"RDNA 1.0" Instruction Set Architecture Reference Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Report TR-2020-10
Simulation-Based Engineering Lab University of Wisconsin-Madison Technical Report TR-2020-10 CryptoEmu: An Instruction Set Emulator for Computation Over Ciphers Xiaoyang Gong and Dan Negrut December 28, 2020 Abstract Fully homomorphic encryption (FHE) allows computations over encrypted data. This technique makes privacy-preserving cloud computing a reality. Users can send their encrypted sensitive data to a cloud server, get encrypted results returned and decrypt them, without worrying about data breaches. This project report presents a homomorphic instruction set emulator, CryptoEmu, that enables fully homomorphic computation over encrypted data. The software-based instruction set emulator is built upon an open-source, state-of-the-art homomorphic encryption library that supports gate-level homomorphic evaluation. The instruction set architecture supports multiple instructions that belong to the subset of ARMv8 instruction set architecture. The instruction set emulator utilizes parallel computing techniques to emulate every functional unit for minimum latency. This project re- port includes details on design considerations, instruction set emulator architecture, and datapath and control unit implementation. We evaluated and demonstrated the instruction set emulator's performance and scalability on a 48-core workstation. Cryp- toEmu shown a significant speed up in homomorphic computation performance when compared with HELib, a state-of-the-art homomorphic encryption library. Keywords: Fully Homomorphic Encryption, Parallel Computing, Homomorphic Instruction Set, Homomorphic Processor, Computer Architecture 1 Contents 1 Introduction 3 2 Background 4 3 TFHE Library 5 4 CryptoEmu Architecture Overview 7 4.1 Data Processing . .8 4.2 Branch and Control Flow . .9 5 Data Processing Units 9 5.1 Load/Store Unit . .9 5.2 Adder . -
Real-Time Finite Element Method (FEM) and Tressfx
REAL-TIME FEM AND TRESSFX 4 ERIC LARSEN KARL HILLESLAND 1 FEBRUARY 2016 | CONFIDENTIAL FINITE ELEMENT METHOD (FEM) SIMULATION Simulates soft to nearly-rigid objects, with fracture Models object as mesh of tetrahedral elements Each element has material parameters: ‒ Young’s Modulus: How stiff the material is ‒ Poisson’s ratio: Effect of deformation on volume ‒ Yield strength: Deformation limit before permanent shape change ‒ Fracture strength: Stress limit before the material breaks 2 FEBRUARY 2016 | CONFIDENTIAL MOTIVATIONS FOR THIS METHOD Parameters give a lot of design control Can model many real-world materials ‒Rubber, metal, glass, wood, animal tissue Commonly used now for film effects ‒High-quality destruction Successful real-time use in Star Wars: The Force Unleashed 1 & 2 ‒DMM middleware [Parker and O’Brien] 3 FEBRUARY 2016 | CONFIDENTIAL OUR PROJECT New implementation of real-time FEM for games Planned CPU library release ‒Heavy use of multithreading ‒Open-source with GPUOpen license Some highlights ‒Practical method for continuous collision detection (CCD) ‒Mix of CCD and intersection contact constraints ‒Efficient integrals for intersection constraint 4 FEBRUARY 2016 | CONFIDENTIAL STATUS Proof-of-concept prototype First pass at optimization Offering an early look for feedback Several generic components 5 FEBRUARY 2016 | CONFIDENTIAL CCD Find time of impact between moving objects ‒Impulses can prevent intersections [Otaduy et al.] ‒Catches collisions with fast-moving objects Our approach ‒Conservative-advancement based ‒Geometric -
GLSL 4.50 Spec
The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions. -
AMD Powerpoint- White Template
RDNA Architecture Forward-looking statement This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not limited to, the features, functionality, performance, availability, timing, pricing, expectations and expected benefits of AMD’s current and future products, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's Quarterly Report on Form 10-Q for the quarter ended March 30, 2019 2 Highlights of the RDNA Workgroup Processor (WGP) ▪ Designed for lower latency and higher -
Amd Filed: February 24, 2009 (Period: December 27, 2008)
