ENANO N7 Ok.Qxd

Total Page:16

File Type:pdf, Size:1020Kb

ENANO N7 Ok.Qxd E newsletter March 2007 nº 7 http://www.phantomsnet.net Nanometrology at the nanoscale Nanotechnology: applications and social implications Molecular switches: Isomerization of single azobenzene derivates STM imaging of molecules on a thin insulating film High resolution imaging of electronic and molecular structures assembled on InSb(001) c(8x2) surface with LT-STM Contents/Editorial E newsletter Editorial Information 3 Research Nanometrology at the nanoscale 5 E. Prieto Nanotechnology: applications and social implications 8 A. Correia, M. Pérez , J. J. Sáenz and P. A. Serena NANO Vacancies 18 NANO Conferences 20 NANO News 21 Pico-Inside Integrated Project Molecular switches: Isomerization of single azobenzene derivates 22 L. Grill, M. Alemani, K.-H. Rieder, F. Moresco, M. V. Peters and S. Hecht STM imaging of molecules on a thin insulating film 24 C. J. Villagomez Ojeda, S. Gauthier, A. Gourdon, S. Stojkovic and C. Joachim High resolution imaging of electronic and molecular structures assembled on InSb(001) c(8x2) surface with LT-STM 28 G. Goryl, S. Godlewski, J.J. Kolodziej and M. Szymonski Dear Readers: Deadline for manuscript submission: Issue nº08: May 01, 2007 Nanotechnology has become a rapidly growing research Issue nº09: July 01, 2007 and development field that is cutting across many tradi- tional boundaries. Given its multidisciplinary character, the list of potential applications is very long. Depósito Legal: M-43078-2005 This E-Nano newsletter issue is therefore dedicated to Editorial Board: Adriana Gil (Nanotec SL, Spain), Christian present a review on the applications and social implica- Joachim (CEMES-CNRS, France), Ron Reifenberger tions of Nanotechnology but also provide insights on the (Purdue University, USA), Stephan Roche (CEA-DRFMC, quantitative determination of dimensions (metrology) and France), Juan Jose Saenz (UAM, Spain), Pedro A. Serena other properties of nanostructures, crucial in R&D and (ICMM-CSIC, Spain), Didier Tonneau (CRMC2-CNRS, also in industrial processes. France), Rainer Waser (Research Center Julich, Germany) We would like to thank all the authors who contributed to For any question please contact the editor at: this issue as well as the European Union (FET/NANO- [email protected] ICT) and the Pico-Inside Integrated Project for their close collaboration. EDITORIAL INFORMATION E newsletter nº7 March 2007 Dr. Antonio Correia Published by PHANTOMS Foundation (Spain) E newsletter Editor Editor: Dr. Antonio Correia PHANTOMS Foundation PHANTOMS Foundation [email protected] Assistant Editor: Jose Luis Roldan PHANTOMS Foundation [email protected] 1500 copies of this issue have been printed www.phantomsnet.net E newsletter March 2007 3 Research Metrology at the nanoscale to the realization of the metre and the retrorreflected di- E. Prieto ffraction order sent by a beamsplitter through a focusing Centro Español de Metrología (CEM), Alfar 2, Tres Cantos, 28760 lens to a CCD video camera acting as a null-position Madrid, Spain detector because its many advantages on the typical four- The quantitative determination of dimensions and other properties of micro and nanostructures is crucial in R&D and also in industrial proce- sses control. Understanding physical and chemical properties of stru- ctures at the nanoscale is in most cases directly linked to the knowledge of their critical dimensions. SPMs are widely used for nanometre scale characterizations but quanti- tative measurements are only possible by using traced instruments, together with suitable calibration artefacts and right measurement proce- dures. The most accurate way to perform traceable measurements with SPMs is to convert them in metrological ones by integrating 3D interferometric measurement systems. Some traceable atomic force microscopes (AFM) have been developed in last years by National Institutes of Metrology along with novel methods and standards for their calibration. Evaluating and quantifying the interaction between tip and sample, in order to differentiate features not belonging to the object under study and the design of new probes able to measure at sidewalls of nano- and Figure 1: Schematic drawing of the NRC imaging diffractometer micro-structures represent interesting contributions aimed to characte- setup. rize accurately any kind of feature. quadrant photodetectors [3]. The idea of using coordinate measuring machines (CMMs) at the nanoscale has also expanded and CMMs have become versatile and But the most accurate way to perform traceable measure- widespread metrology tools, after improving their metrological design, ments with SPMs is to convert them in metrological ones minimizing ulterior corrections, and