ESA Bulletin No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiation Exposure and Mission Strategies for Interplanetary Manned Mission
Radiation Exposure and Mission Strategies for Interplanetary Manned Mission Radiation Hazard and Space Weather Warning System WP 5000 Final Version: 14 December 2004 Compiled by Claire Foullon1, Andrew Holmes-Siedle2, Norma Bock Crosby1, Daniel Heynderickx1 1 Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire 1180 Brussels, Belgium 2 REM OXFORD Ltd. 64A Acre End St. Eynsham, Oxford OX29 4PD, England INTRODUCTION Radiation protection is a prime issue for space station operations, for extended missions to planets in our solar system (e.g. Mars), or for a return visit to the Moon. The radiation environment encountered by solar system missions mainly consists of the following components: 1. Trapped radiation in the Earth’s Van Allen Belts and in the magnetosphere of Jupiter 2. Galactic Cosmic Ray (GCR) background radiation 3. Solar Energetic Particle Events – Solar Proton Events (SPEs) Along with the continuous GCR background, SPEs constitute the main hazard for interplanetary missions. Up to now, prediction of SPE events is not possible. Future interplanetary manned missions will need to consider solar activity (e.g. solar flares, coronal mass ejections, …) very carefully due to the obvious detrimental effects of radiation on humans. Very high doses during the transit phase of a mission can result in radiation sickness or even death. This is equally true for extended visits to surfaces of other planets (for example to Mars) and moons lacking a strong magnetic field capable of deflecting solar particles. The risk of developing cancer several years after a mission is somewhat more difficult to quantify, but must also be considered in mission planning. -
Thales Alenia Space Experience on Plasma Propulsion
Thales Alenia Space Experience on Plasma Propulsion IEPC-2007-301 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Michel LYSZYK* and Laurent LECARDONNEL.† Thales Alenia Space, Cannes, 06150, France Abstract: Thales Alenia Space experience on plasma propulsion has been developed in the frame of Stentor, Astra 1K and GEI programs with plasma propulsion systems using SPT100 thrusters manufactured by Fakel and commercialized by Snecma . The PPS (plasma propulsion system) use in house equipments such as Power Processing Unit (PPU) manufactured by TAS-ETCA in Charleroi and the Thruster Orientation Mechanism (TOM) manufactured by TAS-France in Cannes . The PPS subsystem is used on board our SpaceBus satellite family to perform North-South station keeping. The on going activity on the XPS (Xenon Propulsion System) is devoted to the next European platform Alphabus currently under joint development by Thales Alenia Space and Astrium with CNES and ESA support. The XPS uses also the PPU manufactured by TAS-ETCA , the TOM manufactured by TAS-France and the Xe tank developed by TAS-Italy ; it use also the PPS1350 thruster under qualification by Snecma , a xenon regulator and a latch valve under development at Marotta Ireland. I. Introduction HIS document describes the Thales Alenia Space experience gained through Stentor , Astra 1K , GEI, T Spacebus and Alphabus programs on plasma Hall effect thrusters propulsion subsystems . For Spacebus application a description of the subsystem is given together with the general achieved performances . For Alphabus application a general status of the on going activities is given . * Head of electric propulsion section, Propulsion Department, [email protected]. -
Trade Studies Towards an Australian Indigenous Space Launch System
TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system. -
18Th EANA Conference European Astrobiology Network Association
18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures. -
EUTELSAT S.A. € 500,000,000 1.125 PER CENT BONDS DUE 23 June 2021 ISSUE PRICE: 99.894 PER CENT
EUTELSAT S.A. € 500,000,000 1.125 PER CENT BONDS DUE 23 June 2021 ISSUE PRICE: 99.894 PER CENT The €500,000,000 aggregate principal amount 1.125 per cent. bonds due 23 June 2021 (the Bonds, and each a Bond) of Eutelsat S.A. (the Issuer) will be issued outside the Republic of France on 23 June 2016 (the Bond Issue). Each Bond will bear interest on its principal amount at a fixed rate of 1.125 per c ent. per annum from (and including) 23 June 2016 (the Issue Date) to (but excluding) 23 June 2021, payable in Euro annually in arrears on 23 June of each year and commencing on 23 June 2017, as further described in "Terms and Conditions of the Bonds – Interest". Unless previously redeemed or purchased and cancelled in accordance with their terms and conditions, the Bonds will be redeemed at their principal amount on 23 June 2021 (the Maturity Date). The Issuer may, at its option, and in certain circumstances shall, redeem all (but not part) of the Bonds at par plus any accrued and unpaid interest upon the occurrence of certain tax changes as further described in "Terms and Conditions of the Bonds – Redemption and Purchase – Redemption for tax reasons". The Bonds may also be redeemed (i) at the option of the Issuer, in whole or in part, at any time, prior to the Maturity Date, as further described in "Terms and Conditions of the Bonds — Redemption and Purchase — Make Whole Redemption by the Issuer", (ii) at any time prior to the Maturity Date, in whole (but not in part), at par plus accrued interest, if 80 per cent. -
