2009 Annual Report Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Survey and Description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia
Survey and description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia. C.R. Dickson, L. Farrington & M. Bachmann April 2014 Report to the Department of Environment, Water and Natural Resources Page i Citation Dickson C.R., Farrington L., & Bachmann M. (2014) Survey and description of the Seasonal Herbaceous Wetlands (Freshwater) of the Temperate Lowland Plains in the South East of South Australia. Report to Department of Environment, Water and Natural Resources, Government of South Australia. Nature Glenelg Trust, Mount Gambier, South Australia. Correspondence in relation to this report contact Mr Mark Bachmann Principal Ecologist Nature Glenelg Trust (08) 8797 8181 [email protected] Cover photo: Craspedia paludicola at a Seasonal Herbaceous Wetland in Bangham Conservation Park. Disclaimer This report was commissioned by the Department of Environment, Water and Natural Resources. Although all efforts were made to ensure quality, it was based on the best information available at the time and no warranty express or implied is provided for any errors or omissions, nor in the event of its use for any other purposes or by any other parties. Page ii Acknowledgements We would like to acknowledge and thank the following people for their assistance during the project: . Private and public landholders throughout the South East of South Australia for providing access to their properties and sharing local knowledge of site history. Steve Clarke, Michael Dent, Claire Harding, and Abigail Goodman (DEWNR) and Bec Harmer (NGT) for providing field assistance on field surveys of wetlands between November 2013 and February 2014. -
Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar. -
Living Fossils
Living Fossils 1. Diplopanax - Creation Ex Nihilo 12(4): 6,7 (Sept - Nov 1990) 2. Tuatara - Biblical Basis for Modern Science by Henry Morris (Baker Book House, Grand Rapids, Michigan, 1984) pg.355; Scientific Creationism Edited by Henry Morris (Master Books: El Cajon, CA, 1974) pg.89; The Genesis Flood by John Whitcomb & Henry Morris (Presbyterian & Reformed Publishing: Philipsburg, NJ, 1961) pgs.176, 177; The Creation-Evolution Controversy by R.L. Wysong (Inquiry Press: Midland, Michigan, 1976) pg.287, 289; "The Tuatara: Why is it a lone survivor?" by C. M. Bogert, Scientific Monthly, 76 (1953): 165; Sphenodon - Gliedman "Miracle Mutations", Science Digest (Feb, 1982) pgs.90, 92; A Case for Creation by Wayne Frair & Percival Davis (Moody Press, 1967) pg.65 3. Latimeria chalumnae (Coelacanth) - Also mentioned in Creation Ex Nihilo 15(4): 45 (Sept - Nov, 1993); Creation 23(2): 5 (March - May, 2001); Forey, "The Coelacanth as a Living Fossil" in Living Fossils, N. Eldredge & S. Stanley, eds, 1984) pg.166; A Case for Creation by Wayne Frair & Percival Davis (Moody Press, 1967) pg.65; Genes, Genesis & Evolution by John W. Klotz (Concordia Publishing House: St. Louis, Missouri, 1955) pgs.200-202; Darwin Retried: an appeal to reason by Norman Macbeth (Harvard Common Press: Boston, Massachusetts, 1971) pg.121; Biology: A Search for Order in Complexity, Edited by John N. Moore & Harold Slusher (Zondervan Publishing House: Grand Rapids, Michigan, 1970) pg.264; The Biblical Basis for Modern Science by Henry M. Morris (Baker Book House, Grand Rapids, Michigan, 1984) pg.355; Scientific Creationism Edited by Henry Morris (Master Books: El Cajon, CA, 1974) pg.89; The Genesis Flood by John Whitcomb & Henry Morris (Presbyterian & Reformed Publishing: Philipsburg, NJ, 1961) pgs.177,178; After Its Kind by Byron C. -
Crustacea, Notostraca) from Iran
