104 Wikipedia Compilation Draft 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Textile Industry Needs Christopher D
The Journal of Cotton Science 21:210–219 (2017) 210 http://journal.cotton.org, © The Cotton Foundation 2017 ENGINEERING & GINNING Textile Industry Needs Christopher D. Delhom, Vikki B. Martin, and Martin K. Schreiner ABSTRACT lthough the immediate customer of the gin is Athe cotton producer, the end user of the ginned The immediate customers of cotton gins are lint is the textile mill, retailers, and eventually the the producers; however, the ultimate customers consumer. Thus, it is essential for the ginner to are textile mills and consumers. The ginner has satisfy both the producers and the textile industry. the challenging task to satisfy both producers and Consequently, the ginner needs to be aware of the the textile industry. Classing and grading systems needs of the textile industry. are intended to assign an economic value to the The intent of the cotton classing and grading bales that relates to textile mill demands and the system is to assign an economic value to the bale that quality of the end product. International textile documents its properties as it relates to the quality of mills currently are the primary consumers of U.S. the end product. Since the last edition of the Cotton cotton lint where it must compete against foreign Ginners Handbook in 1994, the customers of U.S. origins. International textile mills manufacture cotton have changed radically, shifting from primar- primarily ring-spun yarns, whereas domestic mills ily domestic to international mills. International mills manufacture predominantly rotor spun yarns. Pro- have been accustomed primarily to hand-harvested ducers and ginners must produce cottons to satisfy cotton that has been processed at slow ginning all segments of the industry, i.e., domestic and in- rates. -
An Approach to Super High-Speed Ring Spinning Frame
An Approach to Super High-speed Ring Spinning Frame By Keishi Fujisawa, Member, TMSJ Nihon Spindle Mfg. Ca., Ltd., Amagasaki, Hyogo Prefecture Basedon the Journalof the TextileMachinery Society of Japan,Proceedings, Vol. 23, No. 11, P773-781(1970) Abstract This articlesummarizes our studymade to obtaina superhigh-speed of 20,000rpm in spindle revolutionsof a ring frame,by improvingthe mechanismsof rotation parts such as spindle and ring, and by developingan advancedspeed controllerand speed regulator. Our study for speedingup the spindlerevolutions up to 20,000rpm is as follows: 1) We havesucceeded in developinga newspindle for ringframe, whichcan attain a speed of 20,000rpm, puttingthe spindlevibration underrestrain of the same level as in the con- ventionaloperation at 15 000 rpm. 2) All the bottlenecksof the ringsand travellersusually encountered during the high-speed operation of spindle have been broken by imporvingtheir mechanisms. 3) We have developeda speedregulators provided with wider rangesof speedand also a speedcontroller with lemientpitches to causeno suddenchanges in speed. The new equip- ment thus developedincreases the efficiencyof spindleand is effectivein eliminatingyarn ends-down. KEY WORDS: RINGFRAMES, OPEN-END SPINNING, SPINDLES, SPINNING RINGS, SPINNING TRAVELERS,SPINDLE VIBRATION, HIGH SPEED, SPINDLE SPEED, TENSION CON- TROL,SPEED CONTROL 1. Introduction (1) The spindle vibration taken place atthe speed of 20,000 Many trials have been carried out in many countries to rpm can be lowered down to that at the speed of 15,000 rpm increase the spindle speed (spindle revolutions) during by aid of the spindles trially developed by us. spinning without increasing ends-down. Now the spindle (2) Though the rings have been supposed to be the most speeds up to 17,000 rpm are available on the ring spinning obstinate opposition to high speed, the spindle speed of system. -
Dynamics of Rotating Superconducting Magnetic Bearings in Ring Spinning
IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. EUCAS 2015 preprint 3A-LS-P-07.09. Submitted to IEEE Trans. Appl. Supercond. for possible publication. 3A-LS-P-07.09 1 Dynamics of rotating Superconducting Magnetic Bearings in Ring Spinning M. Sparing, A. Berger, F. Wall, V. Lux, S. Hameister, D. Berger, M. Hossain, A. Abdkader, G. Fuchs, C. Cherif, L. Schultz Abstract — A superconducting magnetic bearing (SMB) during spinning and winding. This procedure twists the fibers consisting of a stationary superconductor in a ring-shaped flow- thereby form sand strengthens the yarn. Details of the spinning through cryostat and a rotating permeant magnetic (PM) ring is process and various concepts to improve or replace the ring- investigated as potential twist element in the textile technological process of ring spinning. Since the dynamic behavior of the traveler system are described in the literature [5], [6]. The rotating PM influences the yarn as well as the stability of replacement of the ring-traveler system by an SMB eliminates spinning process, these factors are studied in this paper the problem of frictional heat in the existing system. A considering the acting forces of the yarn on the PM-ring, its detailed description of this process can be found in references vibration modes and the resulting oscillation amplitudes. [7]-[9]. For the assessment of a safe field cooling distance during the operation of the rotating SMB in a rings spinning machine, a II. RING SPINNING WITH AN SMB TWIST ELEMENT correct calculation of the resonance magnification is particularly important. Therefore, the decay constant δ of the damped A. -
