Spring 2005 Thirty-First Issue Volume 17, No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insight from the Sociology of Science
CHAPTER 7 INSIGHT FROM THE SOCIOLOGY OF SCIENCE Science is What Scientists Do It has been argued a number of times in previous chapters that empirical adequacy is insufficient, in itself, to establish the validity of a theory: consistency with the observable ‘facts’ does not mean that a theory is true,1 only that it might be true, along with other theories that may also correspond with the observational data. Moreover, empirical inadequacy (theories unable to account for all the ‘facts’ in their domain) is frequently ignored by individual scientists in their fight to establish a new theory or retain an existing one. It has also been argued that because experi- ments are conceived and conducted within a particular theoretical, procedural and instrumental framework, they cannot furnish the theory-free data needed to make empirically-based judgements about the superiority of one theory over another. What counts as relevant evidence is, in part, determined by the theoretical framework the evidence is intended to test. It follows that the rationality of science is rather different from the account we usually provide for students in school. Experiment and observation are not as decisive as we claim. Additional factors that may play a part in theory acceptance include the following: intuition, aesthetic considerations, similarity and consistency among theories, intellectual fashion, social and economic influences, status of the proposer(s), personal motives and opportunism. Although the evidence may be inconclusive, scientists’ intuitive feelings about the plausibility or aptness of particular ideas will make it appear convincing. The history of science includes many accounts of scientists ‘sticking to their guns’ concerning a well-loved theory in the teeth of evidence to the contrary, and some- times in the absence of any evidence at all. -
The Joys and Burdens of Our Heroes 12/05/2021
More Fun Than Fun: The Joys and Burdens of Our Heroes 12/05/2021 An iconic photo of Konrad Lorenz with his favourite geese. Photo: Willamette Biology, CC BY-SA 2.0 This article is part of the ‘More Fun Than Fun‘ column by Prof Raghavendra Gadagkar. He will explore interesting research papers or books and, while placing them in context, make them accessible to a wide readership. RAGHAVENDRA GADAGKAR Among the books I read as a teenager, two completely changed my life. One was The Double Helix by Nobel laureate James D. Watson. This book was inspiring at many levels and instantly got me addicted to molecular biology. The other was King Solomon’s Ring by Konrad Lorenz, soon to be a Nobel laureate. The study of animal behaviour so charmingly and unforgettably described by Lorenz kindled in me an eternal love for the subject. The circumstances in which I read these two books are etched in my mind and may have partly contributed to my enthusiasm for them and their subjects. The Double Helix was first published in London in 1968 when I was a pre-university student (equivalent to 11th grade) at St Joseph’s college in Bangalore and was planning to apply for the prestigious National Science Talent Search Scholarship. By then, I had heard of the discovery of the double-helical structure of DNA and its profound implications. I was also tickled that this momentous discovery was made in 1953, the year of my birth. I saw the announcement of Watson’s book on the notice board in the British Council Library, one of my frequent haunts. -
La Logica Del Vivente in Maupertuis: Dall’Attrazione Newtoniana Al Determinismo Psicobiologico
La logica del vivente in Maupertuis: dall’attrazione newtoniana al determinismo psