Philippine Small-Scale Yellowfin Tuna (Thunnus Albacares) Handline Fishery MSC Fishery Assessment Report

Total Page:16

File Type:pdf, Size:1020Kb

Philippine Small-Scale Yellowfin Tuna (Thunnus Albacares) Handline Fishery MSC Fishery Assessment Report Philippine Small-Scale Yellowfin Tuna (Thunnus albacares) Handline Fishery MSC Fishery Assessment Report Public Comment Draft Report Authors Client Group - Philippine Tuna Handline Partnership (PTHP) Gerard DiNardo, Principal 1 Gulf of Lagonoy Tuna Fishers Federation Brian Ahlers, Principal 2 and Team Lead Atenogenes B. Reaso Michael Harte, Principal 3 Occidental-Occidental-Mindoro Federation of Tuna Fishers Association Johnson P. Peralta Philippine Association of Tuna Processors, Inc. (PATPI) Sammy C. Garcia May 18th, 2021 1 SCS Global Services Report Table of Contents List of Tables ................................................................................................................................................. 5 List of Figures ................................................................................................................................................ 7 2 Glossary ................................................................................................................................................... 11 3 Executive Summary ............................................................................................................................. 12 3.1 Fishery Operations Overview 12 3.1.1 The Philippine tuna industry ................................................................................................... 12 3.1.2 Partnership Program Towards Sustainable Tuna .................................................................... 13 3.2 Assessment Overview 13 3.3 Summary of Findings 14 4 Report Details ..................................................................................................................................... 16 4.1 Authorship and peer review details 16 4.1.1 Audit Team .............................................................................................................................. 16 Peer Reviewers............................................................................................................................ 19 4.1.2 .................................................................................................................................................... 19 1.2 Version details 20 5 Unit(s) of Assessment and Certification and results overview ........................................................... 21 5.1 Unit(s) of Assessment (UoA) and Unit(s) of Certification 21 5.1.1 Unit(s) of Assessment ............................................................................................................. 21 5.1.2 Unit(s) of Certification ............................................................................................................. 26 5.1.3 Scope of Assessment in Relation to Enhanced Fisheries or Introduced Fisheries .................. 27 5.2 Assessment results overview 29 5.2.1 Determination, formal conclusion and agreement ................................................................ 29 5.2.2 Principle level scores ............................................................................................................... 29 5.2.3 Summary of conditions ........................................................................................................... 30 5.2.4 Recommendations .................................................................................................................. 31 6 Traceability and eligibility ................................................................................................................... 32 6.1 Eligibility date 32 6.2 Traceability within the fishery 32 6.3 Eligibility to enter further chains of custody 35 6.4 Eligibility of Inseparable or Practicably Inseparable (IPI) stock(s) to Enter Further Chains of Custody 35 7 Scoring ................................................................................................................................................. 37 7.1 Summary of Performance Indicator level scores 37 7.2 Principle 1 39 2 Version 5-4 (December 2019) | © SCS Global Services | MSC V1.1 SCS Global Services Report 7.2.1 Principle 1 background – WCPO Yellowfin Tuna ..................................................................... 39 7.2.2 Principle 1 Performance Indicator scores and rationales ....................................................... 58 PI 1.1.1 – Stock Status ......................................................................................................................... 59 PI 1.1.2 – Stock rebuilding ................................................................................................................... 62 PI 1.2.1 – Harvest strategy .................................................................................................................. 64 PI 1.2.2 – Harvest control rules and tools ........................................................................................... 68 PI 1.2.3 – Information and monitoring ............................................................................................... 71 PI 1.2.4 – Assessment of stock status ................................................................................................. 74 7.3 Principle 2 77 7.3.1 Principle 2 background ........................................................................................................... 77 Ecosystem Impacts ............................................................................................................................ 128 7.3.2 Principle 2 Performance Indicator scores and rationales ..................................................... 137 PI 2.1.1 – Primary species outcome .................................................................................................. 137 PI 2.1.2 – Primary species management strategy ............................................................................. 140 PI 2.1.3 – Primary species information ............................................................................................. 145 PI 2.2.1 – Secondary species outcome .............................................................................................. 149 PI 2.2.2 – Secondary species management strategy ......................................................................... 152 PI 2.2.3 – Secondary species information ......................................................................................... 157 PI 2.3.1 – ETP species outcome ......................................................................................................... 