FORM 10-K ADVANCED MICRO DEVICES INC - amd Filed: February 24, 2009 (period: December 27, 2008) Annual report which provides a comprehensive overview of the company for the past year Table of Contents 10-K - FORM 10-K PART I ITEM 1. 1 PART I ITEM 1. BUSINESS ITEM 1A. RISK FACTORS ITEM 1B. UNRESOLVED STAFF COMMENTS ITEM 2. PROPERTIES ITEM 3. LEGAL PROCEEDINGS ITEM 4. SUBMISSION OF MATTERS TO A VOTE OF SECURITY HOLDERS PART II ITEM 5. MARKET FOR REGISTRANT S COMMON EQUITY, RELATED STOCKHOLDER MATTERS AND ISSUER PURCHASES OF EQUITY SECURITIES ITEM 6. SELECTED FINANCIAL DATA ITEM 7. MANAGEMENT S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS ITEM 7A. QUANTITATIVE AND QUALITATIVE DISCLOSURE ABOUT MARKET RISK ITEM 8. FINANCIAL STATEMENTS AND SUPPLEMENTARY DATA ITEM 9. CHANGES IN AND DISAGREEMENTS WITH ACCOUNTANTS ON ACCOUNTING AND FINANCIAL DISCLOSURE ITEM 9A. CONTROLS AND PROCEDURES ITEM 9B. OTHER INFORMATION PART III ITEM 10. DIRECTORS, EXECUTIVE OFFICERS AND CORPORATE GOVERNANCE ITEM 11. EXECUTIVE COMPENSATION ITEM 12. SECURITY OWNERSHIP OF CERTAIN BENEFICIAL OWNERS AND MANAGEMENT AND RELATED STOCKHOLDER MATTERS ITEM 13. CERTAIN RELATIONSHIPS AND RELATED TRANSACTIONS AND DIRECTOR INDEPENDENCE ITEM 14. PRINCIPAL ACCOUNTANT FEES AND SERVICES PART IV ITEM 15. EXHIBITS, FINANCIAL STATEMENT SCHEDULES SIGNATURES EX-10.5(A) (OUTSIDE DIRECTOR EQUITY COMPENSATION POLICY) EX-10.19 (SEPARATION AGREEMENT AND GENERAL RELEASE) EX-21 (LIST OF AMD SUBSIDIARIES) EX-23.A (CONSENT OF ERNST YOUNG LLP - ADVANCED MICRO DEVICES) EX-23.B -
Report of Contributions
X.Org Developers Conference 2020 Report of Contributions https://xdc2020.x.org/e/XDC2020 X.Org Developer … / Report of Contributions State of text input on Wayland Contribution ID: 1 Type: not specified State of text input on Wayland Wednesday, 16 September 2020 20:15 (5 minutes) Between the last impromptu talk at GUADEC 2018, text input on Wayland has become more organized and more widely adopted. As before, the three-pronged approach of text_input, in- put_method, and virtual keyboard still causes confusion, but increased interest in implementing it helps find problems and come closer to something that really works for many usecases. The talk will mention how a broken assumption causes a broken protocol, and why we’re notdone with Wayland input methods yet. It’s recommended to people who want to know more about the current state of input methods on Wayland. Recommended background: aforementioned GUADEC talk, wayland-protocols reposi- tory, my blog: https://dcz_self.gitlab.io/ Code of Conduct Yes GSoC, EVoC or Outreachy No Primary author: DCZ, Dorota Session Classification: Demos / Lightning talks I Track Classification: Lightning Talk September 30, 2021 Page 1 X.Org Developer … / Report of Contributions IGT GPU Tools 2020 Update Contribution ID: 2 Type: not specified IGT GPU Tools 2020 Update Wednesday, 16 September 2020 20:00 (5 minutes) Short update on IGT - what has changed in the last year, where are we right now and what we have planned for the near future. IGT GPU Tools is a collection of tools and tests aiding development of DRM drivers. It’s widely used by Intel in its public CI system. -
First Person Shooting (FPS) Game
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 Thunder Force - First Person Shooting (FPS) Game Swati Nadkarni1, Panjab Mane2, Prathamesh Raikar3, Saurabh Sawant4, Prasad Sawant5, Nitesh Kuwalekar6 1 Head of Department, Department of Information Technology, Shah & Anchor Kutchhi Engineering College 2 Assistant Professor, Department of Information Technology, Shah & Anchor Kutchhi Engineering College 3,4,5,6 B.E. student, Department of Information Technology, Shah & Anchor Kutchhi Engineering College ----------------------------------------------------------------***----------------------------------------------------------------- Abstract— It has been found in researches that there is an have challenged hardware development, and multiplayer association between playing first-person shooter video games gaming has been integral. First-person shooters are a type of and having superior mental flexibility. It was found that three-dimensional shooter game featuring a first-person people playing such games require a significantly shorter point of view with which the player sees the action through reaction time for switching between complex tasks, mainly the eyes of the player character. They are unlike third- because when playing fps games they require to rapidly react person shooters in which the player can see (usually from to fast moving visuals by developing a more responsive mind behind) the character they are controlling. The primary set and to shift back and forth between different sub-duties. design element is combat, mainly involving firearms. First person-shooter games are also of ten categorized as being The successful design of the FPS game with correct distinct from light gun shooters, a similar genre with a first- direction, attractive graphics and models will give the best person perspective which uses light gun peripherals, in experience to play the game. -
AMD Firepro™Professional Graphics for CAD & Engineering and Media & Entertainment
