Lipid Biology of Archaea

Total Page:16

File Type:pdf, Size:1020Kb

Lipid Biology of Archaea Archaea Lipid Biology of Archaea Guest Editors: Angela Corcelli, Parkson Lee-Gau Chong, and Yosuke Koga Lipid Biology of Archaea Archaea Lipid Biology of Archaea Guest Editors: Angela Corcelli, Parkson Lee-Gau Chong, and Yosuke Koga Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Archaea.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Maqsudul Alam, USA Dennis W. Grogan, USA Alla Nozhevnikova, Russia Sonja-Verena Albers, Germany Robert P. Gunsalus, USA Francesca M. Pisani, Italy Ricardo Amils, Spain Reinhard Hensel, Germany Marina Porcelli, Italy Haruyuki Atomi, Japan Li Huang, China David Prangishvili, France N. K. Birkeland, Norway Michael Ibba, USA Reinhard Rachel, Germany Paul H. Blum, USA Yoshizumi Ishino, Japan Anna-Louise Reysenbach, USA E. Bonch-Osmolovskaya, Russia Toshio Iwasaki, Japan Frank T. Robb, USA Mar´ıa Jose´ Bonete, Spain Zvi Kelman, USA F. Rodriguez-Valera, Spain Giovanna Cacciapuoti, Italy Serve´ Kengen, The Netherlands Roberto Scandurra, Italy IsaacK.O.Cann,USA Hans-Peter Klenk, Germany Kevin R. Sowers, USA Daniel¨ Charlier, Belgium Paola Londei, Italy Stefan Spring, Germany Antoine Danchin, France Peter A. Lund, UK Michael Thomm, Germany Uwe Deppenmeier, Germany Giuseppe Manco, Italy Herman van Tilbeurgh, France Nejat Duzg¨ unes,¨ USA William W. Metcalf, USA A. Ventosa, Spain Jerry Eichler, Israel Marco Moracci, Italy William B. Whitman, USA Harald Engelhardt, Germany Masaaki Morikawa, Japan Masafumi Yohda, Japan Michael W. Friedrich, Germany Volker Mueller, Germany Chuanlun Zhang, USA Toshiaki Fukui, Japan Biswarup Mukhopadhyay, USA C. Zwieb, USA Roger Garrett, Denmark Katsuhiko Murakami, USA Contents Lipid Biology of Archaea, Angela Corcelli, Parkson Lee-Gau Chong, and Yosuke Koga Volume 2012, Article ID 710836, 2 pages Phylogenomic Investigation of Phospholipid Synthesis in Archaea, Jonathan Lombard, Purificacion´ Lopez-Garc´ ´ıa, and David Moreira Volume 2012, Article ID 630910, 13 pages Coupled TLC and MALDI-TOF/MS Analyses of the Lipid Extract of the Hyperthermophilic Archaeon Pyrococcus furiosus, Simona Lobasso, Patrizia Lopalco, Roberto Angelini, Rita Vitale, Harald Huber, Volker Muller,¨ and Angela Corcelli Volume 2012, Article ID 957852, 10 pages Synthetic Archaeosome Vaccines Containing Triglycosylarchaeols Can Provide Additive and Long-Lasting Immune Responses That Are Enhanced by Archaetidylserine, G. Dennis Sprott, Angela Yeung, Chantal J. Dicaire, Siu H. Yu, and Dennis M. Whitfield Volume 2012, Article ID 513231, 9 pages Lipids of Archaeal Viruses, Elina Roine and Dennis H. Bamford Volume 2012, Article ID 384919, 8 pages On Physical Properties of Tetraether Lipid Membranes: Effects of Cyclopentane Rings, Parkson Lee-Gau Chong, Umme Ayesa, Varsha Prakash Daswani, and Ellah Chay Hur Volume 2012, Article ID 138439, 11 pages Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes,YosukeKoga Volume 2012, Article ID 789652, 6 pages Effect of Growth Medium pH of Aeropyrum pernix on Structural Properties and Fluidity of Archaeosomes, Ajda Ota, Dejan Gmajner, Marjeta Sentjurc,ˇ and Natasaˇ Poklar Ulrih Volume 2012, Article ID 285152, 9 pages Novel Cardiolipins from Uncultured Methane-Metabolizing Archaea, Marcos Y. Yoshinaga, Lars Wormer,¨ Marcus Elvert, and Kai-Uwe Hinrichs Volume 2012, Article ID 832097, 9 pages Archaeal Phospholipid Biosynthetic Pathway Reconstructed in Escherichia coli,TakeruYokoi, Keisuke Isobe, Tohru Yoshimura, and Hisashi Hemmi Volume 2012, Article ID 438931, 9 pages Hindawi Publishing Corporation Archaea Volume 2012, Article ID 710836, 2 pages doi:10.1155/2012/710836 Editorial Lipid Biology of Archaea Angela Corcelli,1 Parkson Lee-Gau Chong,2 and Yosuke Koga3 1 Department of Basic Medical Sciences, University of Bari Aldo Moro, Piazza G. Cesare, 70124 Bari, Italy 2 Department of Biochemistry, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA 3 Department of Chemistry, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu 807-8555, Japan Correspondence should be addressed to Angela Corcelli, [email protected] Received 13 November 2012; Accepted 13 November 2012 Copyright © 2012 Angela Corcelli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Today, there is increasing awareness of the multiple