Molecular Phylogenetic Identification of Endophytic Fungi Isolated from Three Artemisia Species

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Phylogenetic Identification of Endophytic Fungi Isolated from Three Artemisia Species Fungal Diversity Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species Huang, W.Y.1, Cai, Y.Z.1, Surveswaran, S.1, Hyde, K.D.2, Corke, H.1 and Sun M.1* 1School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, PR China 2School of Science, Mae Fah Luang University, Chiang Rai, Thailand Huang, W.Y., Cai, Y.Z., Surveswaran, S., Hyde, K.D., Corke, H. and Sun, M. (2009). Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Diversity 36: 69-88. Diverse fungal species live inside plant tissues, some of which presumably occur in a mutualistic association. Some fungal endophytes are widespread and can be found in many different plant species, whereas others are highly specific to single hosts. In this study, we investigated the taxonomic identities and phylogenetic relationships of fungal endophytes isolated from three plant species, Artemisia capillaris, A. indica, and A. lactiflora, using a combination of morphological and molecular approaches. Morphological differences among the fungal isolates indicate that diverse distinct morphotypes might be present within the hosts. Thirty-four fungal isolates were selected for further molecular phylogenetic analysis using nuclear ribosomal DNA sequences, including both the internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene region. The 34 endophytes were identified to various taxonomic levels, and some to the species level based on fungal sequences with known identities in GenBank. Our results suggest that Alternaria, Colletotrichum, Phomopsis, and Xylaria species are the dominant fungal endophytes in the Artemisia hosts, and some of these endophytes exhibit host and tissue specificity. This aspect can be further explored to understand the relationships between plant hosts and their fungal endophytes. Key words: Artemisia, endophytic fungi, molecular identification, phylogenetic analysis. Article Information Received 22 February 2008 Accepted 20 October 2008 Published online 31 May 2009 *Corresponding author: Mei Sun; e-mail: [email protected] Introduction Hyde and Soytong, 2008; Mitchell et al., 2008). Much attention is now being paid to Endophytes commonly refer to a group endophytic biodiversity, the chemistry and of fungi that reside asymptomatically inside the bioactivity of endophytic metabolites, and the living plant tissues (Sánchez Márquez et al., relationship between endophytes and their host 2007, 2008; Hyde and Soytong, 2008). Recent plants (Tan and Zou, 2001; Schulz et al., 2002; surveys of various host plants have demon- Kumar et al., 2005; Rungjindamai et al., 2008; strated that fungal endophytes are ubiquitous in Tao et al., 2008). plant species (Kumar et al., 2004; Zhang et al., The genus Artemisia (Asteraceae) is 2006; Sánchez Márquez et al., 2007; Huang et widely distributed in the world, with about 185 al., 2008; Oses et al., 2008) and even lichens species in China and is highly valued for its (Li et al., 2007). Globally, there are at least one medicinal properties (Zou et al., 2000). million species of endophytic fungi (Ganley et Artemisia capillaris is a traditional oriental al., 2004), which represent an important medicinal herb, and has been used for genetic resource for biotechnology. Endo- treatment of various liver diseases such as phytes have been recognized as potential hepatitis, jaundice and fatty liver (Hong et al., sources of novel natural products for 2004). Artemisia indica allegedly possesses pharmaceutical, agricultural and industrial uses, anti-malarial activity, and has been reported in especially those secondary metabolites the guideline of Thai medicinal plants used in produced by fungal endophytes colonizing primary health care (Chanphen et al., 1998). medicinal plants (Strobel and Daisy, 2003; Artemisia lactiflora, an edible plant in 69 Southeast Asia, has inhibitory effects on a Sánchez Márquez et al., 2007; Morakotkarn et variety of tumor promoter-induced biological al., 2007). Most of the endophytic fungi were responses such as oxidative stress as well as detected and identified by comparative tumor promotion in ICR mouse skin analyses of the ribosomal DNA sequences, (Nakamura et al., 1999). As part of our especially the ITS region. For example, Harney ongoing research towards finding novel anti- et al. (1997) identified arbuscular mycorrhizal oxidants from natural resources, we investi- fungi from Artemisia californica using the ITS gated the secondary metabolites of endophytes region. Also based on ribosomal DNA isolated from these three Artemisia medicinal sequences, Guo et al. (2000) and Lacap et al. plants and found that some of the endophytic (2003) evaluated the endophytic fungal fungal isolates exhibited strong anti-oxidant ‘morphotype’ concept concerning mycelia capacity (Huang et al., 2007). It is important to sterilia. A high diversity of endophytic fungal further identify these bioactive fungi for communities was revealed from either potential utilization using morphological and/or Heterosmilax japonica or Livistona chinensis molecular techniques. using a cultivation-independent approach by Fungal taxonomy is traditionally based analyzing fungal DNA sequences extracted on comparative morphological features (e.g., from plant tissues (Guo et al., 2001; Gao et al., Lodge et al., 1996; Sette et al., 2006; Crous et 2005). Ganley et al. (2004) studied morpho- al., 2007; Zhang et al., 2008). However, logically similar endophytes and parasites special caution should be taken when closely based on the ITS region, and found that the related or morphologically similar endophytes endophytic fungi in west white pine were are identified, because the morphological actually most closely related to, but distinct characteristics of some fungi are medium- from, the parasites. Peintner et al. (2003) first dependent and cultural conditions can recorded ectomycorrhizal Cortinarius species substantially affect vegetative and sexual from tropical India and established their compatibility (Zhang et al., 2006; Hyde and phylogenetic position using ITS sequences. Soytong, 2007). Furthermore, the conventional Queloz et al. (2005) monitored the spatial and methods cannot be applied for identifying temporal dynamics of the tree-root endophyte fungal isolates that fail to sporulate in culture, Phialocephala fortinii using the restriction which are categorized as mycelia sterilia fragment length polymorphism (RFLP) (Lacap et al., 2003). Various optimization of analysis. growth conditions have been used to promote In the present study, we isolated a total of sporulation of these fungi, such as different 108 endophytic fungal isolates from different culture media, potato dextrose agar (PDA), tissues of three medicinal Artemisia species (A. malt extract agar (MEA), corn meal agar capillaris, A. indica, and A. lactiflora). These (CMA), potato carrot agar (PCA), and water fungal endophytes were identified using a agar (WA), as well as the inclusion of host combination of morphological and molecular tissues in plate cultures (Guo et al., 2000). methods. Thirty-four representative isolates of Nevertheless, a large number of fungi still do various morphological endophytes were not sporulate in culture, and these mycelia selected for DNA sequence analysis using the sterilia are considerably frequent in the whole ITS region, including ITS1, 5.8S, and endophyte studies (Lacap et al., 2003). ITS2. Combining both morphological charac- In contrast, molecular techniques exhibit ters and DNA sequence data, we identified high sensitivity and specificity for identifying some of these endophytes to the species level microorganisms and can be used for classifying and the others at least to the family level, and microbial strains at diverse hierarchical evaluated phylogenetic relationships among the taxonomic levels (Sette et al., 2006). Several endophytes. This study represents the first step recent studies have shown that genetic methods for linking the biodiversity of endophytes, their can be successfully used in the studies of taxonomic identities and phylogenetic positions endophytic fungi (Gao et al., 2005; Wang et al., with their bioactivities in the medicinal plant 2005; Arnold et al., 2007; Ligrone et al., 2007; species. 70 Fungal Diversity Materials and methods 1990). The amplified fragment includes ITS1, 5.8S and the ITS2 of rDNA. Amplification was Plant material performed in a 50 μl reaction mixture Healthy plants of three medicinal containing 10 mM Tris–HCl (pH 9.0), 50 mM Artemisia species growing in Hong Kong were KCl, 0.1% Triton X 100, 2 mM MgCl2, 0.2 sampled from June to October, 2005. Artemisia mM dNTPs, 0.4 μM primers, 0.5 unit of Taq capillaris was collected from Ham Tin Wan, A. polymerase, and 2μl of fungal genomic DNA. indica from Kadoorie Farm and Botanic The thermal cycling program was as follows: 2 Garden, and A. lactiflora from the Hong Kong min initial denaturation at 94˚C, followed by Island. Fresh samples were taken to the 35 cycles of 30 s denaturation at 94˚C, 30 s laboratory and treated within 8 hours. Digital primer annealing at 55˚C, and 45˚s extension at photographs were taken of each species, and all 72˚C, and 5 min at 72˚C for a final extension. the species samples were deposited in School The PCR product was purified with High Pure of Biological Sciences, the University of Hong PCR Product Purification Kit (Roche Kong. Diagnostics GmbH, Germany). Direct DNA sequencing was performed using primers ITS3 Isolation of endophytic
Recommended publications
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • I V the Role of Seedling Pathogens in Temperate Forest
    The Role of Seedling Pathogens in Temperate Forest Dynamics by Michelle Heather Hersh University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ James S. Clark, Co-Supervisor ___________________________ Rytas Vilgalys, Co-Supervisor ___________________________ Marc A. Cubeta ___________________________ Katharina Koelle ___________________________ Daniel D. Richter Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2009 i v ABSTRACT The Role of Seedling Pathogens in Temperate Forest Dynamics by Michelle Heather Hersh University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ James S. Clark, Co-Supervisor ___________________________ Rytas Vilgalys, Co-Supervisor ___________________________ Marc A. Cubeta ___________________________ Katharina Koelle ___________________________ Daniel D. Richter An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2009 Copyright by Michelle Heather Hersh 2009 Abstract Fungal pathogens likely play an important role in regulating populations of tree seedlings and preserving forest diversity, due to their ubiquitous presence and differential effects on survival. Host-specific mortality from natural enemies is one of the most widely tested hypotheses in community ecology to explain the high biodiversity of forests. The effects of fungal pathogens on seedling survival are usually discussed under the framework of the Janzen-Connell (JC) hypothesis, which posits that seedlings are more likely to survive when dispersed far from the parent tree or at low densities due to pressure from host-specific pathogens (Janzen 1970, Connell 1971).
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites
    ORIGINAL RESEARCH published: 18 October 2017 doi: 10.3389/fmicb.2017.01997 Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites Grant T. Kirker 1*, Amy B. Bishell 1, Michelle A. Jusino 2, Jonathan M. Palmer 2, William J. Hickey 3 and Daniel L. Lindner 2 1 FPL, United States Department of Agriculture-Forest Service (USDA-FS), Durability and Wood Protection, Madison, WI, United States, 2 NRS, United States Department of Agriculture-Forest Service (USDA-FS), Center for Forest Mycology Research, Madison, WI, United States, 3 Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States Soil samples were collected from field sites in two AWPA (American Wood Protection Association) wood decay hazard zones in North America. Two field plots at each site were exposed to differing preservative chemistries via in-ground installations of treated wood stakes for approximately 50 years. The purpose of this study is to characterize soil fungal species and to determine if long term exposure to various wood preservatives impacts soil fungal community composition. Soil fungal communities were compared using amplicon-based DNA sequencing of the internal transcribed spacer 1 (ITS1) region of the rDNA array. Data show that soil fungal community composition differs significantly Edited by: Florence Abram, between the two sites and that long-term exposure to different preservative chemistries National University of Ireland Galway, is correlated with different species composition of soil fungi. However, chemical analyses Ireland using ICP-OES found levels of select residual preservative actives (copper, chromium and Reviewed by: Seung Gu Shin, arsenic) to be similar to naturally occurring levels in unexposed areas.
    [Show full text]
  • COMPLEXOS DE ESPÉCIES DE Colletotrichum ASSOCIADOS AOS CITROS E a OUTRAS FRUTÍFERAS NO BRASIL
    UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIENCIAS AGRÁRIAS E VETERINÁRIAS DE JABOTICABAL COMPLEXOS DE ESPÉCIES DE Colletotrichum ASSOCIADOS AOS CITROS E A OUTRAS FRUTÍFERAS NO BRASIL Roberta Cristina Delphino Carboni Engenheira Agrônoma 2018 T E S E / C A R B O N I R. C. D. 2 0 1 8 UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIENCIAS AGRÁRIAS E VETERINÁRIAS DE JABOTICABAL COMPLEXOS DE ESPÉCIES DE Colletotrichum ASSOCIADOS AOS CITROS E A OUTRAS FRUTÍFERAS NO BRASIL Roberta Cristina Delphino Carboni Orientador: Prof. Dr. Antonio de Goes Co-orientadora: Dra. Andressa de Souza Pollo Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias – Unesp, Câmpus de Jaboticabal, como parte das exigências para a obtenção do título de Doutora em Agronomia (Genética e Melhoramento de Plantas) 2018 Carboni, Roberta Cristina Delphino C264d Complexos de espécies de Colletotrichum associados aos citros e a outras frutíferas no Brasil / Roberta Cristina Delphino Carboni. – – Jaboticabal, 2018 x, 107 p.: il.; 29 cm Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, 2018 Orientador: Antonio de Goes Co-orientadora: Dra. Andressa de Souza Pollo Banca examinadora: Kátia Cristina Kupper, Rita de Cássia Panizzi, Juliana Altafin Galli, Marcos Tulio de Oliveira Bibliografia 1. Citrus spp., Colletotrichum spp. 2. Análise polifásica. 3. marcadores ISSR. I. Título. II. Jaboticabal-Faculdade de Ciências Agrárias e Veterinárias. CDU 634.3:632.4 Ficha catalográfica elaborada pela Seção Técnica de Aquisição e Tratamento da Informação – Diretoria Técnica de Biblioteca e Documentação - UNESP, Câmpus de Jaboticabal. DADOS CURRICULARES DO AUTOR ROBERTA CRISTINA DELPHINO CARBONI - nascida em 03 de novembro de 1987, em Jaboticabal-SP, é Engenheira Agrônoma formada pela Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP), Câmpus de Jaboticabal-SP, em fevereiro de 2012.
    [Show full text]
  • Phylogenetic Taxonomy of Artemisia L. Species from Kazakhstan Based On
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 72 (2018), No. 1 (712), pp. 29–37. DOI: 10.1515/prolas-2017-0068 PHYLOGENETIC TAXONOMY OF ARTEMISIA L. SPECIES FROM KAZAKHSTAN BASED ON MATK ANALYSES Yerlan Turuspekov1,5, Yuliya Genievskaya1, Aida Baibulatova1, Alibek Zatybekov1, Yuri Kotuhov2, Margarita Ishmuratova3, Akzhunis Imanbayeva4, and Saule Abugalieva1,5,# 1 Institute of Plant Biology and Biotechnology, 45 Timiryazev Street, Almaty, KAZAKHSTAN 2 Altai Botanical Garden, Ridder, KAZAKHSTAN 3 Karaganda State University, Karaganda, KAZAKHSTAN 4 Mangyshlak Experimental Botanical Garden, Aktau, KAZAKHSTAN 5 Al-Farabi Kazakh National University, Biodiversity and Bioresources Department, Almaty, KAZAKHSTAN # Corresponding author, [email protected] Communicated by Isaak Rashal The genus Artemisia is one of the largest of the Asteraceae family. It is abundant and diverse, with complex taxonomic relations. In order to expand the knowledge about the classification of Kazakhstan species and compare it with classical studies, matK genes of nine local species in- cluding endemic were sequenced. The infrageneric rank of one of them (A. kotuchovii) had re- mained unknown. In this study, we analysed results of sequences using two methods — NJ and MP and compared them with a median-joining haplotype network. As a result, monophyletic origin of the genus and subgenus Dracunculus was confirmed. Closeness of A. kotuchovii to other spe- cies of Dracunculus suggests its belonging to this subgenus. Generally, matK was shown as a useful barcode marker for the identification and investigation of Artemisia genus. Key words: Artemisia, Artemisia kotuchovii, DNA barcoding, haplotype network. INTRODUCTION (Bremer, 1994; Torrel et al., 1999). Due to the large amount of species in the genus, their classification is still complex Artemisia of the family Asteraceae is a genus with great and not fully completed.
