Cartilage N. Swailes, Ph.D. Department of Anatomy and Cell

Total Page:16

File Type:pdf, Size:1020Kb

Cartilage N. Swailes, Ph.D. Department of Anatomy and Cell Module 1.6: Cartilage N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 7: pp114-120 Ross MH and Pawlina W, Histology: A Text and Atlas, 6th Edition, Chapter 7: pp198-216 Learning objectives 1) Describe the components and organization of a typical cartilage (hyaline) and outline the mechanical properties each imparts to the tissue. 2) Comment on the similarities and differences between the cellular and extracellular components of cartilage and the other basic connective tissues you have seen. 3) Comment on the blood supply and waste removal to/from cartilage. 4) Classify, compare and contrast the organization, location and function of the four different types of cartilage. How is each suited to the location it occupies? 5) Outline the processes of cartilage formation (chondrogenesis) and discuss its growth and repair. 1 | Page Swailes Part A: General Organization of Cartilage A1. Introduction Cartilage is a specialized connective tissue. It is composed of cells called chondrocytes that sit in lacunae (spaces) within the extracellular matrix that they maintain. The main type of cartilage is called hyaline cartilage. Extracellular matrix A2. General Organization of Cartilage The ECM of cartilage is composed of collagen fibers embedded in a proteoglycan rich ground substance. These components make the ECM solid but pliable. A3. Cartilage Extracellular Matrix: Collagen Collagen There are four types of cartilage specific collagens Figure: Chart showing the composition of hyaline that form a 3-D meshwork of fibrils within all cartilage, the most common type of cartilage in the body. cartilages types. There are other types of collagen associated with cartilage in small amounts that are not listed. It should be noted that Type I collagen is found in large quantities in fibrocartilage. Collagen type Function in extracellular matrix Type II Does not form fibers, therefore not designed to resist strong tensile forces. (most abundant) Instead withstands forces accompanying intermittent pressure. Type XI Regulates the size of Type II fibrils. Type X Organizes the collagen fibrils into a 3-D meshwork. This lattice is crucial for allowing cartilage to resist compressive forces. Type VI Forms the region of extracellular matrix around chondrocytes Involved in attaching these cells to the extracellular matrix. Type I Found in large quantities in fibrocartilage only. Forms dense irregular bundles that withstand strong tensile forces. 2 | Page Swailes A4. Cartilage Extracellular Matrix: Ground Substance Ground substance Ground substance is an amorphous gel-like substance within which the cells and fibers of connective tissues are embedded. In cartilage it is composed of: Keratan sulfate i. Aggrecan molecules Aggrecan is a proteoglycan that has a very strong Chondroitin affinity for water (hydrophilic). A proteoglycan sulfate consists of non-branching polysaccharide chains called glycosaminoglycans (GAGs) that are bound to a protein core. Each aggrecan molecule contains many chondroitin sulfate and keratan sulfate chains (GAGs). Protein ii. Hyaluronan (hyaluronic acid) core Is a special GAG that does not bind to a protein core, instead it is a long and linear molecule. In cartilage it binds many aggrecan molecules along its length to form proteoglycan aggregates. iii. Proteoglycan aggregates The proteoglycan aggregates bind to the collagen fibrils in the ECM and become trapped within the 3-D hexagonal lattice of fibers. This arrangement of hydrophilic proteoglycan aggregates fills the spaces within a collagen meshwork and provides cartilage with its unique ability to cushion and resist compressive forces. iv. Chondronectin Chondronectin is a cartilage specific glycoprotein. Remember the Hyaluronan glycoprotein laminin and how it was involved in anchoring the epithelium to the basal lamina? In a similar way to laminin, the glycoprotein chondronectin binds the cartilage cells (chondrocytes) to the collagen fibrils of the ECM in cartilage. Chondrocyte Hyaluronan Collagen fibril (Type II) Aggrecan molecule (proteoglycan) A5. Cartilage cells Cartilage also contains cells that synthesize and become embedded in the ECM. There are two major cell types found in cartilage: Chondrocyte • Chondroblasts Lacuna Chondroblasts are located in the perichondrium, an area of dense irregular Isogenous group connective tissue that