And Laser-Pushed Lightsail Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions
The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions Les Johnson*, Frank M. Curran**, Richard W. Dissly***, and Andrew F. Heaton* * NASA Marshall Space Flight Center ** MZBlue Aerospace NASA Image *** Ball Aerospace Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. NASA Image 2 Solar Sail Missions Flown (as of October 2019) NanoSail-D (2010) IKAROS (2010) LightSail-1 (2015) CanX-7 (2016) InflateSail (2017) NASA JAXA The Planetary Society Canada EU/Univ. of Surrey Earth Orbit Interplanetary Earth Orbit Earth Orbit Earth Orbit Deployment Only Full Flight Deployment Only Deployment Only Deployment Only 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 3U CubeSat 10 m2 196 m2 32 m2 <10 m2 10 m2 3 Current and Planned Solar Sail Missions CU Aerospace (2018) LightSail-2 (2019) Near Earth Asteroid Solar Cruiser (2024) Univ. Illinois / NASA The Planetary Society Scout (2020) NASA NASA Earth Orbit Earth Orbit Interplanetary L-1 Full Flight Full Flight Full Flight Full Flight In Orbit; Not yet In Orbit; Successful deployed 6U CubeSat 90 Kg Spacecraft 3U CubeSat 86 m2 >1200 m2 3U CubeSat 32 m2 20 m2 4 Near Earth Asteroid Scout The Near Earth Asteroid Scout Will • Image/characterize a NEA during a slow flyby • Demonstrate a low cost asteroid reconnaissance capability Key Spacecraft & Mission Parameters • 6U cubesat (20cm X 10cm X 30 cm) • ~86 m2 solar sail propulsion system • Manifested for launch on the Space Launch System (Artemis 1 / 2020) • 1 AU maximum distance from Earth Leverages: combined experiences of MSFC and JPL Close Proximity Imaging Local scale morphology, with support from GSFC, JSC, & LaRC terrain properties, landing site survey Target Reconnaissance with medium field imaging Shape, spin, and local environment NEA Scout Full Scale EDU Sail Deployment 6 Solar Cruiser Mission Concept Mission Profile Solar Cruiser may launch as a secondary payload on the NASA IMAP mission in October, 2024. -
Materials Challenges for the Starshot Lightsail
PERSPECTIVE https://doi.org/10.1038/s41563-018-0075-8 Materials challenges for the Starshot lightsail Harry A. Atwater 1*, Artur R. Davoyan1, Ognjen Ilic1, Deep Jariwala1, Michelle C. Sherrott 1, Cora M. Went2, William S. Whitney2 and Joeson Wong 1 The Starshot Breakthrough Initiative established in 2016 sets an audacious goal of sending a spacecraft beyond our Solar System to a neighbouring star within the next half-century. Its vision for an ultralight spacecraft that can be accelerated by laser radiation pressure from an Earth-based source to ~20% of the speed of light demands the use of materials with extreme properties. Here we examine stringent criteria for the lightsail design and discuss fundamental materials challenges. We pre- dict that major research advances in photonic design and materials science will enable us to define the pathways needed to realize laser-driven lightsails. he Starshot Breakthrough Initiative has challenged a broad nanocraft, we reveal a balance between the high reflectivity of the and interdisciplinary community of scientists and engineers sail, required for efficient photon momentum transfer; large band- Tto design an ultralight spacecraft or ‘nanocraft’ that can reach width, accounting for the Doppler shift; and the low mass necessary Proxima Centauri b — an exoplanet within the habitable zone of for the spacecraft to accelerate to near-relativistic speeds. We show Proxima Centauri and 4.2 light years away from Earth — in approxi- that nanophotonic structures may be well-suited to meeting such mately -
Download Paper
Feasibility study for a near term demonstration of laser-sail propulsion from the ground to Low Earth Orbit Edward E. Montgomery IV Nexolve/Jacobs ESSSA Group Les Johnson NASA Marshall Space Flight Center Herbert D. Thomas NASA Marshall Space Flight Center ABSTRACT This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case. 1. BACKGROUND The design and construction of the Planetary Society’s LightSail 2 solar sail demonstration spacecraft has captured, in space flight hardware, the concept of small, yet capable spacecraft. The results of recent achievements in high power solid state lasers, adaptive optics, and precision tracking have also made it possible to access the effectiveness and reduced cost of an entry level laser power source. -