160 PI 2.3.2 – ETP species management strategy ................................................................................... 164 PI 2.3.3 – ETP species information .................................................................................................... 169 PI 2.4.1 – Habitats outcome .............................................................................................................. 171 PI 2.4.2 – Habitats management strategy ......................................................................................... 174 PI 2.4.3 – Habitats information ......................................................................................................... 178 PI 2.5.1 – Ecosystem outcome .......................................................................................................... 182 PI 2.5.2 – Ecosystem management strategy ..................................................................................... 185 PI 2.5.3 – Ecosystem information ..................................................................................................... 188 7.4 Principle 3 192 7.4.1 Principle 3 background ......................................................................................................... 192 Principle 3 Performance Indicator scores and rationales ................................................................. 207 PI 3.1.1 – Legal and/or customary framework .................................................................................. 207 PI 3.1.2 – Consultation, roles and responsibilities ............................................................................ 213 PI 3.1.3 – Long term objectives ......................................................................................................... 217 PI 3.2.1 – Fishery-specific objectives ................................................................................................ 219 PI 3.2.2 – Decision-making processes ............................................................................................... 222 PI 3.2.3 – Compliance and enforcement ........................................................................................... 228 PI 3.2.4 – Monitoring and management performance evaluation ................................................... 235 8 References ........................................................................................................................................ 238 9 Appendices ........................................................................................................................................ 242 9.1 Assessment information 242 9.1.1 Small-scale fisheries .............................................................................................................. 242 9.2 Evaluation processes and techniques 242 9.2.1 Site visits ............................................................................................................................... 242 3 Version 5-4 (December 2019) | © SCS Global
Recommended publications
  • Hydrology, Hydraulics / River Planning SUPPORTING REPORT (1) – I HYDROLOGY, HYDRAULICS / RIVER PLANNING
    The Study on Comprehensive Disaster Prevention around Mayon Volcano SUPPORTING REPORT (1) (Part I: Master Plan) I : Hydrology, Hydraulics / River Planning SUPPORTING REPORT (1) – I HYDROLOGY, HYDRAULICS / RIVER PLANNING Table of Contents Page 1. METEOROLOGY...................................................................................................I - 1 1.1 Climate..............................................................................................................I - 1 1.1.1 General ................................................................................................I - 1 1.1.2 Southwest Monsoon............................................................................I - 1 1.1.3 Northeast Monsoon and the North Pacific Trade Wind ......................I - 1 1.1.4 Tropical Cyclones ...............................................................................I - 2 1.1.5 Orographic Effects ..............................................................................I - 2 1.2 Rainfall..............................................................................................................I - 2 1.3 Tropical Cyclones .............................................................................................I - 3 1.4 Temperature, Relative Humidity and Wind ......................................................I - 4 1.5 Meteorological Observation..............................................................................I - 6 1.5.1 Rainfall................................................................................................I
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Mining Amid Typhoons: Large-Scale Mining and Typhoon Vulnerability in the Philippines
    The Extractive Industries and Society 2 (2015) 445–461 Contents lists available at ScienceDirect The Extractive Industries and Society journal homepage: www.elsevier.com/locate/exis Mining amid typhoons: Large-scale mining and typhoon vulnerability in the Philippines William N. Holden * a Department of Geography, University of Calgary, Calgary, Alberta T2N 1N4, Canada ARTICLE INFO ABSTRACT Article history: This article examines the problems inherent in locating large-scale mining projects in the Philippines, a Received 30 January 2015 nation vulnerable to typhoons and heavy rainfall events. The government of the Philippines has Received in revised form 29 April 2015 emphasized large-scale mining as a method of achieving economic development but the Philippines are Available online 18 May 2015 highly vulnerable to typhoons and heavy rainfall events, which can adversely impact large-scale mining projects thus degrading the natural resources relied upon by the rural poor. With climate change, Keywords: typhoons are becoming more powerful, and more unpredictable, and this further complicates the Philippines difficulty of attempting to rely upon mining as an agent of development. Mining ã2015 Elsevier Ltd. All rights reserved. Typhoons Climate change 1. Introduction focal point of this article: the problems inherent in locating large- scale mining projects in the Philippines, a nation vulnerable to On 31 October 2005, during a heavy rainfall event, cyanide typhoons and heavy rainfall events. Attempting to rely upon large- contaminated mine wastes were spilled into the Albay Gulf in the scale mining as a method of accelerating economic development in Bicol Region of the Philippines (Holden and Jacobson, 2012). These such a setting can be problematic; it can degrade the environment mine wastes came from the Rapu–Rapu Polymetallic Project, then relied upon by the rural poor for their subsistence activities and being operated by Australia’s Lafayette Mining.