    [Show full text]
  • GARDENERGARDENER® Thethe Magazinemagazine Ofof Thethe Aamericanmerican Horticulturalhorticultural Societysociety July / August 2007
    TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety July / August 2007 pleasures of the Evening Garden HardyHardy PlantsPlants forfor Cold-ClimateCold-Climate RegionsRegions EveningEvening PrimrosesPrimroses DesigningDesigning withwith See-ThroughSee-Through PlantsPlants WIN THE BATTLE OF THE BULB The OXO GOOD GRIPS Quick-Release Bulb Planter features a heavy gauge steel shaft with a soft, comfortable, non-slip handle, large enough to accommodate two hands. The Planter’s patented Quick-Release lever replaces soil with a quick and easy squeeze. Dig in! 1.800.545.4411 www.oxo.com contents Volume 86, Number 4 . July / August 2007 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 7 NEWS FROM AHS AHS award winners honored, President’s Council trip to Charlotte, fall plant and antiques sale at River Farm, America in Bloom Symposium in Arkansas, Eagle Scout project enhances River Farm garden, second AHS page 7 online plant seminar on annuals a success, page 39 Homestead in the Garden Weekend. 14 AHS PARTNERS IN PROFILE YourOutDoors, Inc. 16 PLEASURES OF THE EVENING GARDEN BY PETER LOEWER 44 ONE ON ONE WITH… Enjoy the garden after dark with appropriate design, good lighting, and the addition of fragrant, night-blooming plants. Steve Martino, landscape architect. 46 NATURAL CONNECTIONS 22 THE LEGEND OF HIDDEN Parasitic dodder. HOLLOW BY BOB HILL GARDENER’S NOTEBOOK Working beneath the radar, 48 Harald Neubauer is one of the Groundcovers that control weeds, meadow rues suited for northern gardens, new propagation wizards who online seed and fruit identification guide, keeps wholesale and retail national “Call Before You Dig” number nurseries stocked with the lat- established, saving wild magnolias, Union est woody plant selections.
    [Show full text]
  • CHERRY CHLOROTIC RUSTY SPOT and CHERRY LEAF SCORCH: TWO SIMILAR DISEASES ASSOCIATED with MYCOVIRUSES and DOUBLE STRANDED Rnas
    029_JPP554SC(Alioto)_485 20-07-2011 17:25 Pagina 485 Journal of Plant Pathology (2011), 93 (2), 485-489 Edizioni ETS Pisa, 2011 485 SHORT COMMUNICATION CHERRY CHLOROTIC RUSTY SPOT AND CHERRY LEAF SCORCH: TWO SIMILAR DISEASES ASSOCIATED WITH MYCOVIRUSES AND DOUBLE STRANDED RNAs R. Carrieri1, M. Barone1, F. Di Serio2, A. Abagnale1, L. Covelli3, M.T. Garcia Becedas4, A. Ragozzino1 and D. Alioto1 1 Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli “Federico II” 80055 Portici (NA), Italy 2Istituto di Virologia Vegetale del CNR, UOS Bari, 70126 Bari, Italy 3Biotechvana, Parc Cientific-Universitat de Valencia, Paterna, 46022 Valencia, Spain 4Junta de Extremadura, Servicio de Sanidad vegetal, 10600 Plasencia, Spain SUMMARY properly. This disorder may have a fungal etiology since mycelium-like structures are consistently associated Cherry chlorotic rusty spot (CCRS) is a disease of un- with it, plus 10 double-stranded RNAs (dsRNAs) iden- known etiology affecting sweet and sour cherry in South- tified as genomic components of mycoviruses in the ern Italy. CCRS has constantly been associated with the genera Chrysovirus, Partitivirus and Totivirus (Alioto et presence of an unidentified fungus, double-stranded al., 2003; Di Serio, 1996; Covelli et al., 2004; Coutts et RNAs (dsRNAs) from mycoviruses of the genera Chryso- al., 2004; Kozlakidis et al., 2006), and two closely relat- virus, Partitivirus and Totivirus and two small circular ed small circular RNAs (cscRNAs). CscRNAs possess ri- RNAs (cscRNAs) that may be satellite RNAs of one of bozymatic activity mediated by hammerhead structures the mycoviruses. The similarity of CCRS and Cherry leaf in both polarity strands (Di Serio et al., 1997), thus they scorch (CLS), a disease caused by the perithecial as- were proposed to be mycovirus satellites (Di Serio et al., comycete Apiognomonia erythrostoma, is discussed in 2006).
