Principal Component Analysis – Multidisciplinary Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Updated Checklist of Thrips from Slovakia with Emphasis on Economic Species
Original Paper Plant Protection Science, 56, 2020 (4): 292–304 https://doi.org/10.17221/87/2020-PPS An updated checklist of thrips from Slovakia with emphasis on economic species Martina Zvaríková, Rudolf Masarovič, Pavol Prokop; Peter Fedor* Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia *Corresponding author: [email protected] Citation: Zvaríková M., Masarovič R., Prokop P., Fedor P. (2020): An updated checklist of thrips from Slovakia with emphasis on economic species. Plant Protect. Sci., 56: 292–304. Abstract: Almost sixty years after the first published plea for more systematic research on thrips in Slovakia, the checklist undisputedly requires an appropriate revision with a special emphasis on the economic consequences of climate change and biological commodity trade globalisation synergic effects, followed by the dynamic and significant changes in the native biodiversity due to alien species introduction. The updated checklist contains 189 species recorded from the area of Slovakia, from three families: Aeolothripidae Uzel, 1895 (15 species), Thripidae Stephens, 1829 (113 species) and Phlaeothripidae Uzel, 1895 (61 species), including 7 beneficiary and 35 economic pest elements, such as one A2 EPPO quarantine pest (Frankliniella occidentalis) and five potential transmitters of tospoviruses (F. occidentalis, F. intonsa, F. fusca, Thrips tabaci, Dictyothrips betae). Several species (e.g., Hercinothrips femoralis, Microcephalothrips abdomi- nalis, F. occidentalis, T. flavus, T. tabaci, Limothrips cerealium, L. denticornis, etc.) may possess a heavy introduction and invasion potential with well-developed mechanisms for successful dispersion. Keywords: alien species; biodiversity; globalisation; invasions; crop pests; tospoviruses Thrips (Thysanoptera) are generally known as crop a synergy of factors may support the fact that exot- pests throughout the world (Lewis 1997). -
Predation by Insects and Mites
1.2 Predation by insects and mites Maurice W. Sabelis & Paul C.J. van Rijn University of Amsterdam, Section Population Biology, Kruislaan 320, 1098 SM Amsterdam, The Netherlands Predatory arthropods probably play a prominent role in determining the numbers of plant-feeding thrips on plants under natural conditions. Several reviews have been published listing the arthropods observed to feed and reproduce on a diet of thrips. In chronological order the most notable and comprehensive reviews have been presented by Lewis (1973), Ananthakrishnan (1973, 1979, 1984), Ananthakrishnan and Sureshkumar (1985) and Riudavets (1995) (see also general arthropod enemy inventories published by Thompson and Simmonds (1965), Herting and Simmonds (1971) and Fry (1987)). Numerous arthropods, recognised as predators of phytophagous thrips, have proven their capacity to eliminate or suppress thrips populations in greenhouse and field crops of agricultural importance (see chapters 16 and 18 of Lewis, 1997), but a detailed analysis of the relative importance of predators, parasitoids, parasites and pathogens under natural conditions is virtually absent. Such investigations would improve understanding of the mortality factors and selective forces moulding thrips behaviour and life history, and also indicate new directions for biological control of thrips. In particular, such studies may help to elucidate the consequences of introducing different types of biological control agents against different pests and diseases in the same crop, many of which harbour food webs of increasing complexity. There are three major reasons why food web complexity on plants goes beyond one- predator-one-herbivore systems. First, it is the plant that exhibits a bewildering variety of traits that promote or reduce the effectiveness of the predator. -
Thysanoptera (Insecta) Biodiversity of Norfolk, a Tiny Pacific Island
