5 Published Articles on Studies on the Notostraca A.R. Longhurst Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

5 Published Articles on Studies on the Notostraca A.R. Longhurst Ph.D 5 Published Articles on Studies on the Notostraca A.R. Longhurst Ph.D Bedford College ProQuest Number: 10098541 All rights reserved INF0RMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed a note will indicate the deletion. uest. ProQuest 10098541 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, MI 48106-1346 sramss as Tm HOfosTRACA Being a thesis presented to the University of London fo r the degree of Doctor of Philosophy» by Alan R. Lon^urot (Formerly of Bedford College, now of Federal Fisheries Service, Lagos) This thesis consists of a series of reprints of publications in which are reported the results of researches on the systematics of the Rotostracan Crustacea* Studies were made on the cytology, the biochemistiy and the comparative ecology of the group and were utilised in a systematic study of the Notostraca, This research was initiated after the finding by the candidate of living Notostraca in a rain-pool in southern England, which proved to be the only known locality for the group in the British Isles in recent years, having been found there previously by Professors Hobson and Pox, Success in culturing Triops oancrifoirois from this pool under laboratoiy conditions stimulated efforts to obtain cultures of other species, and finally cultures of all four species of Triops and of two species of Lepidurus were maintained at Bedford College, 'JKiese, together with the collections of preserved material in a number of European, American and Australian museums, formed the basis of the study. The cultures were utilised for investigations of the development of ezoskeletal characters during growth, for the investigation of the variability of these characters in a single line of individuals under differing environmental conditions, for cytological studies resulting in some knowledge of the chromosome numbers within the group, and for an investigation of the specificity of blood pigments in different species and in different races of a single species. The study was recorded in five publications, which are bound together to form this thesisj a preliminary report of the discovery that the so-called parthenogenetic forms are in fact heimaphroditic is bound in as E in the thesis. The main paper, B, contains a review of Hotostracan literature, the analysis of the validity to c^stematics of the ezoskeletal characters used in the past, the chromosome counts, the investigation of biochemical specificity, and the basic systematic revision of the group. The conclusion reached in this paper was that the Notostraca are composed of a small number of very widely dispersed speoies, all rather close to each other ^stem atically but characterised by considerable individual variation. The number of species previously described was shown to be much too high* A separate account of the details of the cytology and reproductive cycle vdiich were elucidated incidentally in the investigation of chromosome numbers appears as D and d escrib es in considerably more detail than hitherto the cytology of the gonads during reproduction. An attempt was made in a separate publication, A, to explain the widespread nature of the distribution of Notostracan species and to relate it to the extreme longevity of the group in palaeontological terms, and an explanatory hypothesis is developed, derived from the ecology of the group. Finally, under C, there is an account of the existence of what appears to be a most unusually h i^ proportion of abnormal Individuals occurring in populations of Notostraca compared with the proportion in other animal groups, and this again is referred to the palaeontological longevity of the Notostraca* Per convenience the constituent papers of the thesis are l is te d below* A* Evolution in the Notostraca* Evolution. Bt A review of the Notostraca. Bull* Brit. Mus. (II.H.) Ct Abnormal variation in the Notostraca. Syst.Zool. 3)8 Reproduction in the Notostraca. Proc* Zool. See. Bond. Et Reproduction in the Notostraca. Nature » Lond. EVOLUTION ÎN THE NOTOSTRACA A. R. L o n g h u r s t Bedford College, University of London Received August 16, 1954 The Notostraca are phyHoped Crusta­ dispersal—in or upon larger animals, at­ cea in which the carapace is shield-shaped tached to dry pieces of wind-blown vege­ and covers the anterior part of the body ; tation, or airteme singly in wind cur­ together with other phyllopods, they are rents (a desert dust-devil will whirl considered to be relatively unevolved particles much denser than the eggs of Crustacea—there is a high, but irregular, phyllopods high into the air). number of appendages (forty to sixty That these passive means of dispersal pairs are usual) and the segmentation of are effective is quite clearly shown by the the body is