    [Show full text]
  • Spanish Mackerel J
    2.1.10.6 SSM CHAPTER 2.1.10.6 AUTHORS: LAST UPDATE: ATLANTIC SPANISH MACKEREL J. VALEIRAS and E. ABAD Sept. 2006 2.1.10.6 Description of Atlantic Spanish Mackerel (SSM) 1. Names 1.a Classification and taxonomy Species name: Scomberomorus maculatus (Mitchill 1815) ICCAT species code: SSM ICCAT names: Atlantic Spanish mackerel (English), Maquereau espagnol (French), Carita del Atlántico (Spanish) According to Collette and Nauen (1983), the Atlantic Spanish mackerel is classified as follows: • Phylum: Chordata • Subphylum: Vertebrata • Superclass: Gnathostomata • Class: Osteichthyes • Subclass: Actinopterygii • Order: Perciformes • Suborder: Scombroidei • Family: Scombridae 1.b Common names List of vernacular names used according to ICCAT, FAO and Fishbase (www.fishbase.org). The list is not exhaustive and some local names might not be included. Barbados: Spanish mackerel. Brazil: Sororoca. China: ᶷᩬ㤿㩪. Colombia: Sierra. Cuba: Sierra. Denmark: Plettet kongemakrel. Former USSR: Ispanskaya makrel, Korolevskaya pyatnistaya makrel, Pyatnistaya makrel. France: Thazard Atlantique, Thazard blanc. Germany: Gefleckte Königsmakrele. Guinea: Makréni. Italy: Sgombro macchiato. Martinique: Taza doré, Thazard tacheté du sud. Mexico: Carite, Pintada, Sierra, Sierra común. Poland: Makrela hiszpanska. Portugal: Serra-espanhola. Russian Federation: Ispanskaya makrel, Korolevskaya pyatnistaya makrel, Pyatnistaya makrel; ɦɚɤɪɟɥɶ ɢɫɩɚɧɫɤɚɹ. South Africa: Spaanse makriel, Spanish mackerel. Spain: Carita Atlántico. 241 ICCAT MANUAL, 1st Edition (January 2010) Sweden: Fläckig kungsmakrill. United Kingdom: Atlantic spanish mackerel. United States of America: Spanish mackerel. Venezuela: Carite, Sierra pintada. 2. Identification Figure 1. Drawing of an adult Atlantic Spanish mackerel (by A. López, ‘Tokio’). Characteristics of Scomberomorus maculatus (see Figure 1 and Figure 2) Atlantic Spanish mackerel is a small tuna species. Maximum size is 91 cm fork length and 5.8 kg weight (IGFA 2001).
    [Show full text]
  • Morphology and Phylogenetic Relationships of Fossil Snake Mackerels and Cutlassfishes (Trichiuroidea) from the Eocene (Ypresian) London Clay Formation
    MS. HERMIONE BECKETT (Orcid ID : 0000-0003-4475-021X) DR. ZERINA JOHANSON (Orcid ID : 0000-0002-8444-6776) Article type : Original Article Handling Editor: Lionel Cavin Running head: Relationships of London Clay trichiuroids Hermione Becketta,b, Sam Gilesa, Zerina Johansonb and Matt Friedmana,c aDepartment of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK bDepartment of Earth Sciences, Natural History Museum, London, SW7 5BD, UK cCurrent address: Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Ave, Ann Arbor, MI 48109-1079, USA *Correspondence to: Hermione Beckett, +44 (0) 1865 272000 [email protected], Department of Earth Sciences, University of Oxford, Oxford, UK, OX1 3AN Short title: Relationships of London Clay trichiuroids Author Manuscript Key words: Trichiuroidea, morphology, London Clay, Trichiuridae, Gempylidae, fossil This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/spp2.1221 This article is protected by copyright. All rights reserved A ‘Gempylids’ (snake mackerels) and trichiurids (cutlassfishes) are pelagic fishes characterised by slender to eel-like bodies, deep-sea predatory ecologies, and large fang-like teeth. Several hypotheses of relationships between these groups have been proposed, but a consensus remains elusive. Fossils attributed to ‘gempylids’ and trichiurids consist almost exclusively of highly compressed body fossils and isolated teeth and otoliths. We use micro-computed tomography to redescribe two three- dimensional crania, historically assigned to †Eutrichiurides winkleri and †Progempylus edwardsi, as well as an isolated braincase (NHMUK PV OR 41318).