surrounds all types of cartilage (except articular cartilage). These cells form a stem cell population that divide and secrete the ECM (fibers and ground substance). Once a chondroblast has synthesized enough ECM to become surrounded in it own secretions it matures to form a chondrocyte. • Chondrocytes Chondrocytes are mature cartilage cells. They Chondroblast are mitotic during growth, but this becomes limited in adult tissue. Those cells that have undergone division within the matrix are organized into clusters of cells called p Inactive isogenous groups. As the newly divided cell produces matrix it becomes surrounded and the cell clusters are pushed further apart. The erichondrium spaces within the matrix that the chondrocytes occupy are called lacunae. Fibroblast A6. Perichondrium Cartilage is surrounded by a dense irregular connective tissue called the perichondrium (except articular and fibrocartilage). It is essential for appositional growth and maintenance of the Chondrocyte underlying cartilage. During active appositional growth (see later) it is ii composed of: Chondroblast i. An outer fibrous perichondrium composed of dense irregular Type I collagen bundles and fibroblasts i (predominates in non-growing cartilage). ii. An inner chondrogenic layer of cells that divide to form chondroblasts which Fibroblast 4 | Page differentiate to form chondrocytes. A7. Blood Supply to Cartilage Cartilage is avascular which poses a number of problems: 1. How do chondrocytes receive nutrients and remove waste products? i. Chondrocytes respire under low oxygen tension and metabolize glucose by anaerobic glycolysis to produce lactic acid. ii. The large ratio of proteoglycan to collagen fibers in Matrix cartilage allows diffusion more easily through the H O 2 expands ECM from blood vessels within the perichondrium. iii. The hydrophilic nature of the proteoglycan rich ECM draws water and nutrients into the cartilage. When compressive forces are applied to the cartilage, this forces water (and waste products out) just like water can be sucked up and squeezed out of a sponge. 2. How does an avascular cartilage grow with the body? The limitations of getting nutrients to a cellular tissue without a direct blood supply limit the thickness to which cartilage can Compression grow. 3. How does an avascular cartilage repair itself if damaged? H2O It can’t (more later!) A8. Cartilage Function The 3-D hexagonal lattice created by the meshwork of collagen fibers is filled with hydrophilic proteoglycans. When fully hydrated, the large water content of the ECM acts as a shock absorber and resists the compressive forces that are applied to its surface. Part B: Types of cartilage B1. Hyaline cartilage Appearance Hyaline cartilage has a glassy appearance in life [Gr. Hyalos = glassy]. Composition and organization Note that the general organization previously was based on hyaline cartilage. The only exception is the specialized hyaline cartilage “articular cartilage”, which lacks a perichondrium. Locations It is the most common form of cartilage found: - in the respiratory tract - lining articular surfaces - in the ribs (costal cartilages) - in the epiphyseal plates (see Bone Development) - forming the temporary skeleton of the fetus (see Bone Development ) 5 | Page B2. Articular cartilage Appearance Articular cartilage is a specialized form of hyaline cartilage that lines the surfaces of joints. It is different from the other types of hyaline cartilage in the body because it lacks a perichondrium on all aspects. It is a remnant of the original cartilage model of the developing bone. Composition and organization Articular cartilage has four zones: 1. Tangential zone Chondrocytes are flattened and surrounded by organized Type II collagen fibers arranged in fasicles parallel to the free surface. 2. Transitional zone Chondrocytes are round and randomly distributed within the ECM. Collagen fibers are less well organized in this region. 3. Radial zone Chondrocytes are small, round and organized into short columns perpendicular to the free surface. The collagen fibers are aligned perpendicular to the long axis of the bone. 4. Calcified zone This region has a calcified matrix and is seperated from the radial zone by a calcified line or tidemark. Chondrocytes above this line are the source of cells for growth and renewal. 1 1 2 2 3 3 4 Tidemark Bone 6 | Page 4 B3. Elastic cartilage Chondrocyte Appearance Distinctive appearance due to the high elastin fiber Elastin fibers content of the ECM. Composition and organization Similar to hyaline cartilage except the ECM contains a large quantity of branching elastin fibers interspersed among the collagen fibers. As a result, this type of cartilage is highly flexible and subsequent deformation results in recoil to its original shape and position. Note that elastic cartilage has a perichondrium. Locations Elastic cartilage is found in the: - auricle of the ear - auditory tubes - epiglottis of the larynx B4. Fibrocartilage Perichondrium Appearance Intermediate to dense connective