anameristic. ubiquitous occurrence of phyllopods in It is characteristic of phyllopods that suitable pools wherever these occur. they occur in temporary rain pools, gen­ Notostraca occur on such isolated oceanic erally in arid or steppe country where islands as the Hawaiian group, and in the such pools are common, and are unable to few suitable pools that the rainy English maintain themselves in the face of com­ climate permits. The phyllopods show petition from higher Crustacea or Insecta another characteristic of passively distrib­ (Ardo, 1947). uted invertebrates—that of very widely The survival of such primitive and spread, sometimes almost cosmopolitan vulnerable animals poses an interesting species; in a recent study of the No­ problem—the key to which may lie in tostraca for a systematic revision I found their main adaptation to a temporary that Triops longicaudatus, which Linder habitat, the drought-resistant egg. The (1952) showed was the only species of possession of such an egg, from which the genus in the Americas, extends from hatching normally occurs only after the West Indies through Central America desiccation, is an obvious prerequisite and right across the Pacific to Japan ly for the exploitation of a temporary fresh­ way of the Galapagoes, Oahu and New water habitat by a group of animals which Caledonia. In all this area there is vir­ do not have the capacities of aerial migra­ tually no morphological change (Long­ tion which the Insects possess. hurst, 1955). These drought-resistant eggs of phyl­ These facts of dispersal and geographi­ lopods are the only possible means of dis- cal distribution seem to me to explain the pc^rsal for the group, for the pools in survival of the phyllopods. The initii^ which the animals occur are isolated from arthropod invasion of temporary pdo||# one another, and are only rarely part of may well have been performed by the a stream system along which dispersal primitive fresh water Crustacean fauna of adults would be possible. and has radiated into the forms of phyllo­ The eggs are small, light in weight be­pods we see today—the carnivorous No­ cause of their dry alveolar shells, and are tostraca, the “pelagic” Anostraca, and sticky when laid in at least one genus the burrowing, detritus-feedii^ Concho?^ (Triops, Notostraca); further, the eggs straca. This early fauna would of some Anostraca are known to retain spread and occupied at least a hq^ viability after passing through the guts portion of the suitable pools, and of Amphibia (Mathias, 1937). These cosmopolitan occupation would ha^ facts suggest several possible means of fectively prevented any geogrmphkaHyiMth Evblutton 9 : 84-86. March, 1955. 84 NOTOSTRACA 85 lated, phyllopod-free, part uf the environ­ era. Triops and Lcpiiiunis, each with a ment from forming a place in which later, small number of very wide-spread spi'cios. more highly evolved forms could have as if the geographical barriers wbich are adapted themselves to-life in temporary essential to spéciation in less passively waters. distributed animals are inefTectiyc in the This is in line with modern theories face of the efficient dispersal of the resting concerning the primary importance of eggs. geographical isolation in, at least, spécia­ Although Notostraca are normally tion and adaptive radiation. The small characteristic of pools in arid regions, one amount of essential adaptation—drought- species— Lcpidftt'ns arcticus—occurs only resistant eggs and a rapid rate of growth in the circumpolar arctic regions, where —would surely have been evolved in. say. it lives in large lakes, stream systems and Amphipods or Isojkk Is if some such pro­ small permanent or teni])orary p(»ols ; pos­ hibitive factor were not operating. Here sibly this is a case where adaptation to the essential adaptation to the unusual one habitat—desert pools—in which there habitat seems to have enabled the pioneer is a premium upon rapid development and arthropods to have retained possession of reproduction may have preadapted the the habitat. animals to another, completely different, The lack of competition and the un­ ■environment where conditions amicable to changing nature of the habitat would have life occur seasonally for similarly short produced no selection forces for further I)eriods. evolution in these phyllopods. and they Some Anostraca exploit the period in have retained a primitive, unevolved form very early spring when the temperature in conse({uence. begins to rise, but before the predatory Fossil Notostraca are. unfortunately, insects are Bronchi pusvernalis sparse, but Guthorl (19.U) illustrates occurs in permanent poo is in North what are certainly carapaces of tlu'se ani­ .America and is active only in this very mals from the Permian deposits, although short period at the end of winter; it then It is not possible to relate these to either lays eggs which lie dormant until the of the modern genera.