developing specific software to se- by integrating 3D interferometric measurement systems to parate errors coming from different sources. follow the scanner/tip position along with means to elimi- Most of the efforts we are observing in instrumentation, calibration and measurement methods are directly motivated by the need of fulfilling the nate the scanner and Abbe errors [4-7]. continuously narrower manufacturing requirements as those stated, for Some traceable atomic force microscopes (AFM) have instance, in the International Technology Roadmap for Semiconductors, been developed by National Institutes of Metrology in the where many of the figures are not reachable yet because they are last years [8-10], along with novel methods for their cali- depending on new measurement capabilities, not yet fully developed. bration. Some of these 'metrological AFMs' claim to reach Keywords: nanoscale, nanostructures, critical dimen- measurement uncertainties of 1 nm (Figure 2) [11]. sions, SPM, AFM, metrology, traceability, calibration. The quantitative determination of the properties of micro and nanostructures is essential in R&D and also in indus- trial processes control and quality assurance. Knowledge of the geometrical dimensions of structures is, in most cases, the base for understanding other physical and chemical properties [1]. As in the macro world, also at the nanometre scale all quantitative dimensional and geometrical measurements should be traceable to the definition of the metre. This means to follow an unbroken chain of comparisons with stated uncertainties (the traceability chain) in order to link the actual measurements to the highest point of the metro- logical pyramid, the meter, normally realized by a stabi- lized laser or, more recently, by femtosecond frequency combs linking the metre and the second [2]. Figure 2: The traceable AFM developed at NMi-VSL consists of SPMs are widely used for nanometre scale characteriza- a scanning stage (SS), an invar metrology frame (MF) with a 3D tions but as indicated above quantitative measurements laser interferometer and an AFM head (AH). are only possible by using traced instruments, together with suitable calibration artefacts and right measurement Even with these metrological instruments, it is important to procedures. So, there is a real need of moving to tra- evaluate and quantify the interaction between tip and ceable atomic force microscopes (AFM). This can be sample, in order to differentiate between the features of made by interferometric calibration of the scales of the the object and those caused by the interaction, due to AFM or by using calibrated grids as transfer standards. affecting factors as bending and twisting of the cantilever, One of the possible ways to calibrate grids is using a laser friction, humidity and surface forces. diffraction setup (Figure 1) composed by a precision Some of these interactions have been studied with the rotary table, the sample grating mounted in Littrow confi- help of a modified microscope [12] with added optical fibre guration, a collimated spatially filtered laser source linked and homodyne differential interferometers, able to mea- sure the movement of the cantilever and detect residual www.phantomsnet.net E newsletter March 2007 5 Research movements together with the vertical displacement beams come back to detectors after being further reflec- between the cantilever holder and the sample (Figure 3). ted by other surfaces, as shown in Figure 5, leading to wrong measurement results [15]. Figure 5: Difficulties encountered by conventional measure- ment techniques during sidewall profiling. In order to solve major limitations of conventional AFM probes, novel Assembled Cantilever Probes (ACP), appli- cable for direct and non-destructive sidewall measure- ments of nano and micro-structures have been developed Figure 3: Photograph of the AFM developed by NPL and PTB to [15]. study tip–sample interactions Considering the advantages of combining scanning probe microscopy with X-ray interferometry [13] such AFM has been designed so that it can also be mounted over the X- ray interferometer developed in the COXI project [14]. The X-ray interferometer would then be used as a one-dimen- sional translation stage for scans that require high resolu- tion, making displacements traceable to the definition of the metre, in discrete steps of 0.192 nm, the lattice spa- cing of the (2 2 0) planes in silicon. Figure 6: Schematic diagram illustrating the versatile structures of ACPs. Figure 7: Micrograph of an ACP taken using a scanning elec- tron microscope. Figure 4: Combined optical and X-ray interferometer (COXI) Project, NPL/PTB/INRIM. Another kind of instruments originated in the macro world but used now in nanometrology, because the new New developments also occupy on solving specific pro- demands