Recommended publications
  • Basic Histology and Connective Tissue Chapter 5
    Basic Histology and Connective Tissue Chapter 5 • Histology, the Study of Tissues • Tissue Types • Connective Tissues Histology is the Study of Tissues • 200 different types of cells in the human body. • A Tissue consist of two or more types of cells that function together. • Four basic types of tissues: – epithelial tissue – connective tissue – muscular tissue – nervous tissue • An Organ is a structure with discrete boundaries that is composed of 2 or more tissue types. • Example: skin is an organ composed of epidermal tissue and dermal tissue. Distinguishing Features of Tissue Types • Types of cells (shapes and functions) • Arrangement of cells • Characteristics of the Extracellular Matrix: – proportion of water – types of fibrous proteins – composition of the ground substance • ground substance is the gelatinous material between cells in addition to the water and fibrous proteins • ground substance consistency may be liquid (plasma), rubbery (cartilage), stony (bone), elastic (tendon) • Amount of space occupied by cells versus extracellular matrix distinguishes connective tissue from other tissues – cells of connective tissues are widely separated by a large amount of extracellular matrix – very little extracellular matrix between the cells of epithelia, nerve, and muscle tissue Embryonic Tissues • An embryo begins as a single cell that divides into many cells that eventually forms 3 Primary Layers: – ectoderm (outer layer) • forms epidermis and nervous system – endoderm (inner layer) • forms digestive glands and the mucous membrane lining digestive tract and respiratory system – mesoderm (middle layer) • Forms muscle, bone, blood and other organs. Histotechnology • Preparation of specimens for histology: – preserve tissue in a fixative to prevent decay (formalin) – dehydrate in solvents like alcohol and xylene – embed in wax or plastic – slice into very thin sections only 1 or 2 cells thick – float slices on water and mount on slides and then add color with stains • Sectioning an organ or tissue reduces a 3-dimensional structure to a 2- dimensional slice.
    [Show full text]
  • Mesenchymal Stem Cells in Combination with Hyaluronic Acid
    www.nature.com/scientificreports OPEN Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects Received: 1 August 2017 Lang Li1, Xin Duan1, Zhaoxin Fan2, Long Chen1,3, Fei Xing1, Zhao Xu4, Qiang Chen2,5 & Accepted: 19 April 2018 Zhou Xiang1 Published: xx xx xxxx Mesenchymal stem cells (MSCs) and hyaluronic acid (HA) have been found in previous studies to have great potential for medical use. This study aimed to investigate the therapeutic efects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repair in canines. Twenty-four healthy canines (48 knee-joints), male or female with weight ranging from 5 to 6 kg, were operated on to induce cartilage defect model and divided into 3 groups randomly which received diferent treatments: BMSCs plus HA (BMSCs-HA), HA alone, and saline. Twenty-eight weeks after treatment, all canines were sacrifced and analyzed by gross appearance, magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining, Masson staining, toluidine blue staining, type II collagen immunohistochemistry, gross grading scale and histological scores. MSCs plus HA regenerated more cartilage-like tissue than did HA alone or saline. According to the macroscopic evaluation and histological assessment score, treatment with MSCs plus HA also lead to signifcant improvement in cartilage defects compared to those in the other 2 treatment groups (P < 0.05). These fndings suggested that allogeneic BMSCs plus HA rather than HA alone was efective in promoting the formation of cartilage-like tissue for repairing cartilage defect in canines. Articular cartilage is composed of chondrocyte and extracellular matrix and has an important role in joint move- ment including lubrication, shock absorption and conduction.