dynamic chemical properties and biotechnological applications of roles of lipids in cell life. archaeal lipids, mass spectrometry lipid analyses and lipids Knowing how lipid molecular species are organized, of the archaeal viruses. interact with proteins, and change with environmental stress An updated phylogenic analysis of enzymes involved in and metabolic state is crucial to understanding the mem- archaeal phospholipid biosynthetic pathways is presented by brane structure and the cellular functions. the group of D. Moreira. The biosynthetic pathways have The present view of lipid biology arises from the avail- also been analyzed from the experimental point of view in ability of technologies able to detect even minor lipid com- a study of the group of H. Hemmii, which has expressed 4 ponents with short lifetimes. In the late 1990s, the technical genes involved in the biosynthesis of archaeal phospholipids innovation in mass spectrometry led to the development in E. coli resulting in the production of archaeal-type lipids in of “lipidomics” as an evolution of lipid biochemistry. Fur- the bacterium; in the future such engineered E. coli cells may thermore, progress in microscopy and the availability of serve to test the properties of mixed membranes constituted many types of fluorescent probes, together with genetic of both archaeal and bacterial phospholipids. engineering, presently offer the possibility to move quickly Lipid components of the membranes of Pyrococcus towards lipid systems biology. As a consequence, besides furiosus have been analyzed by MALDI/TOF-MS coupled being able to analyze major and minor lipids of all structures to TLC in a study of S. Lobasso et al.; while lipids of and sizes by mass spectrometry and nuclear magnetic uncultured methanogens present in geological samples have resonance, we can study topology, structural organization, been detailed characterized by ESI-MS by M. Y. Yoshinaga and dynamics of lipids by microscopy and fluorescent probes et al. in living cells and microbes. The ability of archaeal lipids to act as adjuvant in vaccines Lipids are among the taxonomic traits that can be used designed to give protection against solid tumor has been to clearly delineate the archaea from all other organisms. examinedinastudybyG.D.Sprottetal. Archaeal phospholipids are built on glycero-1-phosphate and A review article by E. Roine and D. H. Bamford describes contain ether-linked isoprenoid chains, while bacterial and the specific lipid components of viral membranes of archaeal eukaryal lipids are constituted of fatty acids ester-linked viruses, in the frame of their possible functional roles in the to glycero-3-phosphate. The radical structural differences mechanism of infection. between lipids of archaea and bacteria or eukaryotes raise The chemical physical properties of the lipid core of many questions about early evolution of cell membranes. membranes constituted of archaeal diether lipids have been This special issue contains selected papers dealing examined in a study by A. Ota et al. by using fluorescence with archaeal phospholipid biosynthetic pathways, physical steady-state anisotropy and electron paramagnetic resonance 2 Archaea measurements and in a review article of P. L. Chong et al. where the role of cyclopentane rings in the lipid chains of tetraether lipids on membrane fluidity is examined. Finally an interesting contribution of Y. Koga compar- atively examines the different mode of adaptation to high temperature of archaea and bacteria pointing out the role that differences in chemical physical properties of archaeal and bacterial lipids might have played in the differentiation of archaea and bacteria during evolution. We hope that this issue will contribute to the understand- ing of the multiple roles of lipids in the cell biology of archaea and will stimulate further investigation in this field, opened by the pioneering studies of Morris Kates in the 60s. Angela Corcelli Parkson Lee-Gau Chong Yosuke Koga Hindawi Publishing Corporation Archaea Volume 2012, Article ID 630910, 13 pages doi:10.1155/2012/630910 Review Article Phylogenomic Investigation of Phospholipid Synthesis in Archaea Jonathan Lombard, Purificacion´ Lopez-Garc´ ıa,´ and David Moreira Unit´e d’Ecologie Syst´ematique et Evolution, CNRS UMR 8079, Universit´e Paris-Sud, 91405 Orsay Cedex, France Correspondence should be addressed to David Moreira, [email protected] Received 8 August 2012; Accepted 3 September 2012 Academic Editor: Angela Corcelli Copyright © 2012 Jonathan Lombard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Archaea have idiosyncratic cell membranes usually based on phospholipids containing glycerol-1-phosphate
