2020 Stanford Bio-X Fellowship Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optogenetics: Using Light to Control the Brain by Edward S. Boyden, Ph.D
Optogenetics: Using Light to Control the Brain By Edward S. Boyden, Ph.D. Courtesy of the MIT McGovern Institute, Julie Pryor, Charles Jennings, Sputnik Animation, and Ed Boyden. Editor’s note: The brain is densely packed with interconnected neurons, but until about six years ago, it was difficult for researchers to isolate neurons and neuron types to determine their individual roles in brain processes. In 2004 however, scientists, including author Edward S. Boyden, Ph.D., found that the neural expression of a protein, channelrhodopsin-2 (ChR2), allowed light to activate or silence brain cells. This technology, now known as optogenetics, is helping scientists determine the functions of specific neurons in the brain, and could play a significant role in treating medical issues as diverse as sleep disorders and vision impairment. Article available online at http://dana.org/news/cerebrum/detail.aspx?id=34614 1 The brain is an incredibly densely wired computational circuit, made out of an enormous number of interconnected cells called neurons, which compute using electrical signals. These neurons are heterogeneous, falling into many different classes that vary in their shapes, molecular compositions, wiring patterns, and the ways in which they change in disease states. It is difficult to analyze how these different classes of neurons work together in the intact brain to mediate the complex computations that support sensations, emotions, decisions, and movements—and how flaws in specific neuron classes result in brain disorders. Ideally, one would study the brain using a technology that would enable the control of the electrical activity of just one type of neuron, embedded within a neural circuit, in order to determine the role that that type of neuron plays in the computations and functions of the brain. -
Mechanical Aspire
Newsletter Volume 6, Issue 11, November 2016 Mechanical Aspire Achievements in Sports, Projects, Industry, Research and Education All About Nobel Prize- Part 35 The Breakthrough Prize Inspired by Nobel Prize, there have been many other prizes similar to that, both in amount and in purpose. One such prize is the Breakthrough Prize. The Breakthrough Prize is backed by Facebook chief executive Mark Zuckerberg and Google co-founder Sergey Brin, among others. The Breakthrough Prize was founded by Brin and Anne Wojcicki, who runs genetic testing firm 23andMe, Chinese businessman Jack Ma, and Russian entrepreneur Yuri Milner and his wife Julia. The Breakthrough Prizes honor important, primarily recent, achievements in the categories of Fundamental Physics, Life Sciences and Mathematics . The prizes were founded in 2012 by Sergey Brin and Anne Wojcicki, Mark Zuckerberg and Priscilla Chan, Yuri and Julia Milner, and Jack Ma and Cathy Zhang. Committees of previous laureates choose the winners from candidates nominated in a process that’s online and open to the public. Laureates receive $3 million each in prize money. They attend a televised award ceremony designed to celebrate their achievements and inspire the next generation of scientists. As part of the ceremony schedule, they also engage in a program of lectures and discussions. Those that go on to make fresh discoveries remain eligible for future Breakthrough Prizes. The Trophy The Breakthrough Prize trophy was created by Olafur Eliasson. “The whole idea for me started out with, ‘Where do these great ideas come from? What type of intuition started the trajectory that eventually becomes what we celebrate today?’” Like much of Eliasson's work, the sculpture explores the common ground between art and science. -
18Th World Vaccine Congress Agenda: Day 1 – Tuesday 10Th October 2017
18th World Vaccine Congress Agenda: Day 1 – Tuesday 10th October 2017 Plenary Session ROOM: RUBI/ZAFIR 08:50 Chair’s opening remarks Dr Gregory Poland, Director, Mayo Clinic 09:00 Opening plenary discussion: Creating a new strategy - How does the current global outbreak response system need to change? Moderator: Dr Gregory Poland, Director, Mayo Clinic Speakers: Dr Marie-Paule Kieny, Former Assistant Director-General - Health Systems and Innovation, WHO Richard Hatchett, CEO, CEPI Prof Helen Rees, Chair and Executive Director, Wits Reproductive Health and HIV Institute 10:00 Maternal immunisation: Where do we stand and how do we use vaccines, antivirals and antibodies – What’s the strategy? Francesca Ceddia, VP, Head Global Medical Affairs Vaccines, GSK Vaccines 10:30 Break the ice with your peers and exchange business cards in the conference room 10:40 Morning Networking Break Therapeutic Vaccines Track Respiratory Vaccines Track ONE HEALTH with ROOM: RUBI ROOM: ZAFIR ROOM: ROSSINI 11:40 Chair’s opening remarks Chair’s opening remarks Chair’s opening remarks Dr Emmett V. Schmidt, Exec Director, Clinical Dr Gregory Poland, Director, Mayo Clinic Nathalie Garcon, CEO/CSO, BIOASTER Research, Merck Research Laboratories - Oncology Therapeutic & Immunotherapy Vaccines Influenza Vaccines Discovery and Drivers for Emerging Diseases 11:45 Why haven't Alzheimer's vaccines succeeded yet? Clinical development of a nasal inactivated influenza Bringing together experts in human and animal health Professor Nikolai Petrovsky, Flinders University vaccine -
