Evaluation of the Genomic Diversity of Viruses Infecting Bacteria, Archaea and Eukaryotes Using a Common Bioinformatic Platform: Steps Towards a Unified Taxonomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elisabeth Mendes Martins De Moura Diversidade De Vírus DNA
Elisabeth Mendes Martins de Moura Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Titulo de Doutor em Ciências. Área de concentração: Microbiologia Orienta: Prof (a). Dr (a). Dolores Ursula Mehnert versão original São Paulo 2017 RESUMO MOURA, E. M. M. Diversidade de vírus DNA autóctones e alóctones de mananciais e de esgoto da região metropolitana de São Paulo. 2017. 134f. Tese (Doutorado em Microbiologia) - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2017. A água doce no Brasil, assim como o seu consumo é extremamente importante para as diversas atividades criadas pelo ser humano. Por esta razão o consumo deste bem é muito grande e consequentemente, provocando o seu impacto. Os mananciais são normalmente usados para abastecimento doméstico, comercial, industrial e outros fins. Os estudos na área de ecologia de micro-organismos nos ecossistemas aquáticos (mananciais) e em esgotos vêm sendo realizados com mais intensidade nos últimos anos. Nas últimas décadas foi introduzido o conceito de virioplâncton com base na abundância e diversidade de partículas virais presentes no ambiente aquático. O virioplâncton influencia muitos processos ecológicos e biogeoquímicos, como ciclagem de nutriente, taxa de sedimentação de partículas, diversidade e distribuição de espécies de algas e bactérias, controle de florações de fitoplâncton e transferência genética horizontal. Os estudos nesta área da virologia molecular ainda estão muito restritos no país, bem como muito pouco se conhece sobre a diversidade viral na água no Brasil. -
Multiple Origins of Prokaryotic and Eukaryotic Single-Stranded DNA Viruses from Bacterial and Archaeal Plasmids
ARTICLE https://doi.org/10.1038/s41467-019-11433-0 OPEN Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids Darius Kazlauskas 1, Arvind Varsani 2,3, Eugene V. Koonin 4 & Mart Krupovic 5 Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance 1234567890():,; in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occa- sions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. 1 Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania. 2 The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA. 3 Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700 Cape Town, South Africa. -
The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA. -
Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16]. -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
Survey of High-Resolution Archaeal Virus Structures
Available online at www.sciencedirect.com ScienceDirect Survey of high-resolution archaeal virus structures 1 2 3,4 Ross Hartman , Jacob Munson-McGee , Mark J Young and 1,4 Charles Martin Lawrence Archaeal viruses exhibit diverse morphologies whose folds [5]. Of these, only 20 folds are known for the major structures are just beginning to be explored at high-resolution. capsid proteins (MCPs) of viruses [6,7]. Despite the genetic In this review, we update recent findings on archaeal structural diversity of viruses, their structural proteins, and especially proteins and virion architectures and place them in the their MCPs, fit within a limited number of groups. This biological context in which these viruses replicate. We limited number of common structural themes unite viruses conclude that many of the unusual structural features and across all three domains of life (Eukarya, Bacteria, and dynamics of archaeal viruses aid their replication and survival in Archaea) and evolutionary history [8]. Virion structure also the chemically harsh environments, in which they replicate. allows for insights into viral assembly, release, attachment, Furthermore, we should expect to find more novel features and entry by comparing well-characterized members of a from examining the high-resolution structures of additional structural lineage with less characterized members [9–11]. archaeal viruses. Our understanding of viruses that infect Archaea Addresses (archaeal viruses), lags far behind those infecting Bacte- 1 Department of Chemistry and Biochemistry, Montana State University, ria and Eukaryotes and we refer the reader to several Bozeman, MT, USA 2 excellent reviews on archaeal viruses [12–14]. Many Department of Microbiology and Immunology, Montana State archaeal viruses have unique morphologies [12,15–18]. -
Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil
viruses Article Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil Rafaela S. Fontenele 1,2, Cristiano Lacorte 2, Natalia S. Lamas 2, Kara Schmidlin 1, Arvind Varsani 1,3,* and Simone G. Ribeiro 2,* 1 The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA 2 Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil 3 Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa * Correspondence: [email protected] (A.V.); [email protected] (S.G.R.); Tel.: +1-480-727-2093 (A.V.); +55-61-3448-4666/3448-4703 (S.G.R.) Received: 14 June 2019; Accepted: 31 July 2019; Published: 2 August 2019 Abstract: Capybaras (Hydrochoerus hydrochaeris), the world’s largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified. -
Lipids of Archaeal Viruses
Hindawi Publishing Corporation Archaea Volume 2012, Article ID 384919, 8 pages doi:10.1155/2012/384919 Review Article Lipids of Archaeal Viruses Elina Roine and Dennis H. Bamford Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, 00014 Helsinki, Finland Correspondence should be addressed to Elina Roine, elina.roine@helsinki.fi Received 9 July 2012; Accepted 13 August 2012 Academic Editor: Angela Corcelli Copyright © 2012 E. Roine and D. H. Bamford. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Archaeal viruses represent one of the least known territory of the viral universe and even less is known about their lipids. Based on the current knowledge, however, it seems that, as in other viruses, archaeal viral lipids are mostly incorporated into membranes that reside either as outer envelopes or membranes inside an icosahedral capsid. Mechanisms for the membrane acquisition seem to be similar to those of viruses infecting other host organisms. There are indications that also some proteins of archaeal viruses are lipid modified. Further studies on the characterization of lipids in archaeal viruses as well as on their role in virion assembly and infectivity require not only highly purified viral material but also, for example, constant evaluation of the adaptability of emerging technologies for their analysis. Biological membranes contain proteins and membranes of archaeal viruses are not an exception. Archaeal viruses as relatively simple systems can be used as excellent tools for studying the lipid protein interactions in archaeal membranes. -
MED25670735 Am.Pdf
1 “Big Things in Small Packages: The genetics of filamentous phage and effects on fitness of 2 their host” 3 4 Anne Mai-Prochnow1,#, Janice Gee Kay Hui1, Staffan Kjelleberg1,2, Jasna Rakonjac3, Diane 5 McDougald1,2 and Scott A. Rice1,2* 6 7 1 The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular 8 Sciences, The University of New South Wales Australia 9 2 The Singapore Centre on Environmental Life Sciences Engineering and The School of Biological 10 Sciences, Nanyang Technological University Singapore 11 3 Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand 12 # Present address: CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070, 13 Australia 14 15 Running head: Filamentous phage and effects on fitness of their host 16 17 Key words: Inoviridae, Inovirus, filamentous phage, M13, Ff, CTX phage, bacteriophage, E. coli, 18 Pseudomonas, Vibrio cholerae, Biotechnology 19 20 One sentence summary: It is becoming increasingly apparent that the genus Inovirus, or 21 filamentous phage, significantly influence bacterial behaviours including virulence, stress 22 adaptation and biofilm formation, demonstrating that these phage exert a significant influence on 23 their bacterial host despite their relatively simple genomes. 24 1 25 Abstract 26 This review synthesises recent and past observations on filamentous phage and describes how these 27 phage contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae, encodes 28 the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage 29 can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the 30 emergence of new pathogenic strains. -
Chapter 20974