    [Show full text]
  • The Genome of the Gulf Pipefish Enables Understanding of Evolutionary Innovations C
    Small et al. Genome Biology (2016) 17:258 DOI 10.1186/s13059-016-1126-6 RESEARCH Open Access The genome of the Gulf pipefish enables understanding of evolutionary innovations C. M. Small1†, S. Bassham1†, J. Catchen1,2†, A. Amores3, A. M. Fuiten1, R. S. Brown1,4, A. G. Jones5 and W. A. Cresko1* Abstract Background: Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results: We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions: The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups.
    [Show full text]
  • Annual Precipitation in Southeast Asia
    Annual N ^ ep Bhutan KA al ^ THMA THIMPHU NDU S a a utr l map w rah e B e X n i Taipei J Precipitation in China Ganges ia BANGLADESH n g ^DHAKA Taiwan T'ainan Southeast Asia Chittagong Kaoshsiung MYANMAR VIETNAM Hong Kong PACIFIC Macau HANOI^ OCEAN I r Haiphong r Luzon a Babuyan Bay of Bengal w LAOS Strait a Gulf of Islands d Locator Map d VIENTIA Tonkin Babuyan Channel y NE 180° 120°W 60°W 0° 60°E 120°E 180° C ^ h Palanan Bay a Lingayen RANGOON o M e Gulf Luzon ^ P k h o Da Nang PHILIPPINE 60°N 60°N ra THAILAND n y g a SEA Quezon City Polillo Gulf of ^ Islands Martaban BANGKOK MANILA ^ CAMBODIA Andaman Albay Gulf Mindoro Islands PHNOM A Mergui A sid PENH Gulf SIMAR SEA Archipelago ^ E Panay Gulf of S n Gulf Thailand A a IN w 60°S 60°S la H a ea ANDAMAN C P S Lianga Bay H M nao SEA T ind a U 180° 120°W 60°W 0° 60°E 120°E 180° Nikobar O Mindanao S S SULU SEA Islands t Palau ra Davao it Pujada Bay o Moro f o Gulf M BRUNEI g Davao a la la e c BANDAR SERI BENGAWAN Gulf c MALAYSIA ip a ^ ch Ar A Sulu E Medan S KUALA A Natuna Besar IA C ^ S CELEBES SEA C Legend LUMPUR Y LU Simeulue MA LA O M S Singapore HALHAMERA SEA ^ Capital Cities u Halmahera m Kepulauan Pontianak Other Major Southeast Asian Cities a Lingga t LAUT Borneo LAUT MALUK r Kepulauan Padang a B LEPAR Balikpapan International Boundary Mentawai a n Teluk Apar k Mac Cluer a Belitung Sulawesi CERAM SEA Gulf Rivers I N D O N E S I A a Ceram e Precipitation - Year n i New Guinea u LAUT DJAWA (JAVA SEA) G 0 mm per year lu w Enggano JAKARTA Te Pis BANDA SEA a e INDIAN n Teluk Rembang LAUT FLORES g N Tanjungkarang- ^ 100 2,000 OCEAN Ja a Telukbetung va (FLORES SEA) u Surabaja r p LAUT BALI SEA a a b 200 2,800 Flores P im DILI an i ^ K n T al te epulaua 400 4,000 B SAVU es L or Lombok m Sumba SEA Ti 600 5,600 Sumbawa TIMOR SEA 1,000 8,000 1,400 10,000 µ 0 290 580 1,160 Miles Australia Map Projection: World Miller Cylindrical Data Source: ESRI 2005 and www.geographynetwork.com Clover van Steenberghe 03.15.07.