Issue 17: Pushing the Frontiers Of
Br aın SCAN mcgovern institute for brain research at mit Issue no. 17 Summer 2010 From the director In this issue we highlight the work of Alan Jasanoff, who is developing imaging technologies that will provide an entirely new view of brain activity. Magnetic resonance imaging (MRI) has been critical to our understanding of brain function, and Alan Jasanoff is working to take this technology to an entirely new level. He is designing new molecular sensors that can reveal far more about brain activity than conventional functional MRI, which is based on changes in blood flow and oxygen levels within the brain. Alan’s work draws on nuclear engineering, protein engineering, chemistry and cognitive neuroscience, and exemplifies the interdisciplinary approach that is at the heart of our mission. I am also pleased to announce the appointment of a new faculty member, Feng Zhang, who will be joining the McGovern Institute in January 2011. Feng, who received his PhD from Stanford University and who is now a Harvard Junior Fellow, is an expert on optogenetics and stem cell applications. I am especially pleased that, in addition to his appointment Cover art: in the McGovern Institute and the Department Feng Zhang, who of Brain and Cognitive Sciences, Feng will also be will join the Institute in 2011, is an expert a core faculty member of the Broad Institute. His Alan Alda and Jane Pauley–and by our longtime in manipulating brain appointment strengthens our ties to the world’s friend and advisor Gerald Fischbach, scientific activity with light. foremost center for genomics research in medicine. -
CV Karl Deisseroth
Curriculum Vitae Prof. Dr. Karl Deisseroth Name: Karl Deisseroth Born: 18 November 1971 Main areas of research: Optogenetics, CLARITY method (Clear Lipid-exchanged Anatomically Rigid/Immunostaining-compatible Tissue Hydrogel), Channelrhodopsin, Channelrhodopsin-2, neurological diseases, depression, autism diseases Karl Deisseroth is a US American psychiatrist and neuroscientist. He was one of the founders of optogenetics and also developed the CLARITY method. Unimagined insights into the brain have been gained through the use of both methods. Deisseroth hopes that these will then lead to a greater understanding of neurological diseases. Academic and professional career since 2014 Investigator at the Howard Hughes Medical Institute (HHMI), Maryland, USA since 2013 Extraordinary Professor, Karolinska Institutet, Sweden since 2012 D.H. Chen Professor of Bioengineering, Psychiatry and Behavioral Research, Stanford University, USA since 2012 Professor of Bioengineering and Psychiatry, Stanford 2009 - 2013 HHMI Early Career Investigator 2009 - 2012 Associate Professor of Bioengineering and Psychiatry, Stanford University 2005 - 2008 Assistant Professor of Bioengineering und Psychiatry, Stanford University 2004 - 2005 Principal Investigator and Clinical Educator, Institute of Psychiatry, Stanford University School of Medicine 2000 - 2004 Assistant physician in Psychiatry, Stanford University 2000 - 2001 MD internship/licensure, Stanford University Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 1994 - 1998 Ph.D. Stanford -
Synthetic Immunology: Hacking Immune Cells to Expand Their Access Provided by University of California - San Francisco UCSF on 10/10/18
IY35CH09-Lim ARI 6 April 2017 15:15 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Synthetic Immunology: • Explore related articles • Search keywords Hacking Immune Cells to Expand Their Therapeutic Capabilities Kole T. Roybal1 and Wendell A. Lim2 1Parker Institute for Cancer Immunotherapy, Department of Microbiology and Immunology, University of California, San Francisco, California 94143; email: [email protected] 2Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158; email: [email protected] Annu. Rev. Immunol. 2017. 35:229–53 Keywords The Annual Review of Immunology is online at synthetic biology, immunotherapy, engineered immune cells, T cells, immunol.annualreviews.org synthetic Notch, chimeric antigen receptors https://doi.org/10.1146/annurev-immunol- 051116-052302 Abstract Copyright c 2017 by Annual Reviews. The ability of immune cells to survey tissues and sense pathologic insults All rights reserved and deviations makes them a unique platform for interfacing with the body Annu. Rev. Immunol. 2017.35:229-253. Downloaded from www.annualreviews.org and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable thera- peutic response programs to sense and treat diseases that our natural immune Access provided by University of California - San Francisco UCSF on 10/10/18. For personal use only. system cannot normally handle. Here we review the current state of engi- neered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. -
The BBVA Foundation Frontiers of Knowledge Award Goes to the Architects of Optogenetics, Which Uses Light to Probe and Modulate the Workings of the Brain