Soho Depicted: Prints, Drawings and Watercolours of Matthew Boulton, His Manufactory and Estate, 1760-1809
SOHO DEPICTED: PRINTS, DRAWINGS AND WATERCOLOURS OF MATTHEW BOULTON, HIS MANUFACTORY AND ESTATE, 1760-1809 by VALERIE ANN LOGGIE A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of History of Art College of Arts and Law The University of Birmingham January 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT This thesis explores the ways in which the industrialist Matthew Boulton (1728-1809) used images of his manufactory and of himself to help develop what would now be considered a ‘brand’. The argument draws heavily on archival research into the commissioning process, authorship and reception of these depictions. Such information is rarely available when studying prints and allows consideration of these images in a new light but also contributes to a wider debate on British eighteenth-century print culture. The first chapter argues that Boulton used images to convey messages about the output of his businesses, to draw together a diverse range of products and associate them with one site. Chapter two explores the setting of the manufactory and the surrounding estate, outlining Boulton’s motivation for creating the parkland and considering the ways in which it was depicted. -
YEAR 6: the INDUSTRIAL REVOLUTION (6 Lessons)
YEAR 6: THE INDUSTRIAL REVOLUTION (6 lessons) Contents Include: Cotton Production The Steam Engine Iron and Coal Canals Trains Suggested Teacher Resources: The Young Oxford History of Britain & Ireland, pages 286-320. Great Tales from English History by Robert Lacey, pages 327-378. The BBC website has some articles on the period, and clips from a recent documentary about the industrial revolution and a documentary about trains. This topic lends itself well to local history, eg. canals and Victorian train stations. Lesson 1. Introduction to the Industrial Revolution The key point for pupils to understand about the Industrial Revolution is that it had a transformative effect on the world. Through harnessing fossil fuels to power engines, factories and machines, the Industrial Revolution fundamentally changed the way that human beings live. This single innovation gave birth to the modern world. It is a topic of particular interest to Britain, as it was in Britain that the key inventions of the industrial revolution were first created: the cotton mill, the steam engine, and the train. This lesson should introduce pupils to a broad overview of industrialisation, and some key concepts. See pages 128 of What Your Year 6 Child Needs to Know. Learning Objective Core Knowledge Activities for Learning Related Vocabulary Assessment Questions To begin to ‘Industrial Revolution’ describes Arrange a selection of eight different industrial What was the understand why the transition from a society inventions in order, and try to guess the revolution Industrial Revolution? the Industrial based on hand manufacturing date for each of them (resource 1). factory Revolution was and human or animal power, to a engine How does an industrial important to society based on machinery. -
Current and Future Trends in Yarn Production1
Volume 2, Issue 2, Spring 2002 CURRENT AND FUTURE TRENDS IN YARN PRODUCTION1 William Oxenham, Ph.D. College of Textiles, North Carolina State University ABSTRACT While developments in yarn manufacturing continue to be promoted by machinery makers, spinners are challenged to produce the best quality yarn at an acceptable price. This often results in a compromise, since improved yarn quality can usually only be achieved at a higher processing cost (including raw material selection). An additional difficulty is that the significance of the various attributes of quality change for different yarn’s end uses. While the solution to lowering yarn costs, that has been adopted in recent years has been to create large, almost fully automated spinning mills, this philosophy is presently being questioned, since this significantly reduces flexibility with respect to the fiber and yarn type that can be processed. This is obviously at odds with the current paradigm of customer driven, quick response manufacturing, since this demands inherent flexibility in the successful supplier. This paper reviews the current state of technological innovation in yarn production and examines the relative merits and disadvantages of each system. Some insight will also be given concerning those factors that limit further development of some of these systems. Historical trends in US yarn production have also been surveyed, and the combined information obtained is used as an indicator of the future directions in this key industry. KEYWORDS: Yarn Production, Spinning, Vortex Spinning, Centrifugal Spinning 1. INTRODUCTION shortcomings in certain aspects of yarn and fabric quality (Figure 2). This aspect Research into new technology for yarn cannot be over stressed since while ring formation peaked in the 60’s & 70’s. -
