Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs
Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL is a national laboratory of the U.S. Department of Energy, Office of Energy NREL is a national laboratory of the U.S. Department of Energy,Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/BK-6A10-58564 May 2014 Contract No. DE -AC36-08GO28308 Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs G. Parks, R. Boyd, J. Cornish, and R. Remick Independent Peer Review Team NREL Technical Monitor: Neil Popovich NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/BK-6A10-58564 Golden, CO 80401 May 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade- mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Hydrogen Fuel Cell Vehicles in Tunnels
SAND2020-4507 R Hydrogen Fuel Cell Vehicles in Tunnels Austin M. Glover, Austin R. Baird, Chris B. LaFleur April 2020 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 2 ABSTRACT There are numerous vehicles which utilize alternative fuels, or fuels that differ from typical hydrocarbons such as gasoline and diesel, throughout the world. Alternative vehicles include those running on the combustion of natural gas and propane as well as electrical drive vehicles utilizing batteries or hydrogen as energy storage. Because the number of alternative fuels vehicles is expected to increase significantly, it is important to analyze the hazards and risks involved with these new technologies with respect to the regulations related to specific transport infrastructure, such as bridges and tunnels. This report focuses on hazards presented by hydrogen fuel cell electric vehicles that are different from traditional fuels. There are numerous scientific research and analysis publications on hydrogen hazards in tunnel scenarios; however, compiling the data to make conclusions can be a difficult process for tunnel owners and authorities having jurisdiction over tunnels. This report provides a summary of the available literature characterizing hazards presented by hydrogen fuel cell electric vehicles, including light-duty, medium and heavy-duty, as well as buses. Research characterizing both worst-case and credible scenarios, as well as risk-based analysis, is summarized. Gaps in the research are identified to guide future research efforts to provide a complete analysis of the hazards and recommendations for the safe use of hydrogen fuel cell electric vehicles in tunnels. -
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale. -
EPRI Journal--Driving the Solution: the Plug-In Hybrid Vehicle
DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna The Story in Brief As automakers gear up to satisfy a growing market for fuel-efficient hybrid electric vehicles, the next- generation hybrid is already cruis- ing city streets, and it can literally run on empty. The plug-in hybrid charges directly from the electricity grid, but unlike its electric vehicle brethren, it sports a liquid fuel tank for unlimited driving range. The technology is here, the electricity infrastructure is in place, and the plug-in hybrid offers a key to replacing foreign oil with domestic resources for energy indepen- dence, reduced CO2 emissions, and lower fuel costs. DRIVING THE SOLUTION THE PLUG-IN HYBRID VEHICLE by Lucy Sanna n November 2005, the first few proto vide a variety of battery options tailored 2004, more than half of which came from Itype plugin hybrid electric vehicles to specific applications—vehicles that can imports. (PHEVs) will roll onto the streets of New run 20, 30, or even more electric miles.” With growing global demand, particu York City, Kansas City, and Los Angeles Until recently, however, even those larly from China and India, the price of a to demonstrate plugin hybrid technology automakers engaged in conventional barrel of oil is climbing at an unprece in varied environments. Like hybrid vehi hybrid technology have been reluctant to dented rate. The added cost and vulnera cles on the market today, the plugin embrace the PHEV, despite growing rec bility of relying on a strategic energy hybrid uses battery power to supplement ognition of the vehicle’s potential. -
Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study
Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study Simonas CERNIAUSKAS,1(1) Antonio Jose CHAVEZ JUNCO,(1) Thomas GRUBE,(1) Martin ROBINIUS(1) and Detlef STOLTEN(1,2) (1) Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428, Germany (2) Chair for Fuel Cells, RWTH Aachen University, c/o Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D- 52428, Germany Abstract The uncertain role of the natural gas infrastructure in the decarbonized energy system and the limitations of hydrogen blending raise the question of whether natural gas pipelines can be economically utilized for the transport of hydrogen. To investigate this question, this study derives cost functions for the selected pipeline reassignment methods. By applying geospatial hydrogen supply chain modeling, the technical and economic potential of natural gas pipeline reassignment during a hydrogen market introduction is assessed. The results of this study show a technically viable potential of more than 80% of the analyzed representative German pipeline network. By comparing the derived pipeline cost functions it could be derived that pipeline reassignment can reduce the hydrogen transmission costs by more than 60%. Finally, a countrywide analysis of pipeline availability constraints for the year 2030 shows a cost reduction of the transmission system by 30% in comparison to a newly built hydrogen pipeline system. Keywords: Hydrogen infrastructure, fuel cell vehicles, hydrogen embrittlement, geospatial analysis 1 D-52425 Jülich, +49 2461 61-9154, [email protected], http://www.fz- juelich.de/iek/iek-3 © 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Introduction The ongoing transition of the energy system to accommodate greenhouse gas emission reduction necessitates the reduction of fossil fuel consumption, including the use of natural gas (NG) [1]. -