    [Show full text]
  • (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: a Five-Year Follow-Up Prospective Cohort Study
    life Communication Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,5,* , Hanno Schenker 1, Arne Driessen 1 , Björn Rath 1,6 and Markus Tingart 1 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.D.); [email protected] (B.R.); [email protected] (M.T.) 2 School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK 3 Barts and the London School of Medicine and Dentistry, London E1 2AD, UK 4 Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria 6 Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy * Correspondence: [email protected] Abstract: Introduction: Many procedures are available to manage cartilage defects of the talus, Citation: Migliorini, F.; Eschweiler, J.; including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether Maffulli, N.; Schenker, H.; Driessen, AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the A.; Rath, B.; Tingart, M. Autologous present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized Matrix Induced Chondrogenesis focal unipolar chondral defects of the talar shoulder at midterm follow-up.
    [Show full text]
  • Applications of Chondrocyte-Based Cartilage Engineering: an Overview
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 1879837, 17 pages http://dx.doi.org/10.1155/2016/1879837 Review Article Applications of Chondrocyte-Based Cartilage Engineering: An Overview Abdul-Rehman Phull,1 Seong-Hui Eo,1 Qamar Abbas,1 Madiha Ahmed,2 and Song Ja Kim1 1 Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongjudaehakro 56, Gongju 32588, Republic of Korea 2Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan Correspondence should be addressed to Song Ja Kim; [email protected] Received 14 May 2016; Revised 24 June 2016; Accepted 26 June 2016 Academic Editor: Magali Cucchiarini Copyright © 2016 Abdul-Rehman Phull et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment.
    [Show full text]
  • Embryonic Cell That Forms Cartilage Medical Term
    Embryonic Cell That Forms Cartilage Medical Term Unexploited Gordie languishes: he scumbles his initiatives atweel and esthetically. When Nate gestate his niggardliness Grecizing not post-free enough, is Mikhail windowless? Ship-rigged or millionth, Edgar never enshrining any millionairesses! The crest cell phenotype research in record area forms the body of shift review the Table 1. Where and repair differs substantially augments the embryonic cartilage tissue types of its tension adaptation and cells? In both types for medicine to that cartilage. Cells turn into differentiated stem cells that trace specific tissues and organs. Ambiguous cells the emergence of daughter stem a concept in. Mesenchymal Chondrosarcoma NORD National. Blood cells Chondro Oma Cartilage Tumor Arthro Joints Cartilage creates a. Can disturb blood cells and stromal which manufacture produce fat cartilage and bone. Label by following from NURSING 3345 at University of Texas Medical Branch. Body mostly a laboratory stem cells divide that form more cells called daughter cells. Guidelines for Human Embryonic Stem Cell with Brown. Abstract The skeletal system is formed of bones and cartilage which are. Each tissue cartilage bone and skeletal muscle goes through my different. Medical terms UCL. Please note love the definitions are moving given an explain another word found also a. Definition Stem cells are cells which feature not yet developed a special. The term totipotent refer down the grief that they ever total potential to. Stem from Research Uses Types & Examples Healthline. For cardiac muscle cells and was still pluripotent stem cells may also structures and cartilage that embryonic cell forms a primitive connective tissue physiology as well as macrophages are adequately informed consent.
    [Show full text]
  • Research Review Fibrocartilage
    J. Anat. (1990), 171, pp. 1-15 1 Printed in Great Britain Research Review Fibrocartilage M. BENJAMIN AND E. J. EVANS Department of Anatomy, University of Wales College of Cardiff, PO Box 900, Cardif CF1 3 YF, Wales Fibrocartilage has long been a neglected tissue that is too often viewed as a poor relation of hyaline cartilage. It failed to achieve the status of a tissue with the early histologists, but it is beginning to come of age, for modem techniques are revealing some exciting secrets about fibrocartilage in knee joint menisci and intervertebral discs in particular. Yet there has never been any general review on fibrocartilage, and workers concerned with the tissue in one organ rarely consider it in another. Consequently, we lack any global picture that would encourage the spread of interest in the tissue and the effective exchange of ideas. Our review deals largely with the white fibrocartilage of standard texts and for reasons of space excludes yellow elastic cartilage. We have concentrated on fibrocartilage as a tissue rather than fibrocartilages as organs. HISTORICAL CONSIDERATIONS The most important work on cartilage in the older literature is that of Schaffer (1930). His monograph is a thorough, comparative account of cartilage and related tissues throughout the animal kingdom. The reader interested in fibrocartilage must also study Schaffer's account of chondroid tissue, for some tissues that would now be regarded as fibrocartilage were viewed by Schaffer as hyaline-cell chondroid tissue. He had a narrow vision of 'true' cartilage and called tissues where the cells were not shrunken in lacunae, 'chondroid'.
    [Show full text]
  • Connective Tissue • Includes Things Like Bone, Fat, & Blood. All
    Connective Tissue • includes things like bone, fat, & blood. All connective tissues include: 1. specialized cells 2.extracellular protein fibers } matrix that surrounds cells. 3. a fluid known as ground substance Functions include: Connective tissues come in 3 major types •Establish a structural framework 1. Connective tissue proper •Transporting fluids from one part of the body to another 2. Fluid Connective Tissue •Protecting delicate organs •Supporting, surrounding and interconnecting 3. Supporting Connective Tissue other tissue types • Other CTP cells are involved in defense and Connective Tissue Proper large repair jobs (these roam from site to site as • Connective tissue with many cell types and needed) extracellular fibers in a syrupy ground substance. A. Macrophages • Some cells of CTP are involved w/repair, B. Mast cells maintenance, and energy storage. C. Lymphocytes a. Fibroblasts D. plasma cells E. Microphages b. Adipocytes • The number of cells and cell types within a tissue at c. Mesenchymal cells any given moment varies depending on local conditions. 1 The Cell Population C. Adipocytes A. Fibroblasts • Fat cells • Most abundant cells in CTP • Typically contain a single enormous lipid droplet • Permanent resident of CTP (always present) • Other organelles squeezed to side of cell wall • Produce proteins to make the ground substance (resemble a class ring) very viscous • Also secret e prot ei ns th at mak e th e fib ers DMD. Mesenc hyma l ce lls • Stem cells B. Macrophages • Large amoeboid cells • Respond to injury by dividing into daughter cells which differentiate into connective tissue cells • Engulf & digest pathogens or damaged cells that enter the tissue • Release chemicals that activate the bodies immune system E.
    [Show full text]
  • Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation
    Autologous Matrix-Induced Chondrogenesis and Generational Development of Autologous Chondrocyte Implantation Hajo Thermann, MD, PhD,* Christoph Becher, MD,† Francesca Vannini, MD, PhD,‡ and Sandro Giannini, MD‡ The treatment of osteochondral defects of the talus is still controversial. Matrix-guided treatment options for covering of the defect with a scaffold have gained increasing popularity. Cellular-based autologous chondrocyte implantation (ACI) has undergone a generational development overcoming the surgical drawbacks related to the use of the periosteal flap over time. As ACI is associated with high costs and limited in availability, autologous matrix-induced chondrogenesis, a single-step procedure combining microfracturing of the subchondral bone to release bone marrow mesenchymal stem cells in combination with the coverage of an acellular matrix, has gained increasing popularity. The purposes of this report are to present the arthroscopic approach of the matrix-guided autologous matrix-induced chondrogenesis technique and generational development of ACI in the treatment of chondral and osteochon- dral defects of the talus. Oper Tech Orthop 24:210-215 C 2014 Elsevier Inc. All rights reserved. KEYWORDS cartilage, defect, ankle, talus, AMIC, ACI Introduction Cartilage repair may be obtained by cartilage replacement: (OATS, mosaicplasty) or with techniques aimed to generate a hondral and osteochondral lesions are defects of the newly formed cartilage such as microfracture or autologous Ccartilaginous surface and underlying subchondral bone of chondrocyte implantation (ACI).9-17 the talar dome. These defects are often caused by a single or Arthroscopic debridement and bone marrow stimulation multiple traumatic events, mostly inversion or eversion ankle using the microfracture technique has proven to be an 1,2 sprains in young, active patients.
