboratory note- current from an alkali metal surface as a function of a re- book; submit your answers on the web site. tarding potential that opposes the escape of the electrons from the surface. From the data you will be able to de- rive the value of Plank's constant and the work function I. HISTORICAL BACKGROUND φ of the cathode material. A very accessible introduction to this material is in the American Institute of Physics's A Look Inside the II. EXPERIMENTAL SETUP Atom. In 1887 [1], soon after discovering radio waves, Heinrich Hertz observed that when ultraviolet light from The apparatus is depicted in Figure1.