Recommended publications
  • Dr. Sumio Iijima's Research Accomplishments & Biography
    Dr. Sumio Iijima’s Research Accomplishments & Biography last update October 1, 2021 Biography Name: Sumio Iijima Date of Birth: May 2, 1939 Contact: Meijo University, 1-501, Shiogamaguchi, Tenpaku, Nagoya, Aichi, 468-8502 +81-52-834-4001 [email protected] Professional Title and Affiliation: ・University Professor, Meijo University, ・Senior Research Fellow, NEC Corporation ・Honorary AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST) ・Distinguished Invited University Professor, Nagoya University Research Fields: Nano Science, Materials Science, Electron microscopy, Crystallography Education: 1959-1963: University of Electro-communications, Tokyo, Bachelor of Engineering 1963-1965: Tohoku University, Sendai, Majoring in Physics; M.S. 1965-1968: Tohoku University, Sendai, Majoring in Physics; Ph.D. Professional Record: 1968-1974 Research Associate, Research Institute for Scientific Measurements, Tohoku University, Sendai 1970-1977: Research Associate, Department of Physics, Arizona State University, Tempe, Arizona 1977-1982: Senior Research Associate, Center for Solid State Science, Arizona State University, Tempe, Arizona 1979: Visiting Senior Scientist, Department of Metallurgy and Materials Science, University of Cambridge, Cambridge 1982-1987: Group Leader, ERATO Program, Research Development Corporation of Japan, Nagoya 1987-Present: Senior Research Fellow, NEC Corporation, Tsukuba (Joined NEC in 1987 as Senior Principal Researcher) 1999-Present: University Professor, Meijo University, Nagoya (Visiting
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Photomechanical Actuation of Liquid Crystal Nanotube Elastomers. Xiaoming Fan University of Louisville
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Photomechanical actuation of liquid crystal nanotube elastomers. Xiaoming Fan University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Fan, Xiaoming, "Photomechanical actuation of liquid crystal nanotube elastomers." (2014). Electronic Theses and Dissertations. Paper 422. https://doi.org/10.18297/etd/422 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. PHOTOMECHANICAL ACTUATION OF LIQUID CRYSTAL NANOTUBE ELASTOMERS By Xiaoming Fan B.Eng., Beijing University of Chemical Engineering, 2007 A Thesis Submitted to the Faculty of the J. B. Speed School of Engineering of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Mechanical Engineering University of Louisville Louisville, Kentucky August 2014 PHOTOMECHANICAL ACTUATION OF LIQUID CRYSTAL NANOTUBE ELASTOMERS By Xiaoming Fan B.Eng., Beijing University of Chemical Engineering, 2007 A Thesis Approved On July 11, 2014 by the following Thesis Committee : ____________________________________ Dr. Balaji Pachapakesan, Thesis Director ____________________________________ Dr. Robert W. Cohn _____________________________________ Dr. Stuart J. Williams ii ACKNOWLEDGEMENTS I would like to thank Dr. Baloo for his great help and support throughout the project.
    [Show full text]
  • The Structural Biodegradation of Graphene Oxide in Vivo
    The Structural Biodegradation of Graphene Oxide In Vivo A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine & Health Leon Newman School of Health Sciences, Division of Pharmacy and Optometry 2017 Table of Contents List of Figures ..................................................................................................................... 5 List of Tables ..................................................................................................................... 10 Abstract ............................................................................................................................. 12 Declaration ........................................................................................................................ 13 Declaration ..................................................................................................................... 13 Copyright statement ...................................................................................................... 13 Acknowledgements .......................................................................................................... 14 Rationale for the alternative thesis format ...................................................................... 15 List of abbreviations ......................................................................................................... 16 Chapter 1 ..........................................................................................................................