Journal of Biological Research -Thessaloniki 19 : 75 – 79 , 20 13 J. Biol. Res. -Thessalon. is available online at http://www.jbr.gr Indexed in: Wos (Web of science, IsI thomson), sCOPUs, CAs (Chemical Abstracts service) and dOAj (directory of Open Access journals) — Short CommuniCation — on the occurrence of Lepidurus apus (Linnaeus, 1758) (Crustacea, notostraca) from iran Behroz AtAshBAr 1,2 *, N aser Agh 2, L ynda BeLAdjAL 1 and johan MerteNs 1 1 Department of Biology , Faculty of Science , Ghent University , K.L. Ledeganckstraat 35 , 9000 Gent , Belgium 2 Department of Biology and Aquaculture , Artemia and Aquatic Animals Research Institute , Urmia University , Urmia-57153 , Iran received: 16 November 2011 Accepted after revision: 18 july 2012 the occurrence of Lepidurus apus in Iran is reported for the first time. this species was found in Aigher goli located in the mountains area, east Azerbaijan province (North east, Iran). details on biogeography, ecology and morphology of this species are provided. Key words: Lepidurus apus , Aigher goli, east Azerbaijan, Iran. INtrOdUCtION their world-wide distribution is due to their anti qu - ity, but possibly also to their passive transport: geo - Notostracan records date back to the Carboniferous graphical barriers are more effective for non-passive - and possibly up to the devonian period (Wallossek, ly distributed animals. From an ecological point of 1993, 1995; Kelber, 1998). In fact, there are Upper view, notostracans, like most branchiopods, are re - triassic Triops fossils from germany -
Crustacea: Notostraca) from Serbia
Arthropoda Selecta 28(1): 65–72 © ARTHROPODA SELECTA, 2019 Developmental and other body abnormalities in the genus Lepidurus Leach, 1819 (Crustacea: Notostraca) from Serbia Îòêëîíåíèÿ â ðàçâèòèè è äðóãèå íàðóøåíèÿ ñòðîåíèÿ òåëà â ðîäå Lepidurus Leach, 1819 (Crustacea: Notostraca) â Ñåðáèè Ivana Šaganović, Slobodan Makarov, Luka Lučić, Sofija Pavković- Lučić, Vladimir Tomić, Dragana Miličić Èâàíà Øàãàíîâèћ, Ñëîáîäàí Ìàêàðîâ, Ëóêà Ëó÷èћ, Ñîôè¼à Ïàâêîâèћ-Ëó÷èћ, Âëàäèìèð Òîìèћ, Äðàãàíà Ìèëè÷èћ University of Belgrade, Faculty of Biology, Institute of Zoology, Studentski Trg 16, 11000 Belgrade, Serbia. Университет Белграда, Биологический факультет, Институт зоологии, Белград, Сербия. KEY WORDS: morphological abnormalities, Lepidurus, Serbia. КЛЮЧЕВЫЕ СЛОВА: морфологические отклонения, Lepidurus, Сербия. ABSTRACT. The occurrence of morphological ab- шние изменения в строении тела у крупных рако- normalities and the emergence of body defects are образных-бранхиопод рода Lepidurus Leach, 1819 well-known phenomena in crustaceans and other groups (Notostraca), собранных в Сербии, и обсудить их of arthropods. They usually originate from genetic fac- возможную этиологию. Большинство изменений tors and are attributable to aberrations during the moult- отмечены у карапакса и конечностей, а затем у ing process, but they can also be of exogenous origin. брюшного отдела, тельсона с хвостовой долей и у The aims of this study were to present the external церкоподов. Что касается потенциальных причин, body changes that occurred in large branchiopod crus- наблюдаемые изменения могут вызываться как ге- taceans of the genus Lepidurus Leach, 1819 (Notostra- нетическими, так и негенетическими факторами ca) sampled in Serbia and discuss their possible etiolo- типа пресс хищников и возможные нарушения при- gy. The majority of variations were identified on the родной среды. -
On Homology of Arthropod Compound Eyes' "The Eye" Has Long Served As
INTEGR. CotoP. BIOL., 43:522-530 (2003) On Homology of Arthropod Compound Eyes' TODD H. OAKLEY 2 Ecology Evolutioni and Marine Biology, University of California-SantaBarbara, S'anzta Barbara, Califonzia 93106 SyNopsis. Eyes serve as models to understand the evolution of complex traits, with broad implications for the origins of evolutionary novelty. Discussions of eye evolution are relevant at miany taxonomic levels, especially within arthropods where compound eye distribution is perplexing. Either compound eyes were lost numerous times or very similar eyes evolved separately in multiple lineages. Arthropod compound eye homology is possible, especially; between crustaceans and hexapods, which have very similar eye facets and may be sister taxa. However, judging homology only on similarity requires subjective decisions. Regardless of