Lightsail 2 Set to Launch in June “We Are Go for Launch!” Said Planetary Society CEO Bill Nye
Lightsail 2 set to launch in June “We are go for launch!” said Planetary Society CEO Bill Nye. Funded by space enthusiasts, LightSail 2 aims to accomplish the 1st-ever, controlled solar sail flight in Earth orbit next month. Writing at the Planetary Society’s blog, Jason Davis this week (May 13, 2019) described the upcoming challenge of the launch of LightSail 2, a little spacecraft literally powered by sunbeams and dear to the hearts of many. He wrote: Weighing just 5 kilograms, the loaf-of-bread-sized spacecraft, known as a CubeSat, is scheduled to lift A one-unit CubeSat measures 10 centimeters per side. off on June 22, 2019, aboard a SpaceX Falcon Heavy LightSail is a three-unit CubeSat measuring 10 by 10 by 30 rocket from Kennedy Space Center, Florida. Once in centimetres. Here, an early LightSail model sits next to a space, LightSail 2 will deploy a boxing ring-sized solar loaf of bread for size comparison. sail and attempt to raise its orbit using the gentle push from solar photons. It’s the culmination of a 10-year project with an origin story linked to the three scientist-engineers who founded The Planetary Society in 1980. Indeed, although the Lightsail 2 project itself is 10 years old, the idea for lightsail or solar sail spacecraft goes back decades, at least. Carl Sagan – who was one of those Planetary Society founders -- popularized the idea for our time. Now the mantle for popularizing lightsails, and helping to bring the dream many steps closer to reality, has been passed to Bill Nye, the current CEO of the Planetary Society. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket......................................... -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
The Dynamics and Control of the Cubesail Mission — a Solar Sailing
© 2010 Andrzej Pukniel. THE DYNAMICS AND CONTROL OF THE CUBESAIL MISSION—A SOLAR SAILING DEMONSTRATION BY ANDRZEJ PUKNIEL DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor in Philosophy in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Victoria Coverstone, Chair Professor John Prussing Professor Rodney Burton Professor Gary Swenson ABSTRACT The proposed study addresses two issues related to the slow emergence of solar sailing as a viable space propulsion method. The low technology readiness level and complications related to stowage, deployment, and support of the sail structure are both addressed by combining the CU Aerospace and University of Illinois-developed UltraSail and CubeSat expertise to design a small-scale solar sail deployment and propulsion experiment in low Earth orbit. The study analyzes multiple aspects of the problem from initial sizing and packaging of the solar sail film into two CubeSat-class spacecraft, through on-orbit deployment dynamics, attitude control of large and flexible space structure, and predictions of performance and orbital maneuvering capability. ii ACKNOWLEDGEMENTS The following work would have not been possible without the continuous support and encouragement of my advisor, Professor Coverstone. Her patience, scientific insight, and enthusiasm are a rare combination that fosters a unique research environment. It allows the students to develop both as highly competent engineers as well as young individuals. Few advisors sincerely care for their students’ personal development as much as Professor Coverstone and I consider myself privileged to be part of her research group. I would also like to thank Professors Rod Burton and Gary Swenson as well as Dr. -
Orbit Transfer Problems and the Results You Obtained