6 FOTON RETRIEVABLE CAPSULES This Section Is Aimed at Providing New and Experienced Users with Basic Utilisation Information Regarding Foton Retrievable Capsules
6 FOTON RETRIEVABLE CAPSULES This section is aimed at providing new and experienced users with basic utilisation information regarding Foton retrievable capsules. It begins with an introduction to the Foton capsule. 6.1 Introduction to Foton Capsules 6.1.1 What Are Foton Capsules? Foton capsules (Figure 6-1 and Figure 6-2) are unmanned, retrievable capsules, derived from the design of the 1960’s Soviet Vostok manned spacecraft and the Zenit military reconnaissance satellite. These capsules are very similar to the Bion and Resurs-F satellites introduced by the Soviets in the 1970’s, for biological research and Earth natural resources investigation, respectively. The first Foton capsule was launched in 1985 as Cosmos 1645 and only with the fourth launch in 1988 was the spacecraft officially designated Foton (Foton-4). These capsules are launched into near-circular, low-earth orbits by a Soyuz-U rocket, providing researchers with gravity levels less than 10 -5 g, for missions lasting approximately 2 weeks. The earlier Foton missions were conceived primarily for materials science research, but later missions also began to include experiments in the fields of fluid physics, biology and radiation dosimetry. ESA’s participation in the Foton programme began in 1991 with a protein crystallisation experiment on-board Foton-7, followed by a further 35 experiments up to and including the Foton- 12 mission in 1999. In 2002, ESA provided a large number of experiments for the Foton-M1 mission (the first flight of an upgraded version of the Foton spacecraft). This mission ended in disaster when the Soyuz launcher rocket exploded shortly after lift-off due to a malfunction in one of its engines. -
The Space Exposure Platforms BIOPAN and EXPOSE to Study
The space exposure platforms BIOPAN and EXPOSE to study living organisms in space Wolfgang Schulte (1), Pietro Baglioni (2), René Demets (2), Ralf von Heise-Rotenburg (1), Petra Rettberg (3) (1) Kayser-Threde GmbH, Wolfratshauser Str. 48, 81379 Munich, Germany, [email protected], Phone: +49-89-72495-225, Fax: +49-89-72495-215; [email protected], Phone: +49-89-72495-341, Fax: +49-89-72495-215 (2) European Space Agency ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands, [email protected], Phone + 31-71-565-3856, Fax +31-71-565-3141; [email protected], Phone +31-71-565-5081, Fax +31-71-565-3141 (3) German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Linder Höhe, 51147 Köln, Germany, [email protected], Phone +49-2203-601-4637, Fax +49-2203-61970 BIOPAN and EXPOSE are two European space exposure platforms, developed for the European Space Agency by Kayser-Threde GmbH, Munich/Germany to offer flight opportunities to the science community of exo/astrobiology research in low earth orbit. Both platforms are conceived for the research on the behaviour of living organisms in the environment of space and on simulated conditions of other planets (Mars). The conditions for a possible transfer of life between planets can be studied. Both facilities can also be used for materials and components validation and as test bed for advanced technologies envisaged for future exploration missions (radio-protection, miniaturized devices, electronic components). Since 1992 BIOPAN has flown five times aboard the Russian FOTON re-entry cap- sule. -
20030106126.Pdf