Recommended publications
  • Elisabeth Mendes Martins De Moura Diversidade De Vírus DNA
    Elisabeth Mendes Martins de Moura Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Titulo de Doutor em Ciências. Área de concentração: Microbiologia Orienta: Prof (a). Dr (a). Dolores Ursula Mehnert versão original São Paulo 2017 RESUMO MOURA, E. M. M. Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo. 2017. 134f. Tese (Doutorado em Microbiologia) - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. A água doce no Brasil, assim como o seu consumo é extremamente importante para as diversas atividades criadas pelo ser humano. Por esta razão o consumo deste bem é muito grande e consequentemente, provocando o seu impacto. Os mananciais são normalmente usados para abastecimento doméstico, comercial, industrial e outros fins. Os estudos na área de ecologia de micro-organismos nos ecossistemas aquáticos (mananciais) e em esgotos vêm sendo realizados com mais intensidade nos últimos anos. Nas últimas décadas foi introduzido o conceito de virioplâncton com base na abundância e diversidade de partículas virais presentes no ambiente aquático. O virioplâncton influencia muitos processos ecológicos e biogeoquímicos, como ciclagem de nutriente, taxa de sedimentação de partículas, diversidade e distribuição de espécies de algas e bactérias, controle de florações de fitoplâncton e transferência genética horizontal. Os estudos nesta área da virologia molecular ainda estão muito restritos no país, bem como muito pouco se conhece sobre a diversidade viral na água no Brasil.
    [Show full text]
  • 3. Lipid Rafts
    UNIVERSITÀ DEGLI STUDI DI TRIESTE XXX CICLO DEL DOTTORATO DI RICERCA IN NANOTECNOLOGIE Lipid raft formation and protein-lipid interactions in model membranes Settore scientifico-disciplinare: FIS/03 DOTTORANDO Fabio Perissinotto COORDINATORE PROF. Lucia Pasquato SUPERVISORE DI TESI Dr. Loredana Casalis CO-SUPERVISORE DI TESI Dr. Denis Scaini ANNO ACCADEMICO 2016/2017 TABLE OF CONTENTS ABSTRACT ......................................................................................................................................... 4 INTRODUCTION ............................................................................................................................... 6 1. Biological membranes ............................................................................................................... 6 1.1 Lipid composition of cellular membranes ............................................................................ 7 1.2 Membrane proteins ........................................................................................................... 11 2. Physical and structural properties of cell membranes ........................................................... 12 2.1 Lipid-lipid interactions and phase separation .................................................................... 12 2.2 Membrane asymmetry ....................................................................................................... 14 2.3 Lipid diffusion ....................................................................................................................
    [Show full text]
  • Multiple Origins of Prokaryotic and Eukaryotic Single-Stranded DNA Viruses from Bacterial and Archaeal Plasmids
    ARTICLE https://doi.org/10.1038/s41467-019-11433-0 OPEN Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids Darius Kazlauskas 1, Arvind Varsani 2,3, Eugene V. Koonin 4 & Mart Krupovic 5 Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance 1234567890():,; in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occa- sions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. 1 Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania. 2 The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA. 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700 Cape Town, South Africa.