Recommended publications
  • Fig. Ap. 2.1. Denton Tending His Fairy Shrimp Collection
    Fig. Ap. 2.1. Denton tending his fairy shrimp collection. 176 Appendix 1 Hatching and Rearing Back in the bowels of this book we noted that However, salts may leach from soils to ultimately if one takes dry soil samples from a pool basin, make the water salty, a situation which commonly preferably at its deepest point, one can then "just turns off hatching. Tap water is usually unsatis- add water and stir". In a day or two nauplii ap- factory, either because it has high TDS, or because pear if their cysts are present. O.K., so they won't it contains chlorine or chloramine, disinfectants always appear, but you get the idea. which may inhibit hatching or kill emerging If your desire is to hatch and rear fairy nauplii. shrimps the hi-tech way, you should get some As you have read time and again in Chapter 5, guidance from Brendonck et al. (1990) and temperature is an important environmental cue for Maeda-Martinez et al. (1995c). If you merely coaxing larvae from their dormant state. You can want to see what an anostracan is like, buy some guess what temperatures might need to be ap- Artemia cysts at the local aquarium shop and fol- proximated given the sample's origin. Try incu- low directions on the container. Should you wish bation at about 3-5°C if it came from the moun- to find out what's in your favorite pool, or gather tains or high desert. If from California grass- together sufficient animals for a study of behavior lands, 10° is a good level at which to start.
    [Show full text]
  • Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs.
    [Show full text]
  • Survey and Description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia
    Survey and description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia. C.R. Dickson, L. Farrington & M. Bachmann April 2014 Report to the Department of Environment, Water and Natural Resources Page i Citation Dickson C.R., Farrington L., & Bachmann M. (2014) Survey and description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia. Report to Department of Environment, Water and Natural Resources, Government of South Australia. Nature Glenelg Trust, Mount Gambier, South Australia. Correspondence in relation to this report contact Mr Mark Bachmann Principal Ecologist Nature Glenelg Trust (08) 8797 8181 [email protected] Cover photo: Craspedia paludicola at a Seasonal Herbaceous Wetland in Bangham Conservation Park. Disclaimer This report was commissioned by the Department of Environment, Water and Natural Resources. Although all efforts were made to ensure quality, it was based on the best information available at the time and no warranty express or implied is provided for any errors or omissions, nor in the event of its use for any other purposes or by any other parties. Page ii Acknowledgements We would like to acknowledge and thank the following people for their assistance during the project: . Private and public landholders throughout the South East of South Australia for providing access to their properties and sharing local knowledge of site history. Steve Clarke, Michael Dent, Claire Harding, and Abigail Goodman (DEWNR) and Bec Harmer (NGT) for providing field assistance on field surveys of wetlands between November 2013 and February 2014.