    [Show full text]
  • Observations of Surface Currents in Panay Strait, Philippines
    OBSERVATIONS OF SURFACE CURRENTS IN PANAY STRAIT, PHILIPPINES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY December 2016 By Charina Lyn A. Repollo Dissertation Committee: Pierre Flament, Chairperson Mark Merrifield Glenn Carter Francois Ascani Camilo Mora We certify that we have read this dissertation and that, in our opinion, it is satisfac- tory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Oceanography. DISSERTATION COMMITTEE Chairperson i Copyright 2016 by Charina Lyn A. Repollo ii Acknowledgements This thesis is the result of hard work whereby I have been accompanied and supported by many people. This is an opportunity for me to express my gratitude for all of them. I am indebted to the Office of the Naval Research (ONR) through the Philippine Strait Dynamics Experiment (PhilEx) program for the funding support (grant N00014-09-1- 0807 to Pierre Flament). To the dedication and skill of the Captain and crew of the R/V Melville and the many U.S. and Philippine students, technicians, volunteers, and scientists who participated, assisted and helped in the fieldwork. Janet Sprintal provided the moored shallow pressure gauges and ADCP data (ONR grant N00014-06-1-690), Craig Lee provided the TRIAXUS data, and Julie Pullen provided the COAMPS winds. I would like to express my sincere gratitude to my advisor, Pierre Flament, for his pa- tience, motivation and intellectual support. His guidance helped me a lot in all the time of research and writing of this thesis.
    [Show full text]
  • North Atlantic Species Names
    - i - RESTRICTED INTERNATIONAL COMMISSION FOR THE NORTHWEST ATLANTIC FISHERIES ICNAF Res. Doc. 66-2 Serial No. 1610 (G.c.) ANNUAL MEETING - JUNE 1966 North AtlanFcSpecies NaITles (also FAO Fisheries Circular No. 79) A2 - 1 - FAO Fishories Circular No.7':) FEs/C 79 (Distribution restricted) Statistical standards NOR'l'H ATLAN"TIC SPBCIBS HAI.lES Prepared by Current Statistics and Economic Data Section Fishery Statistics and Economic Data Branch Fishery Economics and Products Division Department of Fisheries FOOD Aim AGRICULTURE ORGANIZATIon OF 'ruE UNITED NATIONS Rome, April 1966 A3 - 2 - PRll'ARATION OF THIS CIRCULAR Extract from Section 7 of the Report of the Fourth Session of the Continuing Working Party on Fishery Statistics in the North Atlantic Area (FAO Fisheries Reports, No. 21, FIe/R21): The Continuing Working Party noted that all three agencies, FAO, ICE~ and ICIIAF, have in the past few years undertrucen the review, revision and publication of lists of species appearing in tables in their statistical publications. It considered a proposal by the Secretary for joint FAO/ICilS/IC1~AF action to issue a loose-leaf ./Iulttllngua.l List 0/ Common Names 0/ North Atlantic Fishes, Crustac.ans, Molluscs, etc.. While several members v/ere strongly in favour of such a publication, the Continuing Working Party recommend~ that further work along these lines should for the moment be suspended pending publication by OECD of the Multilingua.l NOMsnclature 0/ Fish and Fisherv Products. However, the Continuing Viorking Party considers it desirable to have available for fishery workers concerned with North Atlantic fisheries statistics a document in a regular series, which could be referred to in preparing notes, instructions and reports on fishery statistics concerned with these North Atlantic species.