Zootaxa 3964 (2): 183–210 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3964.2.2 http://zoobank.org/urn:lsid:zoobank.org:pub:DE38A5A7-32BF-44BD-A450-83EE872AE934 Endemics and adventives: Thysanoptera (Insecta) biodiversity of Norfolk, a tiny Pacific Island LAURENCE A. MOUND & ALICE WELLS Australian National Insect Collection CSIRO, PO Box 1700, Canberra, ACT 2601. E-mail: [email protected] Abstract The thrips fauna of Norfolk Island is a curious mix of endemics and adventives, with notable absences that include one major trophic group. A brief introduction is provided to the history of human settlement and its ecological impact on this tiny land mass in the western Pacific Ocean. The Thysanoptera fauna comprises about 20% endemic and almost 50% widespread invasive species, and shows limited faunal relationships to the nearest territories, Australia, New Caledonia and New Zealand. This fauna, comprising 66 species, includes among named species 29 Terebrantia and 33 Tubulifera, with four Tubulifera remaining undescribed. At least 12 species are endemics, of which 10 are mycophagous, and up to 10 further species are possibly native to the island. As with the thrips fauna of most Pacific islands, many species are wide- spread invasives. However, most of the common thrips of eastern Australia have not been found on Norfolk Island, and the complete absence of leaf-feeding Phlaeothripinae is notable. The following new taxa are described: in the Phlaeothrip- idae, Buffettithrips rauti gen. et sp. n. and Priesneria akestra sp. -
The Spiders and Scorpions of the Santa Catalina Mountain Area, Arizona
The spiders and scorpions of the Santa Catalina Mountain Area, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Beatty, Joseph Albert, 1931- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 16:48:28 Link to Item http://hdl.handle.net/10150/551513 THE SPIDERS AND SCORPIONS OF THE SANTA CATALINA MOUNTAIN AREA, ARIZONA by Joseph A. Beatty < • • : r . ' ; : ■ v • 1 ■ - ' A Thesis Submitted to the Faculty of the DEPARTMENT OF ZOOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College UNIVERSITY OF ARIZONA 1961 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill ment of requirements for an advanced degree at the Uni versity of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for per mission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. -
Observations on the Flight Pattern of Some Phlaeothripidae (Thysanoptera) Species by Using Suction Trap in Hungary
ACTA UNIVERSITATIS SAPIENTIAE AGRICULTURE AND ENVIRONMENT, 8 (2016) 1626 DOI: 10.1515/ausae-2016-0002 Observations on the flight pattern of some Phlaeothripidae (Thysanoptera) species by using suction trap in Hungary Szilvia OROSZ,1, 6 * Ágnes SZÉNÁSI,2 János PUSKÁS,3 4 5 6 Rita ÁBRAHÁM, Andrea FÜLÖP, Gábor JENSER 1National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-Environment, Plant Health and Molecular Biology National Reference Laboratory, H–1118 Budapest, Budaörsi út 141–145, Hungary 2Szent István University, Plant Protection Institute, Faculty of Agricultural and Environmental Sciences, H–2100 Gödöllő, Páter K. St 1, Hungary 3University of West Hungary, Savaria University Centre, H–9700 Szombathely, Károlyi G. Sq. 4, Hungary 4University of West Hungary, Plant Protection Department, Faculty of Agricultural and Food Sciences, H–9200 Mosonmagyaróvár, Vár 2, Hungary 5Hungarian Meteorological Service, Climate Division, H–1024 Budapest, Kitaibel Pál St 1, Hungary 6Hungarian Natural History Museum, Zoological Department, H–1088 Budapest, Baross St 13, Hungary *corresponding author: [email protected] Manuscript received Jan. 20, 2016; revised Febr. 12, 2016; Accepted March 12, 2016 Abstract: In this study, the seasonal flight activity of the Phlaeothripidae (Thysanoptera) species was studied by using suction trap, in South-East Hungary, in the years 2000 and 2004 from April to October. The flight period of two dominant species, namely Haplothrips angusticornis Priesner and Haplothrips aculeatus Fabricius (Thysanoptera: Phlaeothripidae), was observed in high number in Europe. Also, it was the first record of mass flight observation of H. angusticornis. In addition, the effect of meteorological factors, such as temperature, sunshine duration, relative humidity, air pressure, and their influences, were evaluated. -
Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution Pecies S
ISSN 1809-127X (online edition) © 2011 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution PECIES S OF MajidThrips Mirab-balou (Insecta: 1, Xiao-li TongThysanoptera) 2, Ji-nian Feng 3 and Xue-xin of China Chen 1* ISTS L 1 Institute of Insect Sciences, zhejiang University, 268 Kaixuan Road, Hangzhou 310029, China. 2 South China Agricultural University, Department of Entomology. Guangzhou 510642, China. 3 Northwest A. and F. University, Yangling, Shaanxi 712100, China. [email protected] * Corresponding author. E-mail: Abstract: A new checklist of Thysanoptera from China (including Taiwan) is provided. In total 566 species in 155 genera are listed, of which there are 313 species in the suborder Terebrantia, comprising 290 species in 74 genera in family Thripidae, 18 species in three genera in Aeolothripidae, two species in one genus in Melanthripidae and three species in one genus in Merothripidae. In the suborder Tubulifera 253 species in 76 genera are listed in the single family Phlaeothripidae. Two species, Aeolothrips collaris and Odontothrips meliloti, are newly recorded for the fauna of China. Introduction and Forestry University (Yangling, Shaanxi prov.), Jun About 6000 species of Thysanoptera are known Wang and associates (2006-2011, 7 publications) at Jilin University (Jilin prov.), Xue-xin Chen and associates (2010- Terebrantia and Tubulifera, comprising eight families 2011, 6 publications) at Zhejiang University, Hangzhou (Bhattifrom the 1979a world.1, dealing These arewith classified both living into and two fossil suborders forms; (Zhejiang prov.), and Chin-Lin Wang (1993–2010, 19 Mound et al. -
Insecta: Thysanoptera) on the Ash and Sterile Waste Dumps from Rovinari (Gorj District)
Muzeul Olteniei Craiova. Oltenia. Studii şi comunicări. Ştiinţele Naturii. Tom. 27, No. 1/2011 ISSN 1454-6914 STRUCTURAL CHARACTERISTICS OF THE THRIPS FAUNA (INSECTA: THYSANOPTERA) ON THE ASH AND STERILE WASTE DUMPS FROM ROVINARI (GORJ DISTRICT) BĂRBUCEANU Daniela, VASILIU-OROMULU Liliana, CORNEANU Mihaela, CORNEANU C. Gabriel Abstract. The collections carried out in July 2010 regarding the Thysanoptera praticolous fauna on the tailing dumps of Rovinari show a low specific diversity, of only 11 species. The human impact exerted over the years upon the studied sites resulted in the reduction of the Thysanoptera taxonomic spectrum and especially in the diminution of the population of certain thrips species. The Thysnoptera coenosis has been constantly composed of a characteristic species, Haplothrips leucanthemi, unidentified so far as typical on the previously studied dumps of Zlatna area and Retezat Massif, so we can consider this species as a bioindicator. The Shannon-Wiener diversity index presented fluctuating values in the studied sites and the differences between them were not statistically significant. The geographical distribution of Rovinari Thysanoptera indicates a dominance of the Euro-Siberian species. Such studies show that Thysanoptera species that grow on dumps differ from one another, according to the type of dumps, therefore it is necessary to carry out chemical analysis of both the substrate and insects. Keywords: ash and sterile waste dumps, Haplothrips leucanthemi, specific diversity, ecological indices. Rezumat. Particularităţi structurale ale faunei de thripşi (Insecta: Thysanoptera) de pe haldele de steril din zona Rovinari (judeţul Gorj). Colectările efectuate în luna iulie 2010 privind fauna de thysanoptere praticole de pe haldele de steril din zona Rovinari relevă o diversitate specifică mică, de numai 11 specii. -
Technical Report 148
PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 148 INVENTORY OF ARTHROPODS OF THE WEST SLOPE SHRUBLAND AND ALPINE ECOSYSTEMS OF HALEAKALA NATIONAL PARK September 2007 Paul D. Krushelnycky 1,2, Lloyd L. Loope 2, and Rosemary G. Gillespie 1 1 Department of Environmental Science, Policy & Management, 137 Mulford Hall, University of California, Berkeley, CA, 94720-3114 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Haleakala Field Station, P.O. Box 369, Makawao, HI 96768 2 TABLE OF CONTENTS Acknowledgments…………………………………………………………………. 3 Introduction………………………………………………………………………… 4 Methods……………………………………………………………………………..5 Results and Discusion……………………………………………………………….8 Literature Cited…………………………………………………………………….. 10 Table 1 – Summary of captures……………………………………………………. 14 Table 2 – Species captures in different elevational zones…………………………..15 Table 3 – Observed and estimated richness………………………………………... 16 Figure 1 – Sampling localities……………………………………………………... 17 Figure 2 – Species accumulation curves…………………………………………… 18 Appendix: Annotated list of arthropod taxa collected……………………………... 19 Class Arachnida……………………………………………………………. 20 Class Entognatha…………………………………………………………… 25 Class Insecta………………………………………………………………...26 Class Malacostraca………………………………………………………..... 51 Class Chilopoda……………………………………………………………. 51 Class Diplopoda……………………………………………………………. 51 3 ACKNOWLEDGMENTS We would like to thank first and foremost the many specialists who identified or confirmed identifications of many of our specimens, or helped by pointing us in the right direction. Without this help, an inventory of this nature would simply not be possible. These specialists include K. Arakaki, M. Arnedo, J. Beatty, K. Christiansen, G. Edgecombe, N. Evenhuis, C. Ewing, A. Fjellberg, V. Framenau, J. Garb, W. Haines, S. Hann, J. Heinze, F. Howarth, B. Kumashiro, J. Liebherr, I. MacGowan, K. Magnacca, S. -
2013–2014 ANNUAL REPORT SAN DIEGO NATURAL HISTORY MUSEUM Mission
2013–2014 ANNUAL REPORT SAN DIEGO NATURAL HISTORY MUSEUM Mission To interpret the natural world through research, education, and exhibits; to promote understanding of the evolution and diversity of southern California and the peninsula of Baja California; and to inspire in all a respect for nature and the environment. Clouds over the hills in the Sierra Cacachilas. 140 years of excellence...naturally! to the Museum’s mission. Fiscal year 2014 saw the completion of the San Jacinto Centennial Resurvey field work and the beginning of a similar multi-year project in the Sierra Cacachilas, a little explored and biologically rich mountain range southwest of La Paz, Baja California Sur. It is not unreasonable to think that in another 100 years, a new team of Museum researchers and binational partners will revisit these areas in order to observe, collect, and compare how they have changed over time. The Museum benefits from a diversified funding stream including generous contributions from many loyal supporters; contract revenue through October 2014 Paleo and Biological Services; and the revenue from admissions and membership, to highlight a Dear Museum Friends, few. Our robust traveling exhibition schedule is critical to attracting new audiences and renewing On October 9, 2014, the San Diego Society of members. Real Pirates and Dino Jaws generated Natural History celebrated the 140th anniversary impressive numbers in 2013-14. For our 140th of its incorporation. Though the stories in this anniversary, in addition to inaugurating Coast annual report look back at the past year, this to Cactus, the Museum is hosting The Discovery introduction will provide a glimpse into the of King Tut, a breathtaking recreation of the exciting year ahead. -
Geographic Patterns of Ground-Dwelling Arthropods Across an Ecoregional Transition in the North American Southwest
Western North American Naturalist Volume 68 Number 1 Article 11 3-28-2008 Geographic patterns of ground-dwelling arthropods across an ecoregional transition in the North American Southwest David C. Lightfoot University of New Mexico, Albuquerque Sandra L. Brantley University of New Mexico, Albuquerque Craig D. Allen U.S. Geological Survey, Biological Resources Discipline, Jemez Mountains Field Station, Los Alamos, New Mexico Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Lightfoot, David C.; Brantley, Sandra L.; and Allen, Craig D. (2008) "Geographic patterns of ground-dwelling arthropods across an ecoregional transition in the North American Southwest," Western North American Naturalist: Vol. 68 : No. 1 , Article 11. Available at: https://scholarsarchive.byu.edu/wnan/vol68/iss1/11 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 68(1), © 2008, pp. 83–102 GEOGRAPHIC PATTERNS OF GROUND-DWELLING ARTHROPODS ACROSS AN ECOREGIONAL TRANSITION IN THE NORTH AMERICAN SOUTHWEST David C. Lightfoot1,3, Sandra L. Brantley1, and Craig D. Allen2 ABSTRACT.—We examined the biogeographic patterns of ground-dwelling arthropod communities across a heteroge- neous semiarid region of the -