    [Show full text]
  • Building Super Structures Through “Buckyballs and Buckytubes” Anuraag Boddupalli* Manipal Institute of Technology, India
    Boddupalli, 1:8 http://dx.doi.org/10.4172/scientificreports.396 Open Access Open Access Scientific Reports Scientific Reports Rapid Communication OpenOpen Access Access Building Super Structures through “Buckyballs and Buckytubes” Anuraag Boddupalli* Manipal Institute of Technology, India Abstract Fullerenes or buck series of hollow carbon molecules that form either a closed cage (“buckyballs”) or a cylinder (carbon “nanotubes”) represent an exciting group of nanomaterials which have a beauty and elegance that excites the imagination of scientists and nonscientists alike, as they bridge aesthetic gaps between the sciences, architecture, mathematics, engineering, and the visual arts. Since the discovery of fullerenes in 1985, structural variations on fullerenes have evolved well beyond the individual clusters themselves. Their tremendous significance is related to their unique chemistry, super conductivity, and their technological applications, especially in materials science, electronics, and nanotechnology. Researchers are now slowly unraveling the multifaceted attributes of these molecules for improving society and environment. Keywords: Carbon; Geodesic dome; Fullerenes; Nanotubes; Nanomotors Introduction Nanotechnology represents a subject which is a synthesis of different sciences and technologies at the nanometer scale. In other words, it involves a different approach to the way we arrange and rearrange matter, which in turn can be harnessed to develop need based technologies. Until 1985, graphite and diamond were believed to be the only naturally occurring forms of carbon. In the year 1902, seven year old Buckminster Fuller, like all his other classmates was given a set of toothpicks and peas to design whatever he wanted in the class. The objective of that exercise was to judge the creativity and aptitude of the child, but it took several years for people to realize the immense significance of the truncated icosahedron structure that little Figure 1: A buckminsterfullerene or a ‘Buckyball’ showing inter-atomic linkages.
    [Show full text]
  • INTER. Nb -DE30MM
    LeMonde Job: WMQ2611--0001-0 WAS LMQ2611-1 Op.: XX Rev.: 25-11-99 T.: 10:13 S.: 111,06-Cmp.:25,10, Base : LMQPAG 23Fap: 100 No: 2043 Lcp: 700 CMYK 0123 FONDATEUR : HUBERT BEUVE-MÉRY 2000-2099 DIRECTEUR : JEAN-MARIE COLOMBANI 21 questions au XXIe siècle b La rédaction du « Monde » vous propose un voyage au cœur du siècle futur b Après le bilan du siècle, paru au premier semestre, une encyclopédie de l’avenir b France Info s’associe à cette enquête auprès des meilleurs spécialistes b Paul Rebeyrolle apporte sa vision de peintre sur chacun des thèmes traités CE NUMÉRO spécial a pour am- bition de traiter les grandes ques- LES GRANDS TÉMOINS tions – environnementales, biolo- giques, géopolitiques – auxquelles le siècle prochain sera confronté. Il Trois est le complément du Siècle, notre supplément paru au premier se- romanciers mestre, où la rédaction du Monde Irons-nous sur Mars ? Un troisième proposait son bilan d’une époque sexe va-t-il naître ? Travaillerons-nous à inaugurée tragiquement par la perpétuité ? Etc. Trois romanciers ré- guerre mondiale de 14-18. Le prin- pondent : Zoé Valdés, d’origine cipe adopté aujourd’hui est simple : cubaine, qui a publié récemment les journalistes sont partis à la ren- Compartiment fumeurs et La Douleur contre des meilleurs chercheurs, du dollar (Actes Sud), l’académicien scientifiques, sociologues, écrivains Erik Orsenna, auteur de L’Exposition sur chacun des thèmes traités. A partir de leurs informations et de coloniale et du Grand Amour (Seuil), et leurs interprétations naît une vision Norman Spinrad, auteur de science-fic- globale du siècle à venir.
    [Show full text]
  • Non-Convalent Functionalization of Carbon Nanotubes : from the Organization of Surfactants to the Self-Assembly Ofporphyrins
