Laboratory Examination in Nerve Agent Intoxication

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Examination in Nerve Agent Intoxication REVIEW ARTICLE LABORATORY EXAMINATION IN NERVE AGENT INTOXICATION Jiří Bajgar University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic: Department of Toxicology; University of South Bohemia České Budějovice, Faculty of Social and Health Studies, Czech Republic: Department of Radiology and Toxicology Summary: Diagnosis of nerve agent intoxication is based on anamnestic data, clinical signs and laboratory examination. For acute poisoning, cholinesterase activity in the blood (erythrocyte AChE, plasma/serum BuChE) is sensitive, simple and most frequent laboratory examination performed in biochemical laboratories. Specialized examinations to precise treatment (reactivation test) or to make retrospective diagnosis (fluoride induced reactivation etc.) can be conducted. Other sophisticated methods are available, too. Keywords: Nerve agents; Metabolites; Diagnosis; Blood; Acetylcholinesterase; Erythrocytes; Butyrylcholinesterase; Plasma; Reactivation Introduction ited to the acute stage of intoxication; usually it is not very sensitive, depending on the dose administered; Chemical weapons (CW) belong to the weapons of – determination of changes caused by the agent (group of mass destruction. Their development, production, use etc. agents) in question; it is mostly less specific indicating are prohibited and controlled by the internatonal coonven- more group of agents. However, it is sensitive and de- tion (Convention on the Prohibition of the Development, tectable long time interval after the intoxication. Production, Stockpiling and Use of Chemical Weapons and Both determinations are realized mostly in the blood on their Destruction, CWC) (16). After ratification with (erythrocytes/serum/plasma) but some other materials are sufficient number of the State Parties, CWC entered into not excluded (e.g. tissues such as the brain, muscle, saliva, force (29 April 1997) and at present, 188 State Parties are cerebrospinal fluid etc.). It can be used for forensic purpos- involved including Czech Republic. In the Czech Repub- es, too. The problem is determination/information on the lic, the State Institute for Nuclear Security (Státní ústav pro normal values in biological sample. For further studies, it jadernou bezpečnost, SÚJB), was established as the exec- can be recommended the monography dealing with many utive and control organ responsible for implementation of aspects of CWA edited by Professor Gupta (25). the Convention in the Czech Republic. Simultaneously, this organ licensed laboratories for ability to work/handle with Nerve agents highly toxic chemicals such as chemical warfare agents (CWA). Without the license it is impossible to work/manip- Nerve agents belong to the highly toxic agents; they are ulate with CWA (e.g. sarin, soman etc.) and this condition the most important group from CWA having high toxicity, is limiting factor for analysis of these agents. Though the rapid action at all routes of administration including inha- use of CWA is in general prohibited by the Convention, it lation and percutaneous exposure. They can be divided into is not excluded their misuse either in military or terroristic two main groups, G-agents and V-agents; between them, actions (57). group of agents combining in their structures G an V group The group of nerve agents is the most important group is observed, called GV (GP) agents. It can be pointed out that of CWA. The stocks of these compounds (weaponized or compounds of the same basic structure (organophosphates, stored) in the Albania, India, South Korea, United States OP) are used in industry, veterinary or human medicine and and Russia (officially declared) represent about 69,429 tons in agriculture, e.g.. Metathion, Malathion, Actellic, Dichlor- (53); it is quite clear that the paper is focused to these agents. vos (DDVP), Paraoxon, Parathion, In-stop etc. (Fig. 1) Laboratory diagnostics following