INSPACE PROPULSION--WHERE WE STAND AND WHAT'S NEXT Robert L. Sackheim Assistant Director and Chief Engineer for Propulsion NASA Marshall Space Flight Center, Marshall Space Flight Center, Alabama USA GBSTRGCT launch vehicles, many spacecraft suppliers, such as Baeing (formerly Hughes), Loral, and Northrop- The focus of this paper will be on the three stages Grumman (formerly TRW), have developed integral of in-space transportation propulsion systems, now propulsion systems (IPSs) on board their spacecraft commonly referred to as in-space propulsion (ISP); to perform many of the more conventional orbit i.e., the transfer of payloads from low-Earth orbits transfer functions. Some examples include the into higher orbits or into trajectories for planetary Hughes 601 and 702 commercial series of satellite encounters, including planetary landers and sample buses and the Northrop-Grumman IPS for the return launchers, if required. Functions required recent Chandra final orbit insertion functions. There at the operational location where ISP must provide have only been three complete upper stages devel- thrust for orbit include maintenance, position oped over the last 30 years: (1) The basic Centaur control, stationkeeping, and spacecraft altitude con- and all the associated upgrades, (2) the advanced trol; i.e., proper pointing and dynamic stability in Centaurs for the Delta 3 and 4 and the Atlas 3 and 5, inertial space; and the third function set to enable and (3) the inertial upper stage which is the only operations at various planetary locations, such upper stage that is currently certified for launch as atmospheric entry and capture, descent to the in a shuttle. -
Here the Italian Space Agency ASI Holds 30% of the Shares and the Rest Is the Property of Avio Spa
Goliat the first Romanian satellite is approaching the launch date- less than 6 months since Romania will have its first space mission At a recent press conference, Jean-Yves Le Gall the director of ArianeSpace, shared with the public the plans of the company for 2011. Like for the last year we will have a busy schedule with not less than 12 launches (double than for 2010). As before the central point will be the veteran Ariane 5 rocket, but part of the new managerial strategy, ArianeSpace will look also for the segment of medium and small launchers meeting the demands of the worldwide customers. It is hoped that some part of the operations will be transferred gradually to these niches and thus to be over passed the record set last year when approximately 60% of the world GEO telecom satellites have been launched by ArianeSpace. The perspectives are very good with another 12 additional GEO transfer contracts being signed in 2010 (about 63% from the international commercial market). The technical procedures which make sure these flights are accomplished are also at the highest standards (proved by the last 3 launches of 2010 separated by one month each i.e. October, November and December) and the Ariane 5 rocket, because of the proven reliability has became today the preferred of the commercial launches (since December 2002 when the version ECA has been put into operation and when the inaugural flight ended by loosing the 2 satellite transported onboard-Stentor and Hot Bird 7- the rocket has an impressive record of 36 successful flights). -
THIRD LAUNCH for DIRECTV Flight
Flight 146 THIRD LAUNCH FOR DIRECTV Arianespace’s Flight 146 will orbit the DIRECTV-4S satellite for American company DIRECTV, Inc. This will be the third Ariane launch for the direct broadcast satellite company, following DIRECTV-1 in December 1993 (Flight 62) and DIRECTV-3 in June 1995 (Flight 74). DIRECTV-4S features multi-beam coverage, giving DIRECTV a solution tailored to local TV broadcast needs and offering viewers throughout the United States a broad choice of programming. Its payload was designed to support carriage of additional local TV channels for DIRECTV cus- tomers. DIRECTV-4S gives American viewers a wide range of broadcast services, while heralding tomorrow’s multi-beam multimedia satellites. Built by Boeing Satellite Systems in El Segundo, California, DIRECTV-4S will be positioned at 101 degrees West. It is equipped with 38 high- power Ku-band transponders to provide direct-to-home delivery of local channel programming using digital compression techniques and 10 transponders for national service coverage. Arianespace’s eighth launch of the year will use an Ariane 44LP, the ver- sion fitted with two solid-propellant and two liquid-propellant strap-on boosters. 1 - ARIANESPACE Flight 146 mission. 2 - Range operations : ARIANE 44LP – DIRECTV - 4S. 3 - Countdown and Flight events. 4 - Flight 146 trajectory. 5 - The ARIANE 44LP launch vehicle. 6 - The DIRECTV - 4S satellite. Annexes 1 - Flight 146 key personnel. 2 - Launch environment conditions. 3 - Synchronized sequence. 4 - ARIANESPACE orderbook. 5 - ARIANESPACE, ESA and CNES. For more information, visit us at www.arianespace.com Arianespace - Flight 146 | 1 Flight 146 1 - Arianespace Flight 146 mission The 145th Ariane launch (Flight 146) is scheduled to place the DIRECTV - 4S satellite into a geostationary transfer orbit using an ARIANE 44LP launch vehicle equipped with two solid strap-on boosters (PAP) and two liquid strap-on boosters (PAL). -
Commercial Spacecraft Mission Model Update
Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................ -
<> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A