whether compound eyes were present in a common ancestor of arthropods or crustaceans + hexapods, recent phylogenetic evidence suggests that the compound eyes, today present in myodocopid ostracods (Crus- tacea), may have been absent in ostracod ancestors. This pattern is inconsistent with phylogenetic homology. Multiple losses of ostracod eyes are an alternative hypothesis that is statistically improbable and without clear cause. One possible evolutionary process to explain the lack of phylogenetic'homology of ostracod compound eyes is that eyes may evolve by switchback evolution, where genes for lost structures remain dormant and are re-expressed much later in evolution. INTRODUCTION 'the recent evidence for and implications of a poten- "The eye" has long served as a canonical example tially non-homologous arthropod compound eye, un- of a complex trait. In an early design-based argument derstanding the case for compound eye homology is for the existence of God, Paley (1846) used the eye as important. -
Updated Checklist and Distribution of Large Branchiopods (Branchiopoda: Anostraca, Notostraca, Spinicaudata) in Tunisia
Biogeographia – The Journal of Integrative Biogeography 31 (2016): 27–53 Updated checklist and distribution of large branchiopods (Branchiopoda: Anostraca, Notostraca, Spinicaudata) in Tunisia FEDERICO MARRONE1,*, MICHAEL KORN2, FABIO STOCH3, LUIGI NASELLI- FLORES1, SOUAD TURKI4 1 Dept. STEBICEF, University of Palermo, via Archirafi, 18, I-90123 Palermo, Italy 2 Limnological Institute, University of Konstanz, Mainaustr. 252, D-78464 Konstanz & DNA-Laboratory, Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, D- 01109 Dresden, Germany 3 Dept. of Life, Health & Environmental Sciences, University of L’Aquila, Via Vetoio, I-67100 Coppito, L'Aquila, Italy 4 Institut National des Sciences et Technologies de la Mer, Rue du 02 mars 1934, 28, T-2025 Salammbô, Tunisia * e-mail corresponding author: [email protected] Keywords: Branchinectella media, fauna of Maghreb, freshwater crustaceans, Mediterranean temporary ponds, regional biodiversity. SUMMARY Temporary ponds are the most peculiar and representative water bodies in the arid and semi-arid regions of the world, where they often represent diversity hotspots that greatly contribute to the regional biodiversity. Being indissolubly linked to these ecosystems, the so-called “large branchiopods” are unanimously considered flagship taxa of these habitats. Nonetheless, updated and detailed information on large branchiopod faunas is still missing in many countries or regions. Based on an extensive bibliographical review and field samplings, we provide an updated and commented checklist of large branchiopods in Tunisia, one of the less investigated countries of the Maghreb as far as inland water crustaceans are concerned. We carried out a field survey from 2004 to 2012, thereby collecting 262 crustacean samples from a total of 177 temporary water bodies scattered throughout the country. -
“Living Fossil“ Crustacean Order of the Notostraca
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Marine Archive OPEN 3 ACCESS Freely available online tlos one Toward a Global Phylogeny of the “Living Fossil“ Crustacean Order of the Notostraca Bram Vanschoenwinkel1*9, Tom Pinceel19, Maarten P. M. Vanhove2, Carla Denis1, Merlijn Jocque3, Brian V. Timms4, Luc Brendonck1 1 Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium, 2 Laboratory of Animal Diversity and Systematics, KU Leuven, Leuven, Belgium, 3 Royal Belgian Institute of Natural Sciences, Brussels, Belgium, 4 Australian Museum, Sydney, New South Wales, Australia Abstract Tadpole shrimp (Crustacea, Notostraca) are iconic inhabitants of temporary aquatic habitats worldwide. Often cited as prime examples of evolutionary stasis, surviving representatives closely resemble fossils older than 200 mya, suggestive of an ancient origin. Despite significant interest in the group as 'living fossils' the taxonomy of surviving taxa is still under debate and both the phylogenetic relationships among