CHEMICAL ECOLOGY of the THYSANOPTERA Murray S. Blum
95 CHEMICAL ECOLOGY OF THE THYSANOPTERA Murray S. Blum Laboratory of Chemical Ecology Department of Entomology University of Georgia Athens, Georgia USA Abstract The chemical ecology of the Thysanoptera is identified with a variety of natural products discharged in anal droplets during confrontations with adversaries. These exudates are fortified with defensive allomones that may function as repellents, contact irritants, or in some cases, fumigants. Thrips synthesize a large diversity of allomonal products that include hydrocarbons, acids, esters, aromatic compounds, and monoterpenes. Most of the exudates contain mixtures of natural products whose defensive efficacies may reflect synergistic interactions of selected compounds. That the anal secretions of thrips are highly effective repellents for a variety of ant species probably reflects the fact that formicids are the major predators against which these exocrine products have been evolved. Introduction Many species of thrips form dense aggregations that could constitute a bonanza for a variety of predators. In particular, ants would appear to be ideally suited to prey on thrips as a consequence of their ability to rapidly recruit large numbers of workers to good food finds. However, although thysanopterans are delicate insects, many species may be protected from predation by chemical defenses that are identified with anal discharges (Lewis 1973). Significantly, research in the last decade has demonstrated that many species of thrips are versatile natural-product chemists that biosynthesize a large variety of defensive allomones. In the present report, the chemical ecology of thrips species is examined in terms of the chemistry of their defensive exudates. In addition, the roles of the compounds in the anal exudates are examined in terms of sympatric predatory species of ants. -
The Evolution of Jumping Spiders (Araneae: Salticidae): a Review
Peckhamia 75.1 Evolution of jumping spiders 1 PECKHAMIA 75.1, 17 August 2009, 1―7 ISSN 1944―8120 The evolution of jumping spiders (Araneae: Salticidae): a review David E. Hill1 and David B. Richman2 1 213 Wild Horse Creek Drive, Simpsonville, South Carolina 29680 2 Corresponding author: [email protected] Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003 The following article was written as part of the yearlong celebration of the 200th birthday of Charles Darwin and the 150th Anniversary of the publication of his Origin of Species. Abstract The evolution of the family Salticidae (jumping spiders) has always puzzled arachnologists, but with modern DNA and morphological analysis, using cladistic techniques, a pattern is starting to emerge. The Salticidae apparently originated in the late Cretaceous and were derived from one of the other RTA dionychan clades, which include Philodromidae, Thomisidae, Miturgidae, Anyphaenidae, Gnaphosidae and related groups. Speciation appears to have been well along by the Oligocene―Miocene and may have been spurred on by the warm conditions of the late Paleocene―Eocene. At this point it seems wise to gather the current evidence and thinking on the origin and evolution of jumping spiders and the more “typical” Salticoida together and to give an overview of where the research currently stands. This is the main purpose of the current review. Introduction With more than 5,000 described species (Platnick 2009), the jumping spiders (Salticidae) arguably represent the most diverse family of modern spiders. Although we do not have any scientific standards for comparison of evolutionary diversity, those familiar with salticids might consider the group to be at least as diverse as the birds (Class Aves), and perhaps just as ancient in their origin.