    [Show full text]
  • Pdf (Accessed Department of Environment and Natural September 1, 2010)
    OceanTEFFH O icial MAGAZINEog OF the OCEANOGRAPHYraphy SOCIETY CITATION May, P.W., J.D. Doyle, J.D. Pullen, and L.T. David. 2011. Two-way coupled atmosphere-ocean modeling of the PhilEx Intensive Observational Periods. Oceanography 24(1):48–57, doi:10.5670/ oceanog.2011.03. COPYRIGHT This article has been published inOceanography , Volume 24, Number 1, a quarterly journal of The Oceanography Society. Copyright 2011 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downloaded FROM www.tos.org/oceanography PHILIppINE STRAITS DYNAMICS EXPERIMENT BY PAUL W. MAY, JAMES D. DOYLE, JULIE D. PULLEN, And LAURA T. DAVID Two-Way Coupled Atmosphere-Ocean Modeling of the PhilEx Intensive Observational Periods ABSTRACT. High-resolution coupled atmosphere-ocean simulations of the primarily controlled by topography and Philippines show the regional and local nature of atmospheric patterns and ocean geometry, and they act to complicate response during Intensive Observational Period cruises in January–February 2008 and obscure an emerging understanding (IOP-08) and February–March 2009 (IOP-09) for the Philippine Straits Dynamics of the interisland circulation. Exploring Experiment. Winds were stronger and more variable during IOP-08 because the time the 10–100 km circulation patterns period covered was near the peak of the northeast monsoon season.
    [Show full text]
  • PHILIPPINES 2018 Highlights of Events Page 1 of 5
    PHILIPPINES 2018 Highlights of Events Page 1 of 5 TROPICAL CYCLONES SEISMIC ACTIVITIES Twenty-one tropical cyclones entered the The country, which lies along the Pacific Ring of Fire, is constantly Philippine Area of Responsibility in 2018, of which frequented by seismic and volcanic activity each year. In 2018, seismic 21 8 made landfall. Five of these were Tropical monitoring by the Philippine Institute of Volcanology and Seismology entered the Depressions (TD). Notable was Typhoon (PHIVOLCS) recorded more than 5,800 seismic events. Around 95% of Philippine Area Mangkhut (Ompong) which made landfall in these events were Magnitude 4.0 and below, and therefore barely felt. of Responsibility September. It was the lone Category 4 typhoon Even with over 250 seismic events with Magnitude 4.0 and above, there that left a trail of damages, and displacement was no significant damage or casualties reported throughout the country. 8 made landfall mostly in northern part of Luzon. Majority of the However, the Magnitude 7.2 offshore quake that rocked Davao Oriental Tropical tropical cyclones that made landfall were province on 29 December 2018 created a 5 Depression Magnitude 4.0 LUZON characterized by heavy and prolonged rainfall, scare in the coastal communities in the & above (257) Tropical affecting 38 provinces which suffered repeated region after PHIVOLCS issued a Tsunami 1 Storm displacements topped by Eastern Visayas region Advisory, which was lifted a few hours later 1 Category 2 (4 out of the 6 provinces). 769 Barangays / Villages after only minor sea level disturbance. 5,868 experienced rain-induced flooding, while landslides 1 Category 4 Magnitude 4.0 Manila were also reported.
    [Show full text]
  • Dynamics of Atmospheres and Oceans Seasonal Surface Ocean
    Dynamics of Atmospheres and Oceans 47 (2009) 114–137 Contents lists available at ScienceDirect Dynamics of Atmospheres and Oceans journal homepage: www.elsevier.com/locate/dynatmoce Seasonal surface ocean circulation and dynamics in the Philippine Archipelago region during 2004–2008 Weiqing Han a,∗, Andrew M. Moore b, Julia Levin c, Bin Zhang c, Hernan G. Arango c, Enrique Curchitser c, Emanuele Di Lorenzo d, Arnold L. Gordon e, Jialin Lin f a Department of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309, USA b Ocean Sciences Department, University of California, Santa Cruz, CA, USA c IMCS, Rutgers University, New Brunswick, NJ, USA d EAS, Georgia Institute of Technology, Atlanta, GA, USA e Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA f Department of Geography, Ohio State University, Columbus, OH, USA article info abstract Article history: The dynamics of the seasonal surface circulation in the Philippine Available online 3 December 2008 Archipelago (117◦E–128◦E, 0◦N–14◦N) are investigated using a high- resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004–March 2008. Three experi- Keywords: ments were performed to estimate the relative importance of local, Philippine Archipelago remote and tidal forcing. On the annual mean, the circulation in the Straits Sulu Sea shows inflow from the South China Sea at the Mindoro and Circulation and dynamics Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, Transport and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s−1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge.
    [Show full text]