Three neuroscientists win the Biomedicine award The BBVA Foundation Frontiers of Knowledge Award goes to the architects of optogenetics, which uses light to probe and modulate the workings of the brain Edward Boyden, Karl Deisseroth and Gero Miesenböck developed and refined a technique that employs light to activate and inactivate proteins in the brain cells, making it possible to modulate their activity with unprecedented precision Optogenetics is now a widely used tool being applied to elucidate functions like sleep, appetite and movement or reward circuits in addiction The awardees all emphasize the basic knowledge underpinning the technique, which, they say, will eventually yield new opportunities in the clinic Madrid, January 26, 2016.- The BBVA Foundation Frontiers of Knowledge Award in Biomedicine goes in this eighth edition to neuroscientists Edward Boyden, Karl Deisseroth and Gero Miesenböck for the development of optogenetics, a method to study brain function with unprecedented resolution. In a bare five years, thousands of groups the world over have begun using optogenetics to investigate functions like sleep, appetite, decision-making, temporal perception or the creation of memories, and elucidate the mechanisms of conditions such as epilepsy, Parkinson’s, depression and certain forms of blindness. The beauty of optogenetics is that it allows the selective control of neural activity simply by applying light of the right wavelength. Before, the most widely used methods to study the living brain could modulate the activity of hundreds of thousands of neurons, but with little selectivity. With optogenetics, it is possible to act exclusively on neurons treated previously with light-sensitive proteins, according to the behavior being tested. -
Andreas Zingg – Curriculum Vitae
Andreas Zingg Curriculum Vitae Education 2011–2013 Basic Studies in Biology, University of Zurich, Zurich 2013–2015 Bachelor of Science ETH in Biotechnology, ETH Zurich, Basel 2015–2017 Master of Science ETH in Biotechnology, ETH Zurich, Basel Research Experience 06/2020 Doctoral Student - present University Hospital, Basel Cancer Immunotherapy, Prof. Dr. Heinz Läubli Project Titel: Redirection of immune cells to glycan antigens on tumour cells In the scope of this project, CAR-T cells will be developed that target the Sialyl-Thomsen-Nouveau antigen which is expressed on the majority of tumours. Various strategies will be evaluated to counteract the immunosuppressive tumour environment. Finally, this project should pave the way towards clinical trials with anti-STn directed, armored fourth generation CAR-T cells. 03/2019 Research Associate - 05/2020 Memo Therapeutics AG, Schlieren MTx is an ETH spin-off with 10 employees. It is an innovator in the field of antibody discovery based on microfluidics and its program includes targets in infectious diseases and immuno- oncology. I was responsible for most cell culture related experiments such as antibody library screening, assay development and routine cell culture but also supported the team in various molecular biological tasks. Specifically, I was trained in operating the company’s proprietary microfluidic system for emulsion PCR, cell-encapsulation and droplet sorting. Furthermore, for MTx’ screening project for SARS-CoV-2 neutralizing antibodies, I developed a pseudovirus assay to evaluate promising antibody candidates. 02/2018 Internship: Discovery of cell-penetrating antibodies - 12/2018 UCB Celltech, Slough UCB is multinational biopharmaceutical company with roughly 8’000 employees and a revenue of almost 5 billion euro. -
Dawn on the Mice
RESEARCH HIGHLIGHTS NEUROSCIENCE Dawn on the mice By directly delivering light deep into the activated cation channel that can excite a neu- signaling pathways can be controlled with fine brain, scientists can now study the basis of ron. Halorhodopsin (NpHR), in contrast, is a temporal precision. neurological therapy and animal behavior. chloride pump that can inhibit a neuron. As To test the optoXRs in vivo, Deisseroth The mammalian brain is a secluded and with electrical stimulation, photostimulation and colleagues expressed them in brain neu- enigmatic organ. Despite the progress in offers precise temporal control. rons and used the optrode to stimulate and molecular and cellular biology, we still know Deisseroth is interested in using optogenet- record activity. They found that spike fre- very little about the brain circuitry and how ics to help understand how deep brain stimu- quency in the nucleus accumbens, the reward it controls behavior. One of the challenges of lation works and to improve the procedure. center in the brain, decreases and increases brain studies is accessibility. The brain is pro- Viviana Gradinaru, a graduate student in his upon photoactivation of opto-β2AR and tected by the opaque skull, which makes bio- laboratory, has designed a hybrid instrument opto-α1AR, respectively. They thus set up a chemical and genetic manipulations difficult. called an ‘optrode’, which consists of fiber behavioral paradigm to test whether high One way to access deep inside the brain is optics for photostimulation and an electrode nucleus accumbens activity encodes reward to insert thin electrodes through the skull. for activity recording. By inserting an optrode memory. -
R E P Or T in G S C Ien C E & T E C Hn O Log Y F O R H E a Lt H