AMD FirePro™Professional Graphics for CAD & Engineering and Media & Entertainment Performance at every price point. AMD FirePro professional graphics offer breakthrough capabilities that can help maximize productivity and help lower cost and complexity — giving you the edge you need in your business. Outstanding graphics performance, compute power and ultrahigh-resolution multidisplay capabilities allows broadcast, design and engineering professionals to work at a whole new level of detail, speed, responsiveness and creativity. AMD FireProTM W9100 AMD FireProTM W8100 With 16GB GDDR5 memory and the ability to support up to six 4K The new AMD FirePro W8100 workstation graphics card is based on displays via six Mini DisplayPort outputs,1 the AMD FirePro W9100 the AMD Graphics Core Next (GCN) GPU architecture and packs up graphics card is the ideal single-GPU solution for the next generation to 4.2 TFLOPS of compute power to accelerate your projects beyond of ultrahigh-resolution visualization environments. just graphics. AMD FireProTM W7100 AMD FireProTM W5100 The new AMD FirePro W7100 graphics card delivers 8GB The new AMD FirePro™ W5100 graphics card delivers optimized of memory, application performance and special features application and multidisplay performance for midrange users. that media and entertainment and design and engineering With 4GB of ultra-fast GDDR5 memory, users can tackle moderately professionals need to take their projects to the next level. complex models, assemblies, data sets or advanced visual effects with ease. AMD FireProTM W4100 AMD FireProTM W2100 In a class of its own, the AMD FirePro Professional graphics starts with AMD W4100 graphics card is the best choice FirePro W2100 graphics, delivering for entry-level users who need a boost in optimized and certified professional graphics performance to better address application performance that similarly- their evolving workflows. -
X86 Assembly Language Syllabus for Subject: Assembly (Machine) Language
VŠB - Technical University of Ostrava Department of Computer Science, FEECS x86 Assembly Language Syllabus for Subject: Assembly (Machine) Language Ing. Petr Olivka, Ph.D. 2021 e-mail: [email protected] http://poli.cs.vsb.cz Contents 1 Processor Intel i486 and Higher – 32-bit Mode3 1.1 Registers of i486.........................3 1.2 Addressing............................6 1.3 Assembly Language, Machine Code...............6 1.4 Data Types............................6 2 Linking Assembly and C Language Programs7 2.1 Linking C and C Module....................7 2.2 Linking C and ASM Module................... 10 2.3 Variables in Assembly Language................ 11 3 Instruction Set 14 3.1 Moving Instruction........................ 14 3.2 Logical and Bitwise Instruction................. 16 3.3 Arithmetical Instruction..................... 18 3.4 Jump Instructions........................ 20 3.5 String Instructions........................ 21 3.6 Control and Auxiliary Instructions............... 23 3.7 Multiplication and Division Instructions............ 24 4 32-bit Interfacing to C Language 25 4.1 Return Values from Functions.................. 25 4.2 Rules of Registers Usage..................... 25 4.3 Calling Function with Arguments................ 26 4.3.1 Order of Passed Arguments............... 26 4.3.2 Calling the Function and Set Register EBP...... 27 4.3.3 Access to Arguments and Local Variables....... 28 4.3.4 Return from Function, the Stack Cleanup....... 28 4.3.5 Function Example.................... 29 4.4 Typical Examples of Arguments Passed to Functions..... 30 4.5 The Example of Using String Instructions........... 34 5 AMD and Intel x86 Processors – 64-bit Mode 36 5.1 Registers.............................. 36 5.2 Addressing in 64-bit Mode.................... 37 6 64-bit Interfacing to C Language 37 6.1 Return Values.......................... -
AMD Codexl 1.7 GA Release Notes
AMD CodeXL 1.7 GA Release Notes Thank you for using CodeXL. We appreciate any feedback you have! Please use the CodeXL Forum to provide your feedback. You can also check out the Getting Started guide on the CodeXL Web Page and the latest CodeXL blog at AMD Developer Central - Blogs This version contains: For 64-bit Windows platforms o CodeXL Standalone application o CodeXL Microsoft® Visual Studio® 2010 extension o CodeXL Microsoft® Visual Studio® 2012 extension o CodeXL Microsoft® Visual Studio® 2013 extension o CodeXL Remote Agent For 64-bit Linux platforms o CodeXL Standalone application o CodeXL Remote Agent Note about installing CodeAnalyst after installing CodeXL for Windows AMD CodeAnalyst has reached End-of-Life status and has been replaced by AMD CodeXL. CodeXL installer