different lineages and the timing of diversification remain unclear. We constructed a molecular phylogeny of the Notostraca using model based phylogenetic methods. Our analyses supported the monophyly of the two generaTriops andLepidurus, although forTriops support was weak. Results also revealed high levels of cryptic diversity as well as a peculiar biogeographic link between Australia and North America presumably mediated by historic long distance dispersal. We concluded that, although some present day tadpole shrimp species closely resemble fossil specimens as old as 250 mya, no molecular support was found for an ancient (pre) Mesozoic radiation. Instead, living tadpole shrimp are most likely the result of a relatively recent radiation in the Cenozoic era and close resemblances between recent and fossil taxa are probably the result of the highly conserved general morphology in this group and of homoplasy. -
Mitochondrial Genome Diversity and Evolution in Branchiopoda (Crustacea) Andrea Luchetti1* , Giobbe Forni1, Alyza M
Luchetti et al. Zoological Letters (2019) 5:15 https://doi.org/10.1186/s40851-019-0131-5 RESEARCHARTICLE Open Access Mitochondrial genome diversity and evolution in Branchiopoda (Crustacea) Andrea Luchetti1* , Giobbe Forni1, Alyza M. Skaist2, Sarah J. Wheelan2 and Barbara Mantovani1 Abstract Background: The crustacean class Branchiopoda includes fairy shrimps, clam shrimps, tadpole shrimps, and water fleas. Branchiopods, which are well known for their great variety of reproductive strategies, date back to the Cambrian and extant taxa can be mainly found in freshwater habitats, also including ephemeral ponds. Mitochondrial genomes of the notostracan taxa Lepidurus apus lubbocki (Italy), L. arcticus (Iceland) and Triops cancriformis (an Italian and a Spanish population) are here characterized for the first time and analyzed together with available branchiopod mitogenomes. Results: Overall, branchiopod mitogenomes share the basic structure congruent with the ancestral Pancrustacea model. On the other hand, rearrangements involving tRNAs and the control region are observed among analyzed taxa. Remarkably, an unassigned region in the L. apus lubbocki mitogenome showed a chimeric structure, likely resulting from a non-homologous recombination event between the two flanking trnC and trnY genes. Notably, Anostraca and Onychocaudata mitogenomes showed increased GC content compared to both Notostraca and the common ancestor, and a significantly higher substitution rate, which does not correlate with selective pressures, as suggested by dN/dS values. Conclusions: Branchiopod mitogenomes appear rather well-conserved, although gene rearrangements have occurred. For the first time, it is reported a putative non-homologous recombination event involving a mitogenome, which produced a pseudogenic tRNA sequence. In addition, in line with data in the literature, we explain the higher substitution rate of Anostraca and Onychocaudata with the inferred GC substitution bias that occurred during their evolution. -
Sturgeon Hatchery Manual
FAO ISSN 2070-7010 FISHERIES AND 558 AQUACULTURE TECHNICAL PAPER 558 STURGEON HATCHERY MANUAL This Sturgeon Hatchery Manual includes the latest available scientific research findings and experiences and compiles advice given in earlier manuals and handbooks on sturgeon culture and reproduction practices. This document was prepared in response HATC STURGEON to numerous requests for practical guidance on this subject from the Central Asian and Caucasus region to the Food and Agriculture Organization of the United Nations (FAO). This manual is targeted particularly at sturgeon farmers, sturgeon hatchery operators, hatchery technicians, and fisheries and aquaculture managers involved in sturgeon aquaculture development and the restocking and rehabilitation of sturgeon populations in the countries around the basins of the Black and Caspian seas. It aims to provide a practical handbook of modern sturgeon hatchery practices and management. The H manual is available in the English, Russian and Turkish languages. MANUAL ERY FAO FAO Sturgeon Hatchery FISHERIES AND Manual AQUACULTURE TECHNICAL PAPER 558 Prepared by Mikhail S. Chebanov FAO Consultant Krasnodar, Russia and Elena V. Galich Krasnodar, Russia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2013 Reprinted 2013 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. -