    [Show full text]
  • ( 12 ) United States Patent
    US010314866B2 (12 ) United States Patent (10 ) Patent No. : US 10 ,314 ,866 B2 Kovarik ( 45 ) Date of Patent: * Jun . 11, 2019 ( 54 ) METHOD OF REDUCING THE 61/ 919 , 297 , filed on Dec . 20 , 2013, provisional LIKELIHOOD OF SKIN CANCER IN AN application No . 61/ 467, 767 , filed on Mar . 25, 2011 . INDIVIDUAL HUMAN BEING (71 ) Applicant: Joseph E . Kovarik , Englewood , CO (51 ) Int. Cl. (US ) A61K 31 / 58 ( 2006 . 01 ) A61K 35 /00 (2006 . 01 ) (72 ) Inventor: Joseph E . Kovarik , Englewood , CO A61K 35 / 74 (2015 . 01 ) ( US ) A61K 38 / 17 ( 2006 .01 ) A61K 31 / 715 ( 2006 . 01 ) ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 (32 ) U . S . Cl. CPC .. .. .. .. A61K 35 / 74 ( 2013 .01 ) ; A61K 31 /58 U . S . C . 154 ( b ) by 0 days . (2013 .01 ) ; A61K 31/ 715 (2013 . 01 ) ; A61K This patent is subject to a terminal dis 38 / 1709 (2013 . 01 ) ; A61K 38 / 1758 ( 2013 .01 ) ; claimer . A61K 2035 / 11 ( 2013 .01 ) (58 ) Field of Classification Search ( 21) Appl. No .: 16 / 160, 336 None (22 ) Filed : Oct . 15, 2018 See application file for complete search history . (65 ) Prior Publication Data ( 56 ) References Cited US 2019 / 0038680 A1 Feb . 7 , 2019 U . S . PATENT DOCUMENTS Related U . S . Application Data 3 , 178 , 341 A 4 / 1965 Hamill et al . 4 , 568 ,639 A 2 / 1986 Lew (63 ) Continuation of application No . 15 / 403 , 823 , filed on 4 ,687 , 841 A 8 / 1987 Spilburg et al. Jan . 11 , 2017 , now Pat. No. 10 , 111, 913 , which is a 4 , 720 ,486 A 1 / 1988 Spilburg et al .
    [Show full text]
  • Doxorubicin and Paclitaxel Cause Different Changes In
    CHANGES IN PLASMA MEMBRANE FLUIDITY OF MCF-7 CELLS 135 POSTÊPY BIOLOGII KOMÓRKI TOM 36, 2009 SUPLEMENT NR 25 (135152) Rola komórek dendrytycznych w odpowiedzi transplantacyjnej* The role of dendritic cells in transplantation Maja Budziszewska1, Anna Korecka-Polak1, Gra¿yna Korczak-Kowalska1,2 1Zak³ad Immunologii, Wydzia³ Biologii, Uniwersytet Warszawski 2 Instytut Transplantologii, Warszawski Uniwersytet Medyczny *Dofinansowanie z grantu MNiSzW nr N N402 268036 Streszczenie: Komórki dendrytyczne (DC) s¹ najwa¿niejszymi komórkami prezentuj¹cymi antygenDOXORUBICIN (APC) limfocytom AND T. StopieñPACLITAXEL dojrza³oci komórki DC ma kluczowe znaczenie dla rodzaju odpowiedzi limfocytów T. Niedojrza³a komórka DC indukujeCAUSE stan DIFFERENT tolerancji, podczas CHANGES gdy dojrza³a IN komórkaPLASMA DC MEMBRANE- pe³n¹ odpowied immunologiczn¹.FLUIDITY Ma toOF ogromne MCF-7 znaczenie BREAST w transplantologii,CANCER CELLS a zw³aszcza w reakcjach odrzucania przeszczepu po transplantacjach narz¹du. Komórka DC dawcy prezentujeDOKSORUBICYNA antygen w sposób I PAKLITAKSEL bezporedni, natomiast POWODUJ¥ komórka RÓ¯NE DC ZMIANYbiorcy drog¹ poredni¹.W P£YNNOCI Komórki B£ONY DC niedojrza³ePLAZMATYCZNEJ lub o w³aciwociach KOMÓREK RAKA tolerogennych PIERSI MCF-7 mog¹ wyd³u¿yæ prze¿ycie przeszczepu allogenicznego. Takie oddzia³ywanie na funkcjê komórekKarolina MATCZAKDC, aby by³y1, Aneta one niewra¿liweKOCEVA-CHYLA na sygna³y1, Krzysztof dojrzewania GWOZDZINSKI in vivo lub2, aktywowanie komórek DC charakteryzuj¹cychZofia JÓWIAK1 siê trwa³ymi w³aciwociami tolerogennymi
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Studies on the Role of the Keratinocytes in Cutaneous Immnity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Factors shaping the composition of the cutaneous microbiota K. Szabó1, L. Erdei2, B. Sz. Bolla2, G. Tax2, T. Bíró3, L. Kemény1,2 1. MTA-SZTE Dermatological Research Group, Szeged, Hungary 2. Department of Dermatology and Allergology, University of Szeged, Hungary 3. DE-MTA “Lendület” Cellular Physiology Research Group, Departments of Physiology and Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary Running head: Factors shaping the composition of the cutaneous microbiota Manuscript