    Non-convalent functionalization of carbon nanotubes : From the organization of surfactants to the self-assembly ofporphyrins. Geraud Delport To cite this version: Geraud Delport. Non-convalent functionalization of carbon nanotubes : From the organization of surfactants to the self-assembly ofporphyrins.. Optics / Photonic. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLN075. tel-01505288 HAL Id: tel-01505288 https://tel.archives-ouvertes.fr/tel-01505288 Submitted on 11 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNTè1èxBGgSACLNBzF T HESEèDEèDOCTORAT DE L’UNIVERSITE P ARIS,SACLAY PREPAREEèA L:ECOLEèNORMALEèSUPERIEUREèDEèCACHAN hECOLE NORMALE SUPERIEUREèDE PARISèSACLAY h ECOLE DOCTORALEèN°èFzx OndesèetèMatière Spécialitéèdeèdoctoratè1èNanophysique P ar M.GéraudmDELPORT Nonzconvalentmfunctionalizationmofmcarbonmnanotubes. Fromètheèorganizationèofèsurfactantsètoètheèself,assemblyèofèporphyrinsf ThèsemprésentéemetmsoutenuemàmOrsayfmlem14mdécembrem2016m:m m m CompositionmdumJurym:mè è MmeèRachelèMEALLET,RENAULTmèè ProfesseuremèPrésidenteèduèJury
    [Show full text]
  • Atomic Structure Details of Nano-Carbon Materials & Their
    Atomic Structure Details of Nano-Carbon Materials & Their Implications Sumio Iijima Faculty of Science and Technology, Meijo University National Institute of Advanced Industrial Science and Technology Nanotube Research Center, SAINT and NEC, Meijo University, Nagoya, JAPAN A GEMSEC- CNT-CoE Sponsored Colloquium Host: Mehmet Sarikaya ([email protected]) Time 12:30 p.m., Tuesday, March 16th: Place: Mueller Hall (MSE) #153 Auditorium Nanoscience and nanotechnology deal with nano-scale structures of materials and, therefore, the knowledge and control of material structures at the atomic-resolution are essential. Modern electron microscopes facilitate characterization (via both imaging and spectroscopy) of materials at the atomic resolution. As examples, I demonstrate some latest results on structural characterization of carbon nanotubes,1-4 graphene,5 and boron nitride mono-layer films.6 I would also like to introduce some of industrial applications of nano-carbon materials. 1. K. Suenaga, et al. Nature Nanotech. 2, 358 (2007) 2. Y. Sato, et al., Nano Lett, 7, 3704 (2007). 3. C. H. Jin, et al., Nature Nanotech. 3, 17 (2008). 4. C. H. Jin, et al., PRL, 101, 176102(1)-(4) (2008). 5. Z. Liu, et al., PRL, 102, 015501 (1)-(4) (2009). 6. C. H. Jin, et al., PRL, 102, 195505 (1)-(4) (2009). Professor Sumio Iijima is the discoverer of carbon nanotubes (CNT) (see ref. below). He has contributed to the physics of nanostructured material since 1970s, well before nanotechnology” as a concept existed, and cquired some of the first atomic resolution images of inorganic materials during the late 1970s opening the ways for high resolution electron microscopy imaging that led to the developments of, e.g., heterostructural semiconductors, the bases of today’s microelectronics (integrated circuits used, e.g., in lop-tops, cell phones, etc.).
    [Show full text]
  • Fisica De Lo Imposible
    Física de lo imposible www.librosmaravillosos.com Michio Kaku Colaboración de Sergio Barros 1 Preparado por Patricio Barros Física de lo imposible www.librosmaravillosos.com Michio Kaku Prefacio Si una idea no parece absurda de entrada, pocas esperanzas hay para ella. Albert Einstein ¿Será posible algún día atravesar las paredes? ¿Construir naves espaciales que puedan viajar a una velocidad superior a la de la luz? ¿Leer la mente de otras personas? ¿Hacerse invisible? ¿Mover objetos con el poder de nuestra mente? ¿Transportar nuestro cuerpo de manera instantánea por el espacio exterior? Desde niño me han fascinado estas preguntas. Como muchos físicos, en mi adolescencia me sentía hipnotizado por la posibilidad de que hubiera viajes en el tiempo, pistolas de rayos, campos de fuerza, universos paralelos y cosas por el estilo. Magia, fantasía y ciencia ficción constituían un gigantesco campo de juego para mi imaginación. Con ellas empezó mi duradera relación amorosa con lo imposible. Recuerdo cómo veía las reposiciones del viejo Flash Gordon en televisión. Cada sábado me encontraba pegado a la pantalla del televisor, maravillado ante las aventuras de Flash, el doctor Zarkov y Dale Arden y su impresionante despliegue de tecnología futurista: naves a reacción, escudos de invisibilidad, pistolas de rayos y ciudades en el cielo. No me perdía un episodio. El programa me abrió un mundo completamente nuevo. Me fascinaba la idea de viajar un día a un planeta lejano y explorar su territorio. Una vez en la órbita de estas fantásticas invenciones, sabía que mi destino estaba ligado de algún modo a las maravillas de la ciencia que prometía la serie.