    [Show full text]
  • Видовой Состав И Эколого-Трофические Особенности Рода Colletotrichum Corda В Условиях Закрытого Грунта Цбс Нан Азербайджана
    ОБЩАЯ БИОЛОГИЯ DOI 10.37882/2223–2966.2020.08–2.05 ВИДОВОЙ СОСТАВ И ЭКОЛОГО-ТРОФИЧЕСКИЕ ОСОБЕННОСТИ РОДА COLLETOTRICHUM CORDA В УСЛОВИЯХ ЗАКРЫТОГО ГРУНТА ЦБС НАН АЗЕРБАЙДЖАНА Велиева Сафура Сахиб кызы, SPECIES COMPOSITION Диссертант(РhD), Институт Микробиологии НАНА, AND ECO-TROPHIC FEATURES Азербайджан, Баку OF THE GENUS COLLETOTRICHUM [email protected] CORDA IN THE GREENHOUSE Аннотация. В данной статье приведен видовой состав патогенных микро- OF THE CBG. OF THE NAS OF AZERBAIJAN мицетов рода Colletotrichum Corda тропических растений-интродуцентов S. Veliyeva закрытого грунта ЦБС НАН Азербайджана. В ходе проведенного исследо- вания выявлено 8 патогенных анаморфных видов (Colletotrichum crassipes Summary. In the article are presented species composition of pathogenic (Speg.) Arx, C. gloeosporioides (Penz.) Penz.&Sacc., C.destructivum O’Gara, C. micromycetes from the genus Colletotrichum Corda on the tropical plants- cliviae Yan L. Yang, C. musae (Berk.&M.A. Curtis) Arx, C. orchidearum Allesch., introducents to the greenhouse of the Central Botanical Garden of the C. roseolum Henn., C. orthianum Kostlan) рода Colletotrichum, относящихся National Academy of Sciences of Azerbaijan. In the course of researche к отделу Ascomycota, классу Sordariomycetes, подклассу Hypocreomycetidae, were identified 8 pathogenic anamorphic species (Colletotrichum порядку Glomerellales и семейству Glomerellaceae. Установлено 25 таксонов crassipes (Speg.) Arx, C. gloeosporioides (Penz.) Penz.&Sacc., питающих растений, на которых проходит рост и развитие выявленных фи- C.destructivum O’Gara, C. cliviae Yan L. Yang, C. musae (Berk.&M.A. топатогенных видов. Установлено, что обнаруженные патогенные микроми- Curtis) Arx, C. orchidearum Allesch., C. roseolum Henn., C. orthianum цеты рода Colletotrichum являются возбудителями болезни — антракноза Kostlan) from the genus Colletotrichum, belonging to the Ascomycota на вегетативных и генеративных органах тропических растений в закрытом division, the Sordariomycetes class, the Hypocreomycetidae subclass, the грунте.
    [Show full text]
  • Multigene Phylogeny and Secondary ITS Structure
    Persoonia 35, 2015: 21–38 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X687434 Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure M. Réblová1, K. Réblová2, V. Štěpánek3 Key words Abstract Thirteen morphologically similar strains of barbatosphaeria- and tectonidula-like fungi were studied based on the comparison of cultural and morphological features of sexual and asexual morphs and phylogenetic analyses phylogenetics of five nuclear loci, i.e. internal transcribed spacer rDNA operon (ITS), large and small subunit nuclear ribosomal Ramichloridium DNA, β-tubulin, and second largest subunit of RNA polymerase II. Phylogenetic results were supported by in-depth sequence analysis comparative analyses of common core secondary structure of ITS1 and ITS2 in all strains and the identification spacer regions of non-conserved, co-evolving nucleotides that maintain base pairing in the RNA transcript. Barbatosphaeria is Sporothrix defined as a well-supported monophyletic clade comprising several lineages and is placed in the Sordariomycetes Tectonidula incertae sedis. The genus is expanded to encompass nine species with both septate and non-septate ascospores in clavate, stipitate asci with a non-amyloid apical annulus and non-stromatic ascomata with a long decumbent neck and carbonised wall often covered by pubescence. The asexual morphs are dematiaceous hyphomycetes with holoblastic conidiogenesis belonging to Ramichloridium and Sporothrix types. The morphologically similar Tectonidula, represented by the type species T. hippocrepida, grouped with members of Barbatosphaeria and is transferred to that genus. Four new species are introduced and three new combinations in Barbatosphaeria are proposed. A dichotomous key to species accepted in the genus is provided.
    [Show full text]