    [Show full text]
  • Federal Register/Vol. 68, No. 196/Thursday, October 9, 2003/Notices
    Federal Register / Vol. 68, No. 196 / Thursday, October 9, 2003 / Notices 58355 Permit No. TE–050450 DEPARTMENT OF THE INTERIOR public review of this draft recovery plan. Applicant: Lisa Allen, Dana Point, Fish and Wildlife Service Recovery of endangered or threatened California. animals and plants is a primary goal of The permittee requests an amendment Re-Opening of the Comment Period for our endangered species program and the to take (harass by survey and collect and the Draft Recovery Plan for the Sierra Endangered Species Act (Act) (16 U.S.C. sacrifice) the Conservancy fairy shrimp Nevada Bighorn Sheep 1531 et seq.). Recovery means (Branchinecta conservatio), the AGENCY: U.S. Fish and Wildlife Service, improvement of the status of listed longhorn fairy shrimp (Branchinecta Interior. species to the point at which listing is longiantenna), the Riverside fairy no longer appropriate under the criteria ACTION: Notice of re-opening of public shrimp (Streptocephalus wootoni), the set out in section 4(a)(1) of the Act. comment period. San Diego fairy shrimp (Branchinecta Recovery plans describe actions sandiegonensis), and the vernal pool SUMMARY: We, the U.S. Fish and considered necessary for the tadpole shrimp (Lepidurus packardi) in Wildlife Service, announce a re-opening conservation of the species, establish conjunction with surveys throughout of the comment period for public review criteria for downlisting or delisting the range of each species in California of the Draft Recovery Plan for the Sierra listed species, and estimate time and for the purpose of enhancing their Nevada Bighorn Sheep (Ovis canadensis cost for implementing the measures survival.
    [Show full text]
  • 2009 Annual Report Contents
    EDITH COwaN UNIVERSITY School of Natural Sciences Centre for Ecosystem Management 2009 ANNUAL REPORT CONTENTS Overview 2009 3 Highlights 2009 4-7 CEM Members 8-9 Grants 10 Publications 11-13 Higher Degree Students 14 Visitors & Collaborations 15 Community Engagement Activities & Linkages 15 2 OVERVIEW 2009 The Centre for Ecosystem Management consists of 22 members from across ECU who have diverse research interests that fit into the broad themes of sustainability, biodiversity and health and ecology. In 2009 we welcomed a number of new members, mostly amongst the ranks of post doctoral and early career positions. Despite all the changes experienced with the rebirth of the CEM after the marine members split off in 2008, members had an outstanding research year. Some $0.91 million was spent on research during 2009. The magnitude of the research funding is a consequence of constructive engagement and research links between the researchers in boards or committees. The breadth and scope of the the CEM and State, National and International government contributions made by members of the CEM is remarkable organisations and research agencies. Members of the and reflects the strong research culture of the Centre and CEM also continued to produce high quality outputs in the its members. During the year 1 PhD student and 1 MSc form of refereed papers (32), reports (12) and conference student completed their studies under the supervision of proceedings (5). The breadth of research interests CEM members. in the CEM can be seen from the published outputs This report acknowledges the continued high quality and given later in this report.
    [Show full text]
  • Freshwater Crustaceans As an Aboriginal Food Resource in the Northern Great Basin
    UC Merced Journal of California and Great Basin Anthropology Title Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin Permalink https://escholarship.org/uc/item/3w8765rq Journal Journal of California and Great Basin Anthropology, 20(1) ISSN 0191-3557 Authors Henrikson, Lael S Yohe, Robert M, II Newman, Margaret E et al. Publication Date 1998-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Joumal of Califomia and Great Basin Anthropology Vol. 20, No. 1, pp. 72-87 (1998). Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin LAEL SUZANN HENRIKSON, Bureau of Land Management, Shoshone District, 400 W. F Street, Shoshone, ID 83352. ROBERT M. YOHE II, Archaeological Survey of Idaho, Idaho State Historical Society, 210 Main Street, Boise, ID 83702. MARGARET E. NEWMAN, Dept. of Archaeology, University of Calgary, Alberta, Canada T2N 1N4. MARK DRUSS, Idaho Power Company, 1409 West Main Street, P.O. Box 70. Boise, ID 83707. Phyllopods of the genera Triops, Lepidums, and Branchinecta are common inhabitants of many ephemeral lakes in the American West. Tadpole shrimp (Triops spp. and Lepidums spp.) are known to have been a food source in Mexico, and fairy shrimp fBranchinecta spp.) were eaten by the aborigi­ nal occupants of the Great Basin. Where found, these crustaceans generally occur in numbers large enough to supply abundant calories and nutrients to humans. Several ephemeral lakes studied in the Mojave Desert arul northern Great Basin currently sustain large seasonal populations of these crusta­ ceans and also are surrounded by numerous small prehistoric camp sites that typically contain small artifactual assemblages consisting largely of milling implements.