    [Show full text]
  • Author Index
    PHYSICAL REVIEW B VOLUME 70, NUMBER 24 15 DECEMBER 2004-II Cumulative Author Index All authors of papers published in this volume are listed alphabetically. Full titles are included in each first author’s entry. For Rapid Communi- cations an R precedes the page number. The letters (C) and (BR) following the page number indicate that a paper is a Comment or a Brief Report, respectively. References with (E) are to Errata. Aarab, H. — ͑see Mulazzi, E.͒ B 70, 155206͑15͒ and D. A. Shulyatev — First-order nature of the ferromagnetic ͑ ͒ ͑ ͒ ͒ ͑ ͒ Aarts, J. — see Rusanov, A. Yu. B 70, 024510 1 phase transition in ͑La-Ca MnO3 near optimal doping. B 70, 134414 1 ͑seeYang,Z.Q.͒ B 70, 174111͑1͒ Adams, E. M. — ͑see Nachimuthu, P.͒ B 70, 100101͑R͒͑1͒ ͑see Zhang, Y. Q.͒ B 70, 132407͑BR͒͑1͒ Adams, M. A. — ͑see Knafo, W.͒ B 70, 174401͑1͒ Abalmassov, Veniamin A. and Florian Marquardt — Electron-nuclei Adams, P. W. — ͑see Young, D. P.͒ B 70, 064508͑1͒ spin relaxation through phonon-assisted hyperfine interaction in a Adell, M., L. Ilver, J. Kanski, J. Sadowski, R. Mathieu, and V. quantum dot. B 70, 075313͑15͒ Stanciu — Photoemission studies of the annealing-induced ͑ ͒ Abanov, Ar. and Andrey V. Chubukov — Spin resonance and high- modifications of Ga0.95Mn0.05As. B 70, 125204 15 frequency optical properties of the cuprates. B 70, 100504͑R͒͑1͒ Adelmann, C., B. Daudin, R. A. Oliver, G. A. D. Briggs, and R. E. Abayev, I. — ͑see Kytin, V. G.͒ B 70, 193304͑BR͒͑15͒ Rudd — Nucleation and growth of GaN/AlN quantum dots.
    [Show full text]
  • National Aeronautics and Space Administration Inspiration
    National Aeronautics and Space Administration 2007 spinoff Inspiration Innovation Discovery Future Innovative Partnerships Program Developed by On the Cover: Photograph of the International Space Publications and Graphics Department Station taken from the Space Shuttle Atlantis on June 19 2007, at the end of STS-117. The mission NASA Center for AeroSpace Information (CASI) delivered the second and third starboard truss segments (S3/S4) and another pair of solar arrays to the station. Table of Contents 5 Foreword 7 Introduction 8 Executive Summary 18 NASA Technologies Benefiting Society Health and Medicine Circulation-Enhancing Device Improves CPR ........................................................................................................22 Noninvasive Test Detects Cardiovascular Disease ...................................................................................................26 Scheduling Accessory Assists Patients with Cognitive Disorders ..............................................................................30 Neurospinal Screening Evaluates Nerve Function * ..............................................................................................32 Hand-Held Instrument Fights Acne, Tops Over-the-Counter Market ....................................................................34 Multispectral Imaging Broadens Cellular Analysis ...................................................................................................36 Hierarchical Segmentation Enhances Diagnostic Imaging .......................................................................................40
    [Show full text]
  • View of Nanotechnology
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Synthesis of Super-Long Carbon Nanotube Arrays by Chemical Vapor Deposition by Andrew J. Gorton A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department: Mechanical Industrial and Nuclear Engineering Major: Mechanical Engineering Committee: Dr. Mark J.Schulz, Advisor, Mechanical Engineering Dr. Vesselin Shanov, Co-Advisor, Materials Engineering Dr. Jay Kim, Mechanical Engineering Dr. Randy Allemang, Mechanical Engineering University of Cincinnati Cincinnati, Ohio ABSTRACT Carbon nanotubes (CNT) that comprise large clusters referred to as carbon nanotube arrays were discovered in 1991 by Sumio Iijima. Carbon nanotubes are the strongest material known to exist and have amazing electrical and thermal properties. Chemical Vapor Deposition (CVD) is currently the best method for producing relatively pure super-long CNT arrays over large surface areas. The research presented here focuses primarily on new methods for improving the various aspects of the synthesis process with the intent of growing very long CNT arrays over large substrate surface areas. Experiments were conducted to optimize certain aspects of the substrate preparation and CVD processes. In addition, amazing advances in CNT growth were obtained by combining gadolinium with iron catalyst. Research was also conducted in two areas of carbon nano-composite materials. iii iv ACKNOWLEDGEMENT As I look back on my research work at the University Cincinnati, I begin to realize just how many people it took to complete this research.
    [Show full text]