Inventions in the Cotton Industry
Inventions in the Cotton Industry Paisley Thread Mill Museum A Family of Threads John Kay: The Flying Shuttle 1733 • For centuries handloom weaving had been carried out by the shuttle with the yarn on being passed slowly and awkwardly from one hand to the other. • In 1733 John Kay patented his flying shuttle which dramatically increased the speed of this process. • Kay placed shuttle boxes at each side of the loom connected by a long board, known as a shuttle race. • With cords, a single weaver, using one hand, could knock the shuttle back and forth across the loom from one shuttle box to the other. • A weaver using Kay's flying shuttle could produce much wider cloth at much faster speeds than before. James Hargreaves: The Spinning Jenny 1764 • In 1764 Hargreaves built what became known as the Spinning- Jenny. • The machine used eight spindles onto which the thread was spun. • By turning a single wheel, the operator could now spin eight threads at once. • Later, improvements were made that enabled the number to be increased to eighty. • However, the thread that the machine produced was coarse and lacked strength. Richard Arkwright: The Water Frame 1771 • Richard Arkwright: The Water Frame 1771 • In 1762 Richard Arkwright met John Kay and Thomas Highs, who were trying to produce a new spinning- machine, to improve on the Spinning-Jenny. • Kay and Highs had run out of money and Arkwright offered to employ John Kay to make the new machine, with other, local craftsman to help. • It was not long before the team produced the Spinning-Frame. -
The Industrial Revolution - Making Cloth: the Start of the Industrial Revolution
The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution by ReadWorks The Industrial Revolution got its start in the textile industry. Before the Industrial Revolution, making cloth was a very slow process. Cotton from cotton plants is puffy and full of seeds. First, the seeds had to be taken out, by hand. Next, the cotton had to be spun and stretched into thread, by hand. Finally, the thread was woven into cloth, by hand. Every step along the way required the full concentration of one person. Making cloth took a long time. In 1764, the process of turning cotton into cloth began to change. The three main steps stayed the same. But people began to use machines instead of doing everything manually. The machines did each step faster and faster. Some of the machines were huge. They couldn't fit into a person's home. The first factories were built to house machines and the workers needed to run them. Look at the timeline below. It describes the most important textile machines that were invented. Use it to answer the questions that follow. 1764: The spinning jenny was invented by James Hargreaves. This machine made it easier to make thread. 1769: Sir Richard Arkwright invented the water frame. Now weavers could keep up with all the thread that was being made. After the invention of the water frame, one weaver could weave the yarn from four spinners! The water frame was too big for homes. It only fit in factories. -
Textiles for Dress 1800-1920
Draft version only: not the publisher’s typeset P.A. Sykas: Textiles for dress 1800-1920 Textile fabrics are conceived by the manufacturer in terms of their material composition and processes of production, but perceived by the consumer firstly in terms of appearance and handle. Both are deeply involved in the economic and cultural issues behind the wearing of cloth: cost, quality, meaning. We must look from these several perspectives in order to understand the drivers behind the introduction of fabrics to the market, and the collective response to them in the form of fashion. A major preoccupation during our time frame was novelty. On the supply side, novelty gave a competitive edge, stimulated fashion change and accelerated the cycle of consumption. On the demand side, novelty provided pleasure, a way to get noticed, and new social signifiers. But novelty can act in contradictory ways: as an instrument for sustaining a fashion elite by facilitating costly style changes, and as an agent for breaking down fashion barriers by making elite modes more affordable. It can drive fashion both by promoting new looks, and later by acting to make those looks outmoded. During the long nineteenth century, the desire for novelty was supported by the widely accepted philosophical view of progress: that new also implied improved or more advanced, hence that novelty was a reflection of modernity. This chapter examines textiles for dress from 1800 to 1920, a period that completed the changeover from hand-craft to machine production, and through Europe’s imperial ambitions, saw the reversal of East/West trading patterns. -