Genome Replication of Bacterial and Archaeal Viruses Česlovas Venclovas, Vilnius University, Vilnius, Lithuania r 2019 Elsevier Inc. All rights reserved. Glossary RNA-primed DNA replication Conventional DNA Negative sense ( À ) strand A negative-sense DNA or RNA replication used by all cellular organisms whereby a strand has a nucleotide sequence complementary to the primase synthesizes a short RNA primer with a free 3′-OH messenger RNA and cannot be directly translated into protein. group which is subsequently elongated by a DNA Positive sense (+) strand A positive sense DNA or RNA polymerase. strand has a nucleotide sequence, which is the same as that Rolling-circle DNA replication DNA replication whereby of the messenger RNA, and the RNA version of this sequence the replication initiation protein creates a nick in the circular is directly translatable into protein. double-stranded DNA and becomes covalently attached to Protein-primed DNA replication DNA replication whereby the 5′ end of the nicked strand. The free 3′-OH group at the a DNA polymerase uses the 3′-OH group provided by the nick site is then used by the DNA polymerase to synthesize specialized protein as a primer to synthesize a new DNA strand. the new strand. Genomes of Prokaryotic Viruses At present, all identified archaeal viruses have either double-stranded (ds) or single-stranded (ss) DNA genomes. Although metagenomic analyzes suggested the existence of archaeal viruses with RNA genomes, this finding remains to be substantiated. Bacterial viruses, also refered to as bacteriophages or phages for short, have either DNA or RNA genomes, including circular ssDNA, circular or linear dsDNA, linear positive-sense (+)ssRNA or segmented dsRNA (Table 1). -
(12) United States Patent (10) Patent No.: US 6,852,907 B1 Padidam Et Al
USOO6852907B1 (12) United States Patent (10) Patent No.: US 6,852,907 B1 Padidam et al. (45) Date of Patent: Feb. 8, 2005 (54) RESISTANCE IN PLANTS TO INFECTION (56) References Cited BY SSDNAVIRUS USING INOVRIDAE PUBLICATIONS VIRUS SSDNA-BINDING PROTEIN, COMPOSITIONS AND METHODS OF USE (Plant Virology, Matthews, R.E.F. 3rd Ed., 1991, Academic Press, San Diego, Calif, p. 424).* (75) Inventors: Malla Padidam, Lansdale, PA (US); Padidam, et al., A phage single-stranded DNA (ssDNA) Roger N. Beachy, St. Louis, MO (US); binding protein complements SSDNA accumulation of a Claude M. Fauquet, Del Mar, CA (US) geminivirus and interferes with viral movement, 1999, J. Virol.., 73(2):1609–1616. 73) AssigSCC Thee Scripps RResearch h Institute,Insti LLa Padidam, et al., Tomato leaf curl geminivirus from India has Jolla, CA (US) a bipartite genome and coat protein is not essential for c: NotiOtice: Subjubject to anyy disclaimer,disclai theh term off thisthi infectivity, 1995, J. Gen. Virol, 76:25-35. patent is extended or adjusted under 35 Horsch, et al., A Simple and general method for transferring genes into plants, 1985, Science, 227: 1229-1231. U.S.C. 154(b) by 0 days. Sanford, et al., Optimizing the biolistic process for different (21) Appl. No.: 09/622,500 biological applications, 1993, Meth. Enzymol., 217:483-509. (22) PCT Filed: Mar. 3, 1999 Bates, Electroporation of plant protoplasts and tissues, 1995, (86) PCT No.: PCT/US99/04716 Meth. Cell Biol., 50:363-373. Timmermans, et al., Geminiviruses and their uses as extra S371 (c)(1), chromosomal replicons, 1994, Annu. -
Review Article Lipids of Archaeal Viruses
Hindawi Publishing Corporation Archaea Volume 2012, Article ID 384919, 8 pages doi:10.1155/2012/384919 Review Article Lipids of Archaeal Viruses Elina Roine and Dennis H. Bamford Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 5, 00014 Helsinki, Finland Correspondence should be addressed to Elina Roine, elina.roine@helsinki.fi Received 9 July 2012; Accepted 13 August 2012 Academic Editor: Angela Corcelli Copyright © 2012 E. Roine and D. H. Bamford. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Archaeal viruses represent one of the least known territory of the viral universe and even less is known about their lipids. Based on the current knowledge, however, it seems that, as in other viruses, archaeal viral lipids are mostly incorporated into membranes that reside either as outer envelopes or membranes inside an icosahedral capsid. Mechanisms for the membrane acquisition seem to be similar to those of viruses infecting other host organisms. There are indications that also some proteins of archaeal viruses are lipid modified. Further studies on the characterization of lipids in archaeal viruses as well as on their role in virion assembly and infectivity require not only highly purified viral material but also, for example, constant evaluation of the adaptability of emerging technologies for their analysis. Biological membranes contain proteins and membranes of archaeal viruses are not an exception. Archaeal viruses as relatively simple systems can be used as excellent tools for studying the lipid protein interactions in archaeal membranes.