    [Show full text]
  • Ecologically Sound Mosquito Management in Wetlands. the Xerces
    Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano and Scott Hoffman Black The Xerces Society FOR INVERTEBRATE CONSERVATION Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano Scott Hoffman Black The Xerces Society for Invertebrate Conservation Oregon • California • Minnesota • Michigan New Jersey • North Carolina www.xerces.org The Xerces Society for Invertebrate Conservation is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citi- zens to implement conservation programs worldwide. The Society uses advocacy, education, and ap- plied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices in California, Minnesota, Michigan, New Jersey, and North Carolina. © 2013 by The Xerces Society for Invertebrate Conservation Acknowledgements Our thanks go to the photographers for allowing us to use their photos. Copyright of all photos re- mains with the photographers. In addition, we thank Jennifer Hopwood for reviewing the report. Editing and layout: Matthew Shepherd Funding for this report was provided by The New-Land Foundation, Meyer Memorial Trust, The Bul- litt Foundation, The Edward Gorey Charitable Trust, Cornell Douglas Foundation, Maki Foundation, and Xerces Society members.
    [Show full text]
  • The Vernal Pool Landscape at the Nature Conservancy's Vina Plans
    The Vernal Pool Landscape At The Nature Conservancy’s Vina Plans Preserve Presentation by Barbara Castro, California Department of Water Resources Text and photographs prepared by Rob Schlising, California State University, Chico (retired) Topics I Location, and history of, Vina Plains Preserve II The results of research done at VPP: a major resource III …and the U.S. Fish and Wildlife Service’s Vernal Pool Recovery Plan Red Bluff about 23 miles to the north Road in to old barn Original 1525 acres, with 4 fenced pastures Chico about 15 miles to the south Cemented volcanic mudflow underlies whole area and forms Northern Hardpan Vernal Pool bottoms paler green vegetation darker green vegetation reflects loamy soils reflects clayey soils barn Photo by Pauleen Broyles, winter 1983 Graduation of the first class of docents, spring 1983 The Nature Conservancy assembled a team of docents, spring 1983, that prepared in the field… Docents also prepared indoors. Graduation of the first class of docents, spring 1983 The Nature Conservancy hosted a dedication ceremony of the Vina Plains Preserve, at the old sheep-barn, on 16 April 1983 Mounts Lassen and Brokeoff showed that day 35 years ago 350 people attended, for a program by TNC—with a band, a catered chicken picnic lunch, and tours of the landscape by the docents. Landscape tours by the docents began for the pubic in 1984, starting from old logs located north of the sheep-barn. Over 1200 people visited VPP during the first several years of tours. The docent committee prepared a VPP handbook in 1984 (1994 revision shown) The Nature Conservancy has maintained ownership—and management—of the Preserve.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • VERNAL POOL TADPOLE SHRIMP Lepidurus Packardi
    U.S. Fish & Wildlife Service Sacramento Fish & Wildlife Office Species Account VERNAL POOL TADPOLE SHRIMP Lepidurus packardi CLASSIFICATION: Endangered Federal Register 59-48136; September 19, 1994 http://ecos.fws.gov/docs/federal_register/fr2692.pdf On October 9, 2007, we published a 5-year review recommending that the species remain listed as endangered. CRITICAL HABITAT: Designated Originally designated in Federal Register 68:46683; August 6, 2003. The designation was revised in FR 70:46923; August 11, 2005. Species by unit designations were published in FR 71:7117 (PDF), February 10, 2006. RECOVERY PLAN: Final Recovery Plan for Vernal Pool Ecosystems of California and Southern Oregon, December 15, 2005. http://ecos.fws.gov/docs/recovery_plan/060614.pdf DESCRIPTION The vernal pool tadpole shrimp (Lepidurus packardi) is a small crustacean in the Triopsidae family. It has compound eyes, a large shield-like carapace (shell) that covers most of the body, and a pair of long cercopods (appendages) at the end of the last abdominal segment. Vernal pool tadpole shrimp adults reach a length of 2 inches in length. They have about 35 pairs of legs and two long cercopods. This species superficially resembles the rice field tadpole shrimp (Triops longicaudatus). Tadpole shrimp climb or scramble over objects, as well as plowing along or within bottom sediments. Their diet consists of organic debris and living organisms, such as fairy shrimp and other invertebrates. This animal inhabits vernal pools containing clear to highly turbid water, ranging in size from 54 square feet in the former Mather Air Force Base area of Sacramento County, to the 89-acre Olcott Lake at Jepson Prairie.