poisoning with nerve In the CWC, examples of nerve agents containing gen- agents is focused mostly to: eral structure are given (Schedule 1, CWC) (16): – determination of the mother compound or metabolites; O-Alkyl (≤C10, incl. cycloalkyl) alkyl (Me, Et, n-Pro or examination is specific for such compound but it is lim- i-Pro) phosphonofluoridates, e.g. sarin, soman; ACTA MEDICA (Hradec Králové) 2013; 56(3):89–96 89 R2 action of nerve agents. Increased level of the neuromediator acetylcholine causes symptomas observed in the course of R1 P R3 poisoning. These symptoms are muscarinic, nicotinic and central as described in detail many times (3, 5, 14, 25, 36, O 44, 58 etc.). However, before action at cholinergic synapses, nerve agent is penetrating into the blood, and, by this trans- Fig. 1: General structure of organophosphates: R1–2 are hy- port system is distributed to the target organs – peripheral drogen, alkyl (including cyclic), aryl and others, alkoxy, and central nervous system. During penetration nerve agents alkylthio and amino groups. R3 is a dissociable group, e.g. react with the blood cholinesterases – erythrocyte AChE and halogens, cyano, alkylthio group, rest of inorganic or organic plasma butyrylcholinesterase (BuChE, EC 3.1.1.8). The part acid. More about the chemistry of organophosphates see e.g. of the agent bound to cholinesterases is excluded from toxic Fest and Schmidt (23); modern trends in the development of action. To the targets, only a part of the dose administered nerve agents was described by Halámek and Kobliha (27) is penetrating and inhibiting AChE at cholinergic synapses. Schematic representation of interaction of AChE with nerve agent/organophosphate is shown in Fig. 3. O-Alkyl (≤C10, incl. cycloalkyl) N,N-dialkyl (Me, Et, AChE (E) is reacting with nerve agent (P) to an in- n-Pro or i-Pro) phosphoramidocyanidates, e.g. tabun; termediate complex (EP) and then to phosphorylated O-Alkyl (≤C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, (phosphonylated) complex EP1. The complex EP1 is reac- n-Pro or i-Pro)-aminoethyl alkyl (Me, Et, n-Pro or i-Pro) tivatable by cholinesterase reactivators (R). EP1 complex phosphonothiolates and corresponding alkylated or proto- is able in some cases to be changed to non-reactivatable nated salts, e.g. VX. complex (EP2) – reactivators are not effective. This reaction Thus, all these chemicals having above mentioned struc- (EP1 → EP2) is called aging of inhibited AChE and, typi- ture are under control of the CWC. cally, it is observed for interaction of AChE with sarin and Mechanism of their action, symptoms, principles of soman (Fig. 4). Relevant rate constants (k+1,−1,+2,+3,+4 and ka) diagnosis and treatment for OP and nerve agents are very for the reactions are indicated. The complex EP is not eas- similar. Structures of some nerve agents and OP are shown ily detectable, EP1 and EP2 complexes can be determined. in Fig. 2. Their distinction is difficult. Non-cholinergic effects are not specific and they are observed in long term intervals (hours– Pharmacodynamics of nerve agents days) following intoxication (3, 5, 32, 36, 44). Spontaneous recovery of AChE activity (reactivation) Irreversible acetylcholinesterase (AChE, EC 3.1.1.7) is long lasting as well as the synthesis of AChE de novo (3, inhibition at cholinergic synapses is basic toxicodynamic 5, 36, 44, 58, 59). Reaction of AChE and nerve agents is of F O F O CH3 CH F O P P 3 CH3 H C O P H3C O 3 H C O CH 3 CH3 3 H3C Sarin Cyclosarin Soman H3CH2CO O H3C N C O P CH3 P H C S H CH CO N CH3 3 N 3 2 CH3 H3C H3C Tabun VX CH3 H C H3C O O 3 P O O H3C O O P CH2CH3 Cl H C S 3 N Cl CH2CH3 Russian VX DDVP Fig. 2: Structural formulae of some nerve agents and DDVP 90 E system) reaches to a small fraction of the dose administered k–1 k+3 (10% and less). Detoxification of nerve agents and organo- E + P EP EP1 EP2 phosphates was described in detail by Jokanovič (29). The k+1 k+2 k+4 (for some OP) binding of nerve agent to cholinesterases is important and E + P advantageous for diagnostic