Making Markets for Hydrogen Vehicles: Lessons from LPG
Making Markets for Hydrogen Vehicles: Lessons from LPG Helen Hu and Richard Green Department of Economics and Institute for Energy Research and Policy University of Birmingham Birmingham B15 2TT United Kingdom Hu: [email protected] Green: [email protected] +44 121 415 8216 (corresponding author) Abstract The adoption of liquefied petroleum gas vehicles is strongly linked to the break-even distance at which they have the same costs as conventional cars, with very limited market penetration at break-even distances above 40,000 km. Hydrogen vehicles are predicted to have costs by 2030 that should give them a break-even distance of less than this critical level. It will be necessary to ensure that there are sufficient refuelling stations for hydrogen to be a convenient choice for drivers. While additional LPG stations have led to increases in vehicle numbers, and increases in vehicles have been followed by greater numbers of refuelling stations, these effects are too small to give self-sustaining growth. Supportive policies for both vehicles and refuelling stations will be required. 1. Introduction While hydrogen offers many advantages as an energy vector within a low-carbon energy system [1, 2, 3], developing markets for hydrogen vehicles is likely to be a challenge. Put bluntly, there is no point in buying a vehicle powered by hydrogen, unless there are sufficient convenient places to re-fuel it. Nor is there any point in providing a hydrogen refuelling station unless there are vehicles that will use the facility. What is the most effective way to get round this “chicken and egg” problem? Data from trials of hydrogen vehicles can provide information on driver behaviour and charging patterns, but extrapolating this to the development of a mass market may be difficult. -
Green Illusions Is Not a Litany of Despair
“In this terrific book, Ozzie Zehner explains why most current approaches to the world’s gathering climate and energy crises are not only misguided but actually counterproductive. We fool ourselves in innumerable ways, and Zehner is especially good at untangling sloppy thinking. Yet Green Illusions is not a litany of despair. It’s full of hope—which is different from false hope, and which requires readers with open, skeptical minds.”— David Owen, author of Green Metropolis “Think the answer to global warming lies in solar panels, wind turbines, and biofuels? Think again. In this thought-provoking and deeply researched critique of popular ‘green’ solutions, Zehner makes a convincing case that such alternatives won’t solve our energy problems; in fact, they could make matters even worse.”—Susan Freinkel, author of Plastic: A Toxic Love Story “There is no obvious competing or comparable book. Green Illusions has the same potential to sound a wake-up call in the energy arena as was observed with Silent Spring in the environment, and Fast Food Nation in the food system.”—Charles Francis, former director of the Center for Sustainable Agriculture Systems at the University of Nebraska “This is one of those books that you read with a yellow marker and end up highlighting most of it.”—David Ochsner, University of Texas at Austin Green Illusions Our Sustainable Future Series Editors Charles A. Francis University of Nebraska–Lincoln Cornelia Flora Iowa State University Paul A. Olson University of Nebraska–Lincoln The Dirty Secrets of Clean Energy and the Future of Environmentalism Ozzie Zehner University of Nebraska Press Lincoln and London Both text and cover are printed on acid-free paper that is 100% ancient forest free (100% post-consumer recycled). -
Frequently Asked Questions About Commercial Hydrogen Vehicle Refueling
Frequently Asked Questions About Commercial Hydrogen Vehicle Refueling General Questions 1. Why is the U.S. continuing to develop hydrogen fuel cell vehicle technology? U.S. industries and government are at the forefront of research and development of hydrogen and fuel cell technology to power vehicles, homes, businesses, and remote equipment such as cell phone towers. The goals of this effort were to lessen U.S. dependence on foreign oil and advance an environmentally clean, safe, and reliable energy agenda. Hydrogen is one of many alternative fuels being explored. When hydrogen is used to power a hydrogen fuel cell electric vehicle (HFCEV), it offers one possible solution to meeting some of the growing demand in the U.S.A. for a reliable supply of clean and sustainable energy. Hydrogen is considered the ultimate clean vehicle fuel. The only emissions from a HFCEV are heat and clean water, which makes hydrogen a fuel that can help to protect the environment and keep our air cleaner. Hydrogen gas is 14.4 times lighter than air and dissipates rapidly and harmlessly if released into the air. Hydrogen has higher energy content by weight than other fuels, but lower energy content by volume. This means that sufficient quantities of hydrogen stored in liquid or compressed gaseous form onboard a HFCEV can provide a comparable driving range to conventional gasoline-powered vehicles. Fuel cells are lighter in weight than batteries used in plug-in electric vehicles, also making hydrogen fuel cell vehicles lighter and more suited to long-range applications than battery electric vehicles. In addition, FCEVs can be fully refueled in under 5 minutes at a hydrogen fueling station, compared to the 3 hours to more than 20 hours it takes to recharge battery electric vehicles. -