    [Show full text]
  • Herpetofauna and Aquatic Macro-Invertebrate Use of the Kino Environmental Restoration Project (KERP)
    Herpetofauna and Aquatic Macro-invertebrate Use of the Kino Environmental Restoration Project (KERP) Tucson, Pima County, Arizona Prepared for Pima County Regional Flood Control District Prepared by EPG, Inc. JANUARY 2007 - Plma County Regional FLOOD CONTROL DISTRICT MEMORANDUM Water Resources Regional Flood Control District DATE: January 5,2007 TO: Distribution FROM: Julia Fonseca SUBJECT: Kino Ecosystem Restoration Project Report The Ed Pastor Environmental Restoration ProjectiKino Ecosystem Restoration Project (KERP) is becoming an extraordinary urban wildlife resource. As such, the Pima County Regional Flood Control District (PCRFCD) contracted with the Environmental Planning Group (EPG) to gather observations of reptiles, amphibians, and aquatic insects at KERP. Water quality was also examined. The purpose of the work was to provide baseline data on current wildlife use of the KERP site, and to assess water quality for post-project aquatic wildlife conditions. I additionally requested sampling of macroinvertebrates at Agua Caliente Park and Sweetwater Wetlands in hopes that the differences in aquatic wildlife among the three sites might provide insights into the different habitats offered by KERF'. The results One of the most important wildlife benefits that KERP provides is aquatic habitat without predatory bullfrogs and non- native fish. Most other constructed ponds and wetlands in Tucson, such as the Sweetwater Wetlands and Agua Caliente pond, are fuIl of non-native predators which devastate native fish, amphibians and aquatic reptiles. The KERP Wetlands may provide an opportunity for reestablishing declining native herpetofauna. Provided that non- native fish, bullfrogs or crayfish are not introduced, KERP appears to provide adequate habitat for Sonoran Mud Turtles (Kinosternon sonoriense), Lowland Leopard Frogs (Rana yavapaiensis), and Mexican Gartersnakes (Tharnnophis eques) and Southwestern Woodhouse Toad (Bufo woodhousii australis).
    [Show full text]
  • Uncovering Ultrastructural Defences in Daphnia Magna – an Interdisciplinary Approach to Assess the Predator- Induced Fortification of the Carapace
    Uncovering Ultrastructural Defences in Daphnia magna – An Interdisciplinary Approach to Assess the Predator- Induced Fortification of the Carapace Max Rabus1,2*, Thomas Söllradl3, Hauke Clausen-Schaumann3,4, Christian Laforsch2,5 1 Department of Biology II, Ludwig-Maximilians-University Munich, Germany, 2 Department of Animal Ecology I, University of Bayreuth, Germany, 3 Department of Precision, and Micro-Engineering, Engineering Physics, University of Applied Sciences Munich, Germany, 4 Center for NanoScience, Ludwig-Maximilians- University Munich, Germany, 5 Geo-Bio Center, Ludwig-Maximilians-University Munich, Germany Abstract The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triops cancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D. magna indeed expresses ultrastructural defences against Triops predation.
    [Show full text]