will refuse to install on a Windows station where AMD CodeAnalyst is already installed. Nevertheless, if you would like to install CodeAnalyst, do not install it on a Windows station already installed with CodeXL. Uninstall CodeXL first, and then install CodeAnalyst. System Requirements CodeXL contains a host of development features with varying system requirements: GPU Profiling and OpenCL Kernel Debugging o An AMD GPU (Radeon HD 5000 series or newer, desktop or mobile version) or APU is required. o The AMD Catalyst Driver must be installed, release 13.11 or later. Catalyst 14.12 (driver 14.501) is the recommended version. See "Getting the latest Catalyst release" section below. For GPU API-Level Debugging, a working OpenCL/OpenGL configuration is required (AMD or other). CPU Profiling o Time-Based Profiling can be performed on any x86 or AMD64 (x86-64) CPU/APU. -
Opengl ES, XNA, Directx for WP8) Plan
Mobilne akceleratory grafiki Kamil Trzciński, 2013 O mnie Kamil Trzciński http://ayufan.eu / [email protected] ● Od 14 lat zajmuję się programowaniem (C/C++, Java, C#, Python, PHP, itd.) ● Od 10 lat zajmuję się programowaniem grafiki (OpenGL, DirectX 9/10/11, Ray-Tracing) ● Od 6 lat zajmuję się branżą mobilną (SymbianOS, Android, iOS) ● Od 2 lat zajmuję się mobilną grafiką (OpenGL ES, XNA, DirectX for WP8) Plan ● Bardzo krótko o historii ● Mobilne układy graficzne ● API ● Programowalne jednostki cieniowania ● Optymalizacja ● Silniki graficzne oraz silniki gier Wstęp Grafika komputerowa to dziedzina informatyki zajmująca się wykorzystaniem technik komputerowych do celów wizualizacji artystycznej oraz wizualizacji rzeczywistości. Bardzo często grafika komputerowa jest kojarzona z urządzeniem wspomagającym jej generowanie - kartą graficzną, odpowiedzialna za renderowanie grafiki oraz jej konwersję na sygnał zrozumiały dla wyświetlacza 1. Historia Historia Historia kart graficznych sięga wczesnych lat 80-tych ubiegłego wieku. Pierwsze karty graficzne potrafiły jedynie wyświetlać znaki alfabetu łacińskiego ze zdefiniowanego w pamięci generatora znaków, tzw. trybu tekstowego. W późniejszym okresie pojawiły się układy, wykonujące tzw. operacje BitBLT, pozwalające na nałożenie na siebie 2 różnych bitmap w postaci rastrowej. Historia Historia #2 ● Wraz z nadejściem systemu operacyjnego Microsoft Windows 3.0 wzrosło zapotrzebowanie na przetwarzanie grafiki rastrowej dużej rozdzielczości. ● Powstaje interfejs GDI odpowiedzialny za programowanie operacji związanych z grafiką. ● Krótko po tym powstały pierwsze akceleratory 2D wyprodukowane przez firmę S3. Wydarzenie to zapoczątkowało erę graficznych akceleratorów grafiki. Historia #3 ● 1996 – wprowadzenie chipsetu Voodoo Graphics przez firmę 3dfx, dodatkowej karty rozszerzeń pełniącej funkcję akceleratora grafiki 3D. ● Powstają biblioteki umożliwiające tworzenie trójwymiarowych wizualizacji: Direct3D oraz OpenGL. Historia #3 Historia #4 ● 1999/2000 – DirectX 7.0 dodaje obsługę: T&L (ang. -
Bitwise Operators in C Examples
Bitwise Operators In C Examples Alphonse misworships discommodiously. Epigastric Thorvald perishes changefully while Oliver always intercut accusatively.his anthology plumps bravely, he shown so cheerlessly. Baillie argufying her lashkar coweringly, she mass it Find the program below table which is c operators associate from star from the positive Left shift shifts each bit in its left operand to the left. Tying up some Arduino loose ends before moving on. The next example shows you how to do this. We can understand this better using the following Example. These operators move each bit either left or right a specified number of times. Amazon and the Amazon logo are trademarks of Amazon. Binary form of these values are given below. Shifting the bits of the string of bitwise operators in c examples and does not show the result of this means the truth table for making. Mommy, security and web. When integers are divided, it shifts the bits to the right. Operators are the basic concept of any programming language, subtraction, we are going to see how to use bitwise operators for counting number of trailing zeros in the binary representation of an integer? Adding a negative and positive number together never means the overflow indicates an exception! Not valid for string or complex operands. Les cookies essentiels sont absolument necessaires au bon fonctionnement du site. Like the assembly in C language, unlike other magazines, you may treat this as true. Bitwise OR operator is used to turn bits ON. To me this looks clearer as is. We will talk more about operator overloading in a future section, and the second specifies the number of bit positions by which the first operand is to be shifted.