Hydrogen Energy Storage: Grid and Transportation Services Workshop
02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Carbonomics the Rise of Clean Hydrogen
EQUITY RESEARCH | July 8, 2020 | 11:34PM BST Carbonomics The Rise of Clean Hydrogen Clean hydrogen has a major role to play in the path towards net zero carbon, providing de-carbonization solutions in the most challenging parts of the Carbonomics cost curve - including long-haul transport, steel, chemicals, heating and long-term power storage. Clean hydrogen cost competitiveness is also closely linked to cost deflation and large scale developments in renewable power and carbon capture (two key technologies to produce it), creating three symbiotic pillars of de-carbonization. Clean hydrogen is gaining strong political and business momentum, emerging as a major component in governments' net zero plans such as the European Green Deal. This is why we believe that the hydrogen value chain deserves serious focus after three false starts in the past 50 years. Hydrogen is very versatile, both in its production and consumption: it is light, storable, has high energy content per unit mass and can be readily produced at an industrial scale. The key challenge comes from the fact that hydrogen (in its ambient form as a gas) is the lightest element and so has a low energy density per unit of volume, making long-distance transportation and storage complex and costly. In this report we analyze the clean hydrogen company ecosystem, the cost competitiveness of green and blue hydrogen in key applications and its key role in Carbonomics: the green engine of economic recovery. Michele Della Vigna, CFA Zoe Stavrinou Alberto Gandolfi +44 20 7552-9383 +44 20 7051-2816 +44 20 7552-2539 [email protected] [email protected] alberto.gandolfi@gs.com Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs does and seeks to do business with companies covered in its research reports. -
2008 Advanced Vehicle Technology Analysis and Evaluation Activities
annual progress report 2008V EHICLE T ECHNOLOGIES P ROGRAM ADVANCED VEHICLE TECHNOLOGY ANALYSIS AND EVALUATION ACTIVITIES AND HEAVY VEHICLE SYSTEMS OPTIMIZATION PROGRAM A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable energy will mean a stronger economy, a cleaner environment, and greater energy independence for America. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invests in a diverse portfolio of energy technologies. For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2008 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager FY 2008 Annual Report AVTAE Activities & HVSO Program ii AVTAE Activities & HVSO Program FY 2008 Annual Report CONTENTS I. INTRODUCTION.................................................................................................................................1 II. MODELING AND SIMULATION....................................................................................................9 A. PSAT Model Validation ...............................................................................................................9 -
Electrochemical Hydrogen Compressor
Electrochemical Hydrogen Compressor Ludwig Lipp FuelCell Energy, Inc. June 10, 2015 Project ID #PD048 This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview Timeline Barriers • Project Start Date: 7/15/10 • Barriers addressed for • Project End Date: 7/14/15 gaseous hydrogen compression: – More reliable Budget – Lower-cost Total Project Value: $2,623,213 – Higher efficiency • Total Recipient Share: $629,571 Partners • Total Federal Share: • Collaborations: Sustainable $1,993,642 Innovations, LLC • Total DOE Funds Spent*: • Project lead: FuelCell Energy $1,676,849 *As of 1/31/15 2 Relevance Objective: Develop solid state hydrogen compressor technology for vehicle refueling with greater reliability, scalability and lower costs Impact of EHC: • Increased reliability/availability over current mechanical compressors • Ensures “no possibility of lubricant contamination” (No moving parts) Fuel cell quality H2 • Increases compression efficiency to 95% (DOE 2015 Target) • Potentially reduces cost of H2 delivery to <$1/gge (DOE Long Term Target) 3 Relevance EHC Advantages Over Mechanical Compressor for Refueling: • Lower maintenance cost: No moving parts, longer MTBF • No noise: Can be permitted in high visibility area • No contaminants added: No lubricants required – maintains ultra-high H2 purity required by FCV at lower cost • Versatile guard bed for impurities • Robust for fast-fill: No shock and vibration caused by rapid and frequent start-up/shut-down cycles and variable fill rates •