| MARCH 2015 MISROCK FOUNDATION FOR HEALTH ETH ZÜRICH FOUNDATION SCIENCE & TECHNOLOGY SCIENCE & TECHNOLOGY REPORTING Professor Sai Reddy is one of 17 professors at the D-BSSE in Basel. HIGHLIGHT PROFESSOR SAI REDDY IS A PROJECT LEADER AT THE NCCR MOLECULAR ENGINEERING Molecular Systems Engineering is a National Centre of Competence in Research (NCCR) funded by the Swiss National Science Foundation (SNSF) and headed by the University of Basel and ETH Zürich. This particular NCCR combines the disciplines biology, chemistry and physics with bioinformatic and engineering. The goal is to engineer and to combine molecular modules to design “molecular factories”. These molecular factories will be used for industrial production or to control cellular systems in health and disease. Professor Reddy is one of 17 professors at the Department of Biosystems Science & Engineering (D-BSSE) in Basel, Switzerland and one of the project leaders at the NCCR Molecular Engineering. He teaches Master students in Biomolecular Engineering & Immunotechnology and PhD students assigned to the joint ETH – University of Zurich Graduate Programme on Microbology & Immunology. ACKNOWLEDGING OUR PARTNERS The Laboratory for Systems and Synthetic Immunology and the professorship of Sai Reddy is made possible by the generous endowment of the S. Leslie Misrock Foundation. 02 ETH ZÜRICH FOUNDATION | MARCH 2015 The new president: The new rector: The new vice president of Lino Guzzella Sarah Springman research and corporate rela- tions: Detlef Günther Lino Guzzella, former rector of ETH Sarah Springman succeeds Lino Detlef Günther will be responsible Zurich (2012–2014) is Ralph Eichler’s Guzzella as rector. After Heidi Wun- for strategic research supervision successor. -
Serotonin's Role in Sleep — Caltech Magazine
Fall 2019, More Stories Serotonin’s Role in Sleep Serotonin is a multipurpose molecule found throughout the brain, playing a role in memory, cognition, and feelings of happiness and other emotions. In particular, researchers have long debated serotonin's role in sleep: Does serotonin promote sleep, or its opposite, wakefulness? Now, Caltech scientists have found that serotonin is necessary for sleep in zebrafish and mouse models. A paper describing the research appeared online on June 24 in the journal Neuron. The work is a collaboration between the Caltech laboratories of David Prober, professor of biology and affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech; and Viviana Gradinaru (BS '05), professor of neuroscience and biological engineering, Heritage Medical Research Institute Investigator, and director of the Chen Institute's Center for Molecular and Cellular Neuroscience. Previous studies on serotonin and sleep have yielded conflicting results. Some research showed that serotonin promotes sleep, but other work showed that serotonin- producing neurons were most active and releasing the chemical during wakefulness. In order to settle this debate, the Caltech team focused on a region called the raphe nuclei, which has the brain's main population of serotonin-producing (or serotonergic) neurons. The raphe are evolutionarily ancient structures found in the brain stem of a wide range of organisms from fish to humans, and they are responsible for both manufacturing and sending out serotonin to other brain regions. Led by senior postdoctoral scholar Grigorios Oikonomou of the Prober lab, the research began using zebrafish, tiny transparent fish that are widely used as a model to study sleep. -
The Biological Basis of Psychiatric Disorders 2 GREETINGS 3
Forschung fördern. Menschen helfen. Else Kröner Fresenius Preis für Medizinische Forschung 2017 The Biological Basis of Psychiatric Disorders 2 GREETINGS 3 Dear Readers, Friends and Partners of Dear Readers, the Else Kröner-Fresenius-Stiftung, For centuries, man has searched for the roots of mental disor- Some 20 percent of people in Europe suffer from mental dis- ders. It was not until the 19th century that it became clear for orders. This creates tremendous burdens for patients and the first time that psychological problems could be caused by their relatives, particularly because our capacity for treating damage to the brain. Today, modern psychiatry has shown that mental disorders is limited and existing therapies are often far mental disorders are often the result of many different factors. removed from the root causes of the problem. In recent years, evidence has accumulated that many psychological problems Psychological processes are based on biological activity, are caused by biological changes in the brain. As a result, the including neuronal interactions and hormonal signaling. consequences for our understanding of mental disorders will Understanding these processes requires the most sophis- be dramatic, potentially revolutionizing the way we treat them. ticated technologies and cutting-edge methods – precisely what Professor Dr. Karl Deisseroth brings to the table in his The Else Kröner Fresenius Preis für Medizinische Forschung groundbreaking work. has been designed to give a leading international researcher in a specific area of medicine the resources to intensify his re- I am pleased that such a remarkable scientist has been search and achieve breakthroughs. In addition, it is intended to awarded the prestigious Else Kröner Fresenius Preis für help support the next generation of researchers.