purposes: blood cholinesterases ka R R are easily accessible for laboratory examination. (effective) (uneffective) AChE a BuChE differences Fig. 3: Schematic representation of interaction between AChE (E) and nerve agent/organophosphate (P) AChE and BuChE are similar enzymes differing in their localisation, enzymatic properties, sequence of amino acids and physiological function (3, 5, 13, 17, 37, 45, 52, 61). classic inhibition kinetics: reactions important for laboratory AChE is observed at cholinergic synapses, erythrocytes diagnosis are shown in Fig. 3. and BuChE is contained mostly in plasma/serum and liver. The effect of reactivators is limited by the rate of ag- AChE and BuChE have different sensitivity to substrates ing process; it is chemical reaction when inhibited AChE is and inhibitors; inhibition by substrate is typical for AChE. changed to be resistant to the effect of reactivators. The rate The function of AChE is splitting neuromediator acetylcho- of this reaction is dependent on the time and the structure of line at cholinergic synapses; its function in erythrocytes is inhibitor. The half-lives of aging for soman are reported to not yet known. The function of BuChE is not known, it can be in minutes; for sarin, the half-life is about 10 hours and play a complementary role in cholinergic transmission or AChE inhibited with VX is dealkylated within 24 and more it is involved in non-specific detoxification reactions and hours (e.g. 5, 36). This fact is limiting factor for the treat- neurological diseases (5, 17,18, 29). ment using reactivators. For OP insecticides, this reaction is A qualitative difference between the BuChE of suxam- not practically important (they are not dealkylated) (Fig. 4). ethonium sensitive individuals and that of other patients Pharmacodynamics of nerve agent can be described by were described in detail by Whittaker (60). The biosynthe- u a the simple scheme containing following steps – penetration sis of BuChE is controlled by two allelic genes, E 1 and E 1.
Recommended publications
  • Routine Multipesticide Analysis Orbitrap
    Routine Multi-Pesticide Residue Analysis by Orbitrap MS Technology Osama Abu-Nimreh CMD Sales Support Specialist MECEC , Dubai The world leader in serving science Challenges of Pesticide-Residues Analysis • Sample variability (matrix) • Different compound characteristics • Large number of samples • Hundreds of analytes monitored • Low levels controlled • Baby food (MRL for all pesticides = 0.01 mg/kg) • Fast response required 2 Former Pesticide Multi-Residue Method Setup . Extraction Acetonitrile, Ethyl Mostly replaced acetate, Methanol... by QuEChERS today . Clean-up GPC, SPE, LLE, LC . Determination GC, LC, GC-MS, LC-MS, Thermo Scientific™ QuEChERS™ GC-MS/MS, LC-MS/MS... method 3 Simplified Extraction Procedure Applied 10 g of sample is weighed into Quechers extraction tube + 20 mL of water + 10 mL of ACN shaking 10 min Centrifugation 5 min @ 5000 rpm Injection to LC-HRAM 4 Consumables Used Consumables/Chemicals Part Number Acetonitrile A/0638/17 QuEChERS extraction tube, 50 mL, 250 pack 60105-216 QuEChERS pouches, 50 pack 60105-344 Apparatus/Columns Part Number Horizontal shaker 1069-3391 Horizontal shaker plate 1053-0102 Thermo Scientific™ Barnstead™ EASYpure™II water 3125753 Thermo Scientific™ Heraeus™ Fresco™ 17 micro centrifuge 3208590 Thermo Scientific™ Accucore™ aQ column 100x2.1, 2.6 µm 17326-102130 5 Improving QuEChERS Extraction Tips & Tricks: • Dry food (cereals/dried food, < 25 % water content): • Addition of water to enable adequate partitioning and reducing interaction of pesticides with matrix • Food containing fat/wax (avocado/oil): • After extraction step add a freezing out step and transfer supernatant to clean-up tube • More clean-up might be needed of raw extract (PSA+C18) • Food containing complex matrix (tea/spices) • Additional clean-up with GCB might be necessary (potential loss of planar structure pesticides like thiabendazole) • Acidic food (citrus): • Adjust pH (5-5.5) to increase recovery (e.g.