word count: Manuscript table count: none Manuscript figure count: none Corresponding author: Kornélia Szabó Tel: +36-62-545 799 Fax: +36-62-545 799 E-mail address: [email protected] Keywords: microbiota, cutaneous microbiota, Propionibacterium acnes, acne vulgaris, disappearing microbiota hypothesis What's already known about this topic: -Microbes are integral components of the human ecosystem. -The cutaneous microbiota plays an important role in the regulation of skin homeostasis. -The composition of skin microbiota is influenced by many factors. What does this study add? -The dominance of P. acnes in the postadolescent sebum-rich skin regions and its role in acne pathogenesis may be explained by the disappearing microbiota hypothesis. Funding sources: Hungarian Scientific Research Fund (OTKA NK105369), János Bolyai Research Scholarship from the Hungarian Academy of Sciences (for K. Sz). Conflict of interest: The authors declare no conflict of interest. 1 Abstract From our birth, we are constantly exposed to bacteria, fungi and viruses, some of which are capable of transiently or permanently inhabiting our different body parts as our microbiota.
    [Show full text]
  • Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
    Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16].
    [Show full text]
  • Molecular Dynamics Simulations of Tight Junction Proteins
    Molecular Dynamics Simulations of Tight Junction Proteins Eleni Fitsiou This dissertation is submitted for the degree of Doctor of Philosophy August 2020 Department of Chemistry I would like to dedicate this dissertation to my husband Antonios and sons Dimitrios and Ioannis. ii “Wisdom begins in wonder” Socrates iii Declaration I, Eleni Fitsiou, declare that this thesis titled ‘Molecular Dynamics Simulations of Tight Junction Proteins’ has not been submitted in support of an application for another degree at this or any other university. It is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated. Where I have quoted from the work of others, the source is always given. Lancaster University, UK iv Abstract Tight junctions (TJs) are specialised cell-cell structures that serve primarily as a barrier to molecular transport through the intercellular space between the cells. The claudin family of proteins are the main structural and functional components of the TJ strands that circumscribe the cells. The detailed molecular organisation at the TJs is not entirely resolved, being relatively inaccessible by current experimental methods. Here, we have employed molecular dynamics simulations using both atomistic and coarse-grained models to investigate the TJ structure formed by claudin-1 using self-assembly coupled with free energy calculations and enhanced sampling techniques. A feature of the studies is that the self-assembly simulations have been carried out using atomistic detail (a first) by simulating only the extracellular domains of claudin-1 in an implied membrane. The results show that the cis-interaction can occur in the absence of trans-interacting partners and that a claudin dimer is the smallest stable unit.
    [Show full text]
  • Differences in Lateral Gene Transfer in Hypersaline Versus Thermal Environments Matthew E Rhodes1*, John R Spear2, Aharon Oren3 and Christopher H House1
    Rhodes et al. BMC Evolutionary Biology 2011, 11:199 http://www.biomedcentral.com/1471-2148/11/199 RESEARCH ARTICLE Open Access Differences in lateral gene transfer in hypersaline versus thermal environments Matthew E Rhodes1*, John R Spear2, Aharon Oren3 and Christopher H House1 Abstract Background: The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these “long distance” LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results: We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions: Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]