    [Show full text]
  • Connective Tissue N. Swailes, Ph.D. Department of Anatomy and Cell
    Module 1.3: Connective Tissue N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 13th Edition, Chapter 5 (also via AccessMedicine) Learning objectives 1) Name the three major classes of connective tissue and give examples of each. 2) Identify and describe the origin, organization and fate of embryonic connective tissue 3) Identify and discuss the functional properties imparted to tissue by the extracellular matrix: a. fibers (elastin, collagen Type I, II, III, IV and VII) b. ground substance (glycosaminoglycans, proteoglycans, glycoproteins) 4) Distinguish between different connective tissue cells and discuss their roles: a. fibroblasts b. adipocytes c. macrophages d. mast cells e. lymphocytes f. plasma cells g. eosinophils h. neutrophils 5) Classify the different connective tissues proper and compare and contrast their functional roles within an organ. Introduction The human body is made up of only four basic tissues: 1. Epithelial tissue 2. Connective tissue 3. Muscle tissue 4. Nervous tissue By adjusting the organization, composition and special features associated with each of these tissues is is possible to impart a wide variety of functions to the region or organ that they form. During this lecture you will examine the basic histological structure and function of Connective Tissue. 1 | Page: Connective Tissue Swailes a loose meshwork Part A: General characteristics of connective tissues that cushions and allows diffusion A1. There are three major classes of connective tissue i. Connective tissues proper - the most common class of connective tissue in the body.
    [Show full text]
  • Connectomics of the Lacuno-Canalicular Network in Bone
    The Small World of Osteocytes: Connectomics of the Lacuno-Canalicular Network in Bone Philip Kollmannsberger1,2,*, Michael Kerschnitzki1,3, Felix Repp1, Wolfgang Wagermaier1, Richard Weinkamer1, Peter Fratzl1 1Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany 2ETH Zurich, Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland 3Weizmann Institute of Science, Dept. of Structural Biology, Rehovot, Israel * current address: Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany Abstract Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Bone & Cartilage
    Compiled and circulated by Mr. Suman Kalyan Khanra, SACT, Dept. of Physiology, Narajole Raj college BONE & CARTILAGE (Structure, Function, Classification of BONE & CARTILAGE) BY Suman Kalyan Khanra SACT Department of Physiology NARAJOLE RAJ COLLEGE Narajole; Paschim Medinipur 1 | P a g e ZOOLOGY: SEM-III, Paper-C6T: Animal Physiology, Unit-2: Bone & Cartilage Compiled and circulated by Mr. Suman Kalyan Khanra, SACT, Dept. of Physiology, Narajole Raj college BONE Definition: A bone is a somatic structure that is comprised of calcified connective tissue. Ground substance and collagen fibers create a matrix that contains osteocytes. These cells are the most common cell found in mature bone and responsible for maintaining bone growth and density. Within the bone matrix both calcium and phosphate are abundantly stored, strengthening and densifying the structure. Each bone is connected with one or more bones and are united via a joint (only exception: hyoid bone). With the attached tendons and musculature, the skeleton acts as a lever that drives the force of movement. The inner core of bones (medulla) contains either red bone marrow (primary site of hematopoiesis) or is filled with yellow bone marrow filled with adipose tissue. The main outcomes of bone development are endochondral and membranous forms. This particular characteristic along with the general shape of the bone are used to classify the skeletal system. The main shapes that are recognized include: long short flat sesamoid irregular Types of bone Long bones These bones develop via endochondral ossification, a process in which the hyaline cartilage plate is slowly replaced. A shaft, or diaphysis, connects the two ends known as the epiphyses (plural for epiphysis).
    [Show full text]