MS&E 315 and CME 304 Solar sailing between Earth and Mars 1 Overview In this project, you will use your knowledge of nonlinear optimization to help a space agency design a cargo mission. The mission consists of making a cargo spacecraft perform interplanetary orbit transfers between Earth and Mars, and the agency is considering using a solar sail to propel the spacecraft. They need you to determine how the spacecraft should be operated to perform these orbit transfers in the shortest possible time for different solar sail technologies. 2 Mission information 2.1 Simplifications The agency has determined that the following simplifications are acceptable for your analysis: 1. Orbits are heliocentric, circular and co-planar. 2. Gravitational effects due to celestial bodies other than the Sun are ignored. 3. The Sun and spacecraft are modeled as point masses. 4. The Sun has spherically symmetric gravitational and radiation fields. 2.2 Problem description The problem you have to solve consists of determining how the solar sail of the spacecraft should be oriented to make the spacecraft perform each of the interplanetary orbit transfers Earth-Mars and Mars-Earth in the shortest possible time. You have to perform this analysis for some, say three, of the available solar sail technologies so that the agency can choose the most appropriate one in terms of cost and performance. Each solar sail technology is identified by a characteristic acceleration, as described in the next subsection. Figure1 shows a diagram of the orbits of interest, where rE and !E denote the radius and angular velocity, respectively, of Earth's orbit around the Sun, and rM and !M denote the radius and angular velocity, respectively, of Mars's orbit around the Sun. -
Hybrid Solar Sails for Active Debris Removal Final Report
HybridSail Hybrid Solar Sails for Active Debris Removal Final Report Authors: Lourens Visagie(1), Theodoros Theodorou(1) Affiliation: 1. Surrey Space Centre - University of Surrey ACT Researchers: Leopold Summerer Date: 27 June 2011 Contacts: Vaios Lappas Tel: +44 (0) 1483 873412 Fax: +44 (0) 1483 689503 e-mail: [email protected] Leopold Summerer (Technical Officer) Tel: +31 (0)71 565 4192 Fax: +31 (0)71 565 8018 e-mail: [email protected] Ariadna ID: 10-6411b Ariadna study type: Standard Contract Number: 4000101448/10/NL/CBi Available on the ACT website http://www.esa.int/act Abstract The historical practice of abandoning spacecraft and upper stages at the end of mission life has resulted in a polluted environment in some earth orbits. The amount of objects orbiting the Earth poses a threat to safe operations in space. Studies have shown that in order to have a sustainable environment in low Earth orbit, commonly adopted mitigation guidelines should be followed (the Inter-Agency Space Debris Coordination Committee has proposed a set of debris mitigation guidelines and these have since been endorsed by the United Nations) as well as Active Debris Removal (ADR). HybridSail is a proposed concept for a scalable de-orbiting spacecraft that makes use of a deployable drag sail membrane and deployable electrostatic tethers to accelerate orbital decay. The HybridSail concept consists of deployable sail and tethers, stowed into a nano-satellite package. The nano- satellite, deployed from a mothership or from a launch vehicle will home in towards the selected piece of space debris using a small thruster-propulsion firing and magnetic attitude control system to dock on the debris. -
Bulletin D'actualité Espace N°19-28
Bulletin d’actualité Espace n°19-28 Bulletin d’actualité Espace précédentBulletin d’actualité Espace suivant Bulletin d’actualité rédigé par le Bureau du CNES à Washington D.C. (Amaury Carbonnaux, Edouard Lallouette, Norbert Paluch) Liens utiles Pour consulter le présent bulletin d’actualité sous format PDF, cliquez ici. Pour consulter le présent bulletin d’actualité en ligne, cliquez ici. Pour consulter tous les bulletins d’actualité, toutes les notes, toutes les actualités et l’agenda du Service Spatial aux Etats-Unis, cliquez ici. Personalia L’Administrateur de la NASA nomme George Morrow Directeur du Goddard Space Flight Center Space Policy Online, 31 juillet 2019 Space Flight Insider, 1er août 2019 George Morrow remplace Chris Scolese, dont la nomination à la tête duNational Reconnaissance Office a été confirmée par le Sénat le 27 juin. Politique Le Sénateur Mike Enzi (républicain, Wyoming) inquiet des dérives budgétaires et calendaires de plusieurs programmes de la NASA Space News, 3 août 2019 S’appuyant sur plusieurs rapports du GAO (Government Accountability Office) et de l’OIG (Office of Inspector General de la NASA), le Président de la commission budgétaire du Sénat a adressé le 1er août un courrier à l’Administrateur de la NASA dans lequel il l’interroge sur les perspectives calendaires et budgétaires de JSWT, de la mission Artemis 2, d’Orion, du SLS et du segment sol associé, ainsi que sur les procédures d’acquisition et de contrôle de la bonne exécution des contrats passés par l’agence (réponse écrite demandée pour le 14 août). International Les Etats-Unis et le Japon ont tenu le 24 juin à Washington leur sixième dialogue global sur l’espace Communiqué de presse conjoint, 24 juillet 2019 L’ESA s’intéresse aux données fournies par Planet et Spire Cf. -