'Construction and Decay'
Emergence Humanities Postgraduate Research Journal ‘Construction and Decay’ Volume VIII, Autumn 2016 2 Emergence Volume 8, Autumn 2016 Editor Kirsty Bolton Editorial Team Jelma Van Amersfoort Amira Benabdelkader Holly Dunbar Núria Garcia Casacuberta Isaac Gustafsson Wood Brenna Gibson Adam Hussey Jennie Lewis Manthan Pathak Kate Rogers Design Kirsty Bolton Cover Image Siri Uldal ‘Jøvik handelssted 04’ Emergence is published by the University of Southampton Print Centre ISSN: 2041-8248 3 4 Contents Editor’s Introduction………………………………………………………………………………………………………..7 Foreword………………………………………………………………………………………………………………………....9 Humanities Graduate School Student Network (GradNet)……………………………………………...11 Determining Humanity: Androids, Electric Sheep and Blade Runners……………………………13 Liam Randles Alfred Schnittke’s polystylism as a technique of compositional construction in the music of John Zorn……………………………………………………………………………………………………………………27 Daniel-Lewis Fardon ‘Berlin is a city with two centres’: Images of societal decay in Christopher Isherwood’s Goodbye to Berlin………………………………………………………………………………………………………….41 Sophie Smith A Trio of Case Studies Challenging the Assumption that the Jewish Community in Stockholm was Spatially Separated, 1933-1940s……………………………………………………………53 Maja Hultman The construction of the past and nostalgia in the televisual and filmic representation of Albert Speer……………………………………………………………………………………………………………………67 Moritz Riewoldt The so-called ‘2nd century AD crisis’ of Italian productions. Reflections from the remains of wine-amphorae discovered -
Being an Occasional Publication of the Morris Ring Volume V, Number 1
The Morris Dancer Being an occasional publication of the Morris Ring Volume V, Number 1. July, 2012. View of the Iron Bridge, Shropshire. by G. Robertson and J. Fittler. Table of Contents ____________________________________ An introduction to the new editors……3 Further Reflections on Rural Morris Dance Sets in the Metropolis by Keith Chandler………………………………………….....4 The Immortal Memory by Ivor Allsop…...6 Revival of Morris Dancing in Kingston at the 1911 Coronation of King George V by Colin Messer………………………………………15 The Morris ring as Fraternity BY Mac mccoig…………………………………………….....24 Book Review: A Matter of Degree by Brian Tasker……………………………………….…........29 Helen Karpeles, Cecil Sharp, Douglas Kennedy, Maud Karpeles 2 Welcome to the latest edition of the Morris Dancer. Your co-editors for this glorious venture: Mac McCoig I currently dance with Uttoxeter Heart of Oak Morris Men. I learned to dance with Winchester MM under the eagle eye of Lionel Bacon during the 1970s. A degree in Fine Art (Painting), a career in Social Housing and a parallel career as an officer in the Territorial Army may not, at first glance, equip one to be the editor of a journal devoted to research papers on Morris Dancing. However, I have a keen interest in Morris-related research and 40 years dancing experience and this, plus a request from Peter Halfpenny, has prompted me to become involved with the production of the Morris Dancer. Contact me: Mac McCoig 8 Redhills Eccleshall Stafford ST21 6JW UK [email protected] Andrew Bullen I currently dance with Pullman Morris and Sword, in the Pullman neighbourhood in Chicago in the U.S. -
Lecture Outline Processing Fiber Into Yarn I
LECTURE OUTLINE PROCESSING FIBER INTO YARN I. The History of Fiber Processing 11. Material Opening and Cleaning A. Preparing the bale lay-down 1. Selection of bales 2. Bale arrangement for blending 3. Removal of bands and bagging B. Opening and cleaning equipment 1. Weigh-pan feeders 2. Magnetic and electronic cleaners 3. Dust removers 4. Beater type cleaners 5. Positive-fed saw-type cleaners 111. Carding A. Opening of fiber B. Cleaning as a hction C. Reducing or drafting D. Packaging of stock IV. Drawing A. Drafting and fiber orientation B. Blending and uniformity V. Combing A. Combing preparation 1. Drawing for Iapper 2. Lapping B. Principles of combing operation I. Feeding of laps 2. Nipping of fiber 3. Circular combing 4. Detaching 5. Top combing V. Combing (continued) C. Primary functions 1. Removal of short fiber (noils) 2. Removal of trash D. Secondary functions 1. Reducing and drafting 2. Blending and packaging VI. Roving A. Definition and description of machine B. Description of product C. Purpose of roving machine 1. Drafting 2. Twisting 3. Packaging a. laying b. winding c. building VII. Types of Spinning A. Intermittent spinning 1. Hand Spinning 2. Saxony Wheel-Spinning Jenny B. Continuous spinning 1. Cap spinning 2. Centrifugal spinning 3. Flyer spinning 4. Ring spinning a. definition and description of process 1. drafting of fibers 2. twisting of yarn 3. packagmg of yarn aa. laying bb. winding cc. package building b. other ring spinning factors 1. ring and traveler 2. speeds and rpms C. Open-end spinning 1. Definition and methods a.