Freshwater Large Branchiopods in Portugal: an Update of Their Distribution
Limnetica, 36 (2): 567-584 (2017). DOI: 10.23818/limn.36.22 Limnetica, 29 (2): x-xx (2011) c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Freshwater large branchiopods in Portugal: an update of their distribution Margarida Machado1, Luís Cancela da Fonseca3,4 and Margarida Cristo1,2,∗ 1 CCMAR - Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portu- gal. 2 FCT - Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal. 3 MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Av. N. Sra. do Cabo, 939, 750-374, Portugal. 4 CTA - Centro de Ciências e Tecnologias da Água, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal. ∗ Corresponding author: [email protected] 2 Received: 31/10/16 Accepted: 12/05/17 ABSTRACT Freshwater large branchiopods in Portugal: an update of their distribution This study is based largely on 20 years of field and laboratory work, with surveys conducted by the authors and some other researchers. During this period several studies dealing with freshwater large branchiopods (FLB) were carried out, resulting in scientific publications and project reports. The distribution of FLB in Portugal was presented in 2 international scientific meetings, but apart from a first paper by Vianna-Fernandes in 1951 and an update done by ourselves in 1999 concerning the southwest Portugal, no other information has been published. Therefore, this work intends to bring up to date the known distribution of this faunal group in freshwater temporary systems. This is pertinent because of the recent revision of the taxon Triops cancriformis on the basis of genetic analyses. -
Multiple Spectral Channels in Branchiopods. I. Vision in Dim Light and Neural Correlates Nicolas Lessios1,2,*,‡, Ronald L
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb165860. doi:10.1242/jeb.165860 RESEARCH ARTICLE Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates Nicolas Lessios1,2,*,‡, Ronald L. Rutowski1, Jonathan H. Cohen3, Marcel E. Sayre2 and Nicholas J. Strausfeld2 ABSTRACT having adaptations for gathering more photons at the receptor level Animals that have true color vision possess several spectral classes of or, as in the mammalian retina, neural adaptations that, at very low photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate light intensities, spatially pool signals collected by scotopic spectral information about their reconstructed visual world do so from photoreceptors (rods), transmitting that information to rod bipolar photoreceptor terminals supplying their second optic neuropils, with cells and then to cone ganglion cells (Field and Sampath, 2017). subsequent participation of the third (lobula) and deeper centers Whether pancrustaceans, a group of arthropods comprising (optic foci). Here, we describe experiments and correlative neural Hexapoda and Crustacea, employ optical versus neural adaptations arrangements underlying convergent visual pathways in two species of for vision in dim environments, and analogous circuits to those in ’ branchiopod crustaceans that have to cope with a broad range of vertebrates, is of central interest (O Carroll and Warrant, 2017). spectral ambience and illuminance in ephemeral pools, yet possess Here, we have focused on two species of Branchiopoda, a class of just two optic neuropils, the lamina and the optic tectum. Xenocarida belonging to the sister clade Hexapoda+Remipedia that Electroretinographic recordings and multimodel inference based on likely separated from the stem group between 510 and 600 million modeled spectral absorptance were used to identify the most likely years ago (Misof et al., 2014).