Propulsion Systems for Interstellar Exploration
The Future of Electric Propulsion: A Young Visionary Paper Competition 35th International Electric Propulsion Conference October 8-12, 2017 Atlanta, Georgia Propulsion Systems for Interstellar Exploration Steven L. Magnusen Embry-Riddle Aeronautical University, Daytona Beach, FL, USA Alfredo D. Tuesta∗ National Research Council Postdoctoral Associate, Washington, DC, USA [email protected] August 4, 2017 Abstract The idea of manned spaceships exploring nearby star systems, although difficult and unlikely in this generation or the next, is becoming less a tale of science fiction and more a concept of rigorous scientific interest. In 2003, NASA sent two rovers to Mars and returned images and data that would change our view of the planet forever. Already, scientists and engineers are proposing concepts for manned missions to the Red Planet. As we prepare to visit the planets in our solar system, we dare to explore the possibilities and venues to travel beyond. With NASA’s count of known exoplanets now over 3,000 and growing, interest in interstellar science is being renewed as well. In this work, the authors discuss the benefits and deficiencies of current and emerging technologies in electric propulsion for outer planet and extrasolar exploration and propose innovative and daring concepts to further the limits of present engineering. The topics covered include solar and electric sails and beamed energy as propulsion systems. I. Introduction Te Puke is the name for the voyaging canoe that the Polynesians developed to sail across vast distances in the Pacific Ocean at the turn of the first millennium. This primitive yet sophisticated canoe, made of two hollowed out tree trunks and crab claw sails woven together from leaves, allowed Polynesian sailors to navigate the open ocean by studying the stars. -
Outer Space: How Shall the World's Governments Establish Order Among Competing Interests?
Washington International Law Journal Volume 29 Number 1 12-23-2019 Outer Space: How Shall the World's Governments Establish Order Among Competing Interests? Paul B. Larsen Follow this and additional works at: https://digitalcommons.law.uw.edu/wilj Part of the Air and Space Law Commons Recommended Citation Paul B. Larsen, Outer Space: How Shall the World's Governments Establish Order Among Competing Interests?, 29 Wash. L. Rev. 1 (2019). Available at: https://digitalcommons.law.uw.edu/wilj/vol29/iss1/3 This Article is brought to you for free and open access by the Law Reviews and Journals at UW Law Digital Commons. It has been accepted for inclusion in Washington International Law Journal by an authorized editor of UW Law Digital Commons. For more information, please contact [email protected]. Copyright © 2019 Washington International Law Journal Association OUTER SPACE: HOW SHALL THE WORLD’S GOVERNMENTS ESTABLISH ORDER AMONG COMPETING INTERESTS? Paul B. Larsen† Abstract: We are in a period of transition in outer space; it is becoming increasingly congested. As one example, small satellites are beginning to interfere with astronomical observations. The objective of this article is to examine and evaluate how the various outer space interests interact, coordinate or conflict with each other. This article examines legal order options and the consequences of choosing among those options. Cite as: Paul B. Larsen, Outer Space: How Shall the World’s Governments Establish Order Among Competing Interests?, 29 WASH. INT’L L.J. 1 (2019). I. INTRODUCTION: WHY ORDER IN OUTER SPACE? Outer space seems unlimited; at least it so appeared in 1957 when Sputnik was launched.