    [Show full text]
  • Endobj 21 0 Obj <>/Filter/Flatedecode/ID[]/Index[16 7]
    %PDF-1.4 %âãÏÓ 16 0 obj <> endobj 21 0 obj <>/Filter/FlateDecode/ID[]/Index[16 7]/Info 15 0 R/Length 36/Prev 1529327/Root 17 0 R/Size 23/Type/XRef/W[1 2 0]>>stream hÞbbd`b`r`b`cb`>stream hÞb```f``âc```‘¨`b@ ›…£éœÌ®5zà $À Å 9 Â Ü Ì‚`.ƒlÕ ÍÄ÷ ,"† endstream endobj 17 0 obj < > endobj 18 0 obj < >>>/Rotate 0/Type/Page>> endobj 19 0 obj <>stream H‰*ä234Ò300P AsK;9—KßËÓ0QÁ%Ÿ+ À H endstream endobj 20 0 obj <>stream ÿØÿà JFIF È È ÿþ Business Office Q76ÿÛ C $.' ",#(7),01444'9=82 À@ú– ~5â¾Óµï‰V%Õ ¢¾bø‡ã?xKÄ_Ùñj:eŵÄms{24.@C†ÁÇ=ý+¼ø[©ø¯Äš$ö©`±]G †Ö;6R¤6ÕvmÜò§ØõôsØh¯– •êž ¿ñ^»áØuBïKI/ao Z>"ç†cæ|Û‡8ã¿jzògˆþ+øÓ@ÖõM"{- å°+—Xåë.å#çãå#ŽÕêi?Ål’æðƒ»¨qûHÊ‘‘ϯ·Oz ö +Ç>xÇÄ>!ÕuÍ+Äz]¶Ÿw¦y@Çs—Üy%ˆ# G-7âÄ;ZÓ|1 Yï_°&b"…OBøç=ñè3ée¢¼CRÔ¾&øvÖãT»³Ðµ»X†ù-,|ØfUï³ çŽÇ'Ž3W-|}zÿ ÛÆ’Ù[›¡È-ÑÎÎ%(y= 'ß=(Øè¯ “Åß`ðôÚÝÏ„´ûh¡·7פJ.âJcƒŒü¤‚:ž+šðïÅÏxŠþ?Mð½¬×2De ÞìF2yâ€>š¢¼'Dñ÷Šçñm—†õ¿ G¥És ²¬†äJ¬ e㨠ã$dqYÞ$ø¥¯x_UþËÕü5l&h„ÑIoz]$L‘JÔt#4ô=àº7|q¬é°ê–>Žk)”¼nº¤`°=½+sÁ?/ øRÞI"›ÄºLrFþ[£^F ·Lc=³Ï§9èk¯R òï@EPEPEPEPETº½µ³]×W0À¾²È~µ–«§_ŒÙ_ÚÜŒ•ýÌÊüœp}(JŠ¨·¶¬$+s ¹ŽB$#ÿ túGñsé Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( çŠ9âxe@ñÈ¥]OBWç¼2Kðãâ@ÌB(¬oXÚyläóŽçc{ãÒ¿C+äoÚKI÷ºv¸‘'…¬å9Ç –_ǹö Kø¼÷$¶²ðfñ5Î-ܼÊ$1 ë’äç½|ýð_þÈñݧÚTEöøÛO™U—pÛ‘žà~ ¯qø §_Ë£jÓ šÑ¼Ï|EÕuR]´ý¦Û÷~ÐØy˜¹bžÄc-Mñ´ð÷Yʆâƒÿ ]’´þxrO xVÎÎá¦kÙ³svf}Íç>dþúu=k7ãgü“ícþØÿ èä gÍ¿ üa£ø3YÕoµ‰fQ-š¬1Åv•ƒg°?\z÷ÿ ƒZ™ñW†5;ûÍÒ¥ö¥rÍœ…FƯ@§åßbŽãÄ:äSD²Fl£R®¡•cAîü4 ¦¿=|[á]KÀ¾3ÒìÅóÊ%Ó0p~Àÿ úz'Â?hžÑ-nuÍ6ˆ¡"H¤»]öê
    [Show full text]
  • Review of the Mammalian Toxicology
    REVIEW OF THE MAMMALIAN TOXICOLOGY AND METABOLISM/TOXICOKINETICS OF FENTHION The APVMA Review of Fenthion © Australian Pesticides and Veterinary Medicines Authority 2012 ISBN 978-0-9873591-5-5 (electronic) This document was originally published in 2005 as part of the preliminary review findings report for Part 1 of the fenthion review. It was subsequently updated in 2007, and revised in 2008. Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Australian Pesticides and Veterinary Medicines Authority (APVMA). Creative Commons licence With the exception of the Coat of Arms, this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence. This is a standard form agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work. A summary of the licence terms is available from www.creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from www.creativecommons.org/licenses/by/3.0/au/legalcode. The APVMA’s preference is that you attribute this publication (and any approved material sourced from it) using the following wording: Source: Licensed from the Australian Pesticides and Veterinary Medicines Authority (APVMA) under a Creative Commons Attribution 3.0 Australia Licence. This report was prepared for the APVMA by the Department of Health and Aging Office of Chemical Safety. In referencing this document the Department of Health and Aging Office of Chemical Safety should be cited as the author and the Australian Pesticides and Veterinary Medicines Authority as the publisher and copyright owner.
    [Show full text]
  • Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects
    EN58CH06-Casida ARI 5 December 2012 8:11 Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects John E. Casida1,∗ and Kathleen A. Durkin2 1Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, 2Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, California 94720; email: [email protected], [email protected] Annu. Rev. Entomol. 2013. 58:99–117 Keywords The Annual Review of Entomology is online at acetylcholinesterase, calcium channels, GABAA receptor, nicotinic ento.annualreviews.org receptor, secondary targets, sodium channel This article’s doi: 10.1146/annurev-ento-120811-153645 Abstract Copyright c 2013 by Annual Reviews. Neuroactive insecticides are the principal means of protecting crops, people, All rights reserved livestock, and pets from pest insect attack and disease transmission. Cur- ∗ Corresponding author rently, the four major nerve targets are acetylcholinesterase for organophos- phates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the γ-aminobutyric acid receptor/chloride channel for by Public Health Information Access Project on 04/29/14. For personal use only. Annu. Rev. Entomol. 2013.58:99-117. Downloaded from www.annualreviews.org polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibi- tion include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system.
    [Show full text]
  • Appendix H EPA Hazardous Waste Law
    Appendix H EPA Hazardous Waste Law This Appendix is intended to give you background information on hazardous waste laws and how they apply to you. For most U.S. Environmental Protection Agency (EPA) requirements that apply to the University, the Safety Department maintains compliance through internal inspections, record keeping and proper disposal. In Wisconsin, the Department of Natural Resources (DNR) has adopted the EPA regulations, consequently EPA and DNR regulations are nearly identical. EPA defines This Appendix only deals with "hazardous waste" as defined by the EPA. hazardous waste as Legally, EPA defines hazardous waste as certain hazardous chemical waste. This hazardous chemical Appendix does not address other types of regulated laboratory wastes, such as waste; radioactive, infectious, biological, radioactive or sharps. Chapter 8 descibes disposal procedures infectious and biohazardous waste for animals. Chapter 9 describes disposal procedures for sharps and other waste that are regulated by can puncture tissue. Chapter 11 discusses Radiation and the Radiation Safety for other agencies. Radiation Workers provides guidelines for the disposal of radioactive waste. Procedures for medical waste are written by the UW Hospital Safety Officer. The Office of Biological Safety can provide guidance for the disposal of infectious and biological waste. EPA regulations focus on industrial waste streams. As a result, many laboratory chemical wastes are not regulated by EPA as hazardous chemical waste. However, many unregulated chemical wastes do merit special handling and disposal If a waste can be procedures. Thus, Chapter 7 and Appendix A of this Guide recommend disposal defined as: procedures for many unregulated wastes as if they were EPA hazardous waste.
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Warning: the Following Lecture Contains Graphic Images
    What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl).
    [Show full text]
  • A Screening Tool for Acetylcholinesterase Inhibitors
    RESEARCH ARTICLE Comparative biophysical characterization: A screening tool for acetylcholinesterase inhibitors 1 1 2 1 Devashree N. Patil , Sushama A. Patil , Srinivas SistlaID , Jyoti P. JadhavID * 1 Department of Biotechnology, Shivaji University, Kolhapur, MS, India, 2 Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Among neurodegenerative diseases, Alzheimer's disease (AD) is one of the most grievous disease. The oldest cholinergic hypothesis is used to elevate the level of cognitive impairment and acetylcholinesterase (AChE) comprises the major targeted enzyme in AD. Thus, acetylcholinesterase inhibitors (AChEI) constitutes the essential remedy for the treat- OPEN ACCESS ment of AD. The study aims to evaluate the interactions between natural molecules and Citation: Patil DN, Patil SA, Sistla S, Jadhav JP AChE by Surface Plasmon Resonance (SPR). The molecules like alkaloids, polyphenols (2019) Comparative biophysical characterization: A screening tool for acetylcholinesterase inhibitors. and substrates of AChE have been considered for the study with a major emphasis on affin- PLoS ONE 14(5): e0215291. https://doi.org/ ity and kinetics. To better understand the activity of small molecules, the investigation is sup- 10.1371/journal.pone.0215291 ported by both experimental and theoretical approach such as fluorescence, Circular Editor: David A. Lightfoot, College of Agricultural Dichroism (CD) and molecular docking studies. Amongst the screened ones tannic acid Sciences, UNITED STATES showed promising results compared with others. The methodology followed here have Received: September 26, 2018 highlighted many molecules with a higher affinity towards AChE and these findings may Accepted: March 30, 2019 take lead molecules generated in preclinical studies to treat neurodegenerative diseases.
    [Show full text]
  • 12.2% 116000 125M Top 1% 154 4200
    We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,200 116,000 125M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 14 Evolution and Expectations of Enzymatic Biosensors for Pesticides Rafael Vargas-Bernal, Esmeralda Rodríguez-Miranda and Gabriel Herrera-Pérez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/46227 1. Introduction The successful use of pesticides around the world has been due to their excellent control of pests such as insects, algaes, bacterias, viruses, rodents, or nematodes in agriculture, medicine, household, and industry. Since 9 of the 12 most dangerous and persistent organic pollutants are pesticides, therefore their qualitative and/or quantitative detection continue being one of the most strategic technological areas, given that these can be found in substances in contact with humans and other animals. The effects associated with their consumption and control, are related to human health and environmental toxicity. One of the most important contributions of the environmental chemistry is the control of pesticide residues and metabolites in food, water and soil; where plants, animal and human contacts are possible. Several methods to detect pesticides have been developed, chromatographic methods such as gas chromatography (GC) and high performance liquid chromatography (HPLC), which are coupled with mass spectrometry (MS).
    [Show full text]
  • Acetylcholinesterase — New Roles for Gate a Relatively Long Distance to Reach the Active Site, Ache Is One of the Fastest an Old Actor Enzymes14
    PERSPECTIVES be answered regarding AChE catalysis; for OPINION example, the mechanism behind the extremely fast turnover rate of the enzyme. Despite the fact that the substrate has to navi- Acetylcholinesterase — new roles for gate a relatively long distance to reach the active site, AChE is one of the fastest an old actor enzymes14. One theory to explain this phe- nomenon has to do with the unusually strong electric field of AChE. It has been argued that Hermona Soreq and Shlomo Seidman this field assists catalysis by attracting the cationic substrate and expelling the anionic The discovery of the first neurotransmitter — understanding of AChE functions beyond the acetate product15. Site-directed mutagenesis, acetylcholine — was soon followed by the classical view and suggest the molecular basis however, has indicated that reducing the elec- discovery of its hydrolysing enzyme, for its functional heterogeneity. tric field has no effect on catalysis16.However, acetylcholinesterase. The role of the same approach has indicated an effect on acetylcholinesterase in terminating From early to recent discoveries the rate of association of fasciculin, a peptide acetylcholine-mediated neurotransmission The unique biochemical properties and phys- that can inhibit AChE17. made it the focus of intense research for iological significance of AChE make it an much of the past century. But the complexity interesting target for detailed structure–func- of acetylcholinesterase gene regulation and tion analysis. AChE-coding sequences have recent evidence for some of the long- been cloned so far from a range of evolution- a Peripheral Choline binding site suspected ‘non-classical’ actions of this arily diverse vertebrate and invertebrate binding enzyme have more recently driven a species that include insects, nematodes, fish, site profound revolution in acetylcholinesterase reptiles, birds and several mammals, among Active site research.
    [Show full text]
  • Medical Aspects of Chemical Warfare
    Medical Diagnostics Chapter 22 MEDICAL DIAGNOSTICS † ‡ § BENEDICT R. CAPACIO, PHD*; J. RICHARD SMITH ; RICHARD K. GORDON, PHD ; JULIAN R. HAIGH, PHD ; JOHN ¥ ¶ R. BARR, PHD ; AND GENNADY E. PLATOFF JR, PHD INTRODUCTION NERVE AGENTS SULFUR MUSTARD LEWISITE CYANIDE PHOSGENE 3-QUINUCLIDINYL BENZILATE SAMPLE CONSIDERATIONS Summary * Chief, Medical Diagnostic and Chemical Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 3100 Rickets Point Road, Aberdeen Proving Ground, Maryland 21010-5400 † Chemist, Medical Diagnostic and Chemical Branch, Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, 3100 Rickets Point Road, Aberdeen Proving Ground, Maryland 21010-5400 ‡ Chief, Department of Biochemical Pharmacology, Biochemistry Division, Walter Reed Army Institute of Research, 503 Robert Grant Road, Silver Spring, Maryland 20910-7500 § Research Scientist, Department of Biochemical Pharmacology, Biochemistry Division, Walter Reed Army Institute of Research, 503 Robert Grant Road, Silver Spring, Maryland 20910-7500 ¥ Lead Research Chemist, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop F47, Atlanta, Georgia 30341 ¶ Colonel, US Army (Retired); Scientific Advisor, Office of Biodefense Research, National Institute of Allergies and Infectious Disease, National Institutes of Health, 6610 Rockledge Drive, Room 4069, Bethesda, Maryland 20892-6612 691 Medical Aspects of Chemical Warfare INTRODUCTION In the past, issues associated with chemical war- an
    [Show full text]
  • 744 Hydrolysis of Chiral Organophosphorus Compounds By
    [Frontiers in Bioscience, Landmark, 26, 744-770, Jan 1, 2021] Hydrolysis of chiral organophosphorus compounds by phosphotriesterases and mammalian paraoxonase-1 Antonio Monroy-Noyola1, Damianys Almenares-Lopez2, Eugenio Vilanova Gisbert3 1Laboratorio de Neuroproteccion, Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Morelos, Mexico, 2Division de Ciencias Basicas e Ingenierias, Universidad Popular de la Chontalpa, H. Cardenas, Tabasco, Mexico, 3Instituto de Bioingenieria, Universidad Miguel Hernandez, Elche, Alicante, Spain TABLE OF CONTENTS 1. Abstract 2. Introduction 2.1. Organophosphorus compounds (OPs) and their toxicity 2.2. Metabolism and treatment of OP intoxication 2.3. Chiral OPs 3. Stereoselective hydrolysis 3.1. Stereoselective hydrolysis determines the toxicity of chiral compounds 3.2. Hydrolysis of nerve agents by PTEs 3.2.1. Hydrolysis of V-type agents 3.3. PON1, a protein restricted in its ability to hydrolyze chiral OPs 3.4. Toxicity and stereoselective hydrolysis of OPs in animal tissues 3.4.1. The calcium-dependent stereoselective activity of OPs associated with PON1 3.4.2. Stereoselective hydrolysis commercial OPs pesticides by alloforms of PON1 Q192R 3.4.3. PON1, an enzyme that stereoselectively hydrolyzes OP nerve agents 3.4.4. PON1 recombinants and stereoselective hydrolysis of OP nerve agents 3.5. The activity of PTEs in birds 4. Conclusions 5. Acknowledgments 6. References 1. ABSTRACT Some organophosphorus compounds interaction of the racemic OPs with these B- (OPs), which are used in the manufacturing of esterases (AChE and NTE) and such interactions insecticides and nerve agents, are racemic mixtures have been studied in vivo, ex vivo and in vitro, using with at least one chiral center with a phosphorus stereoselective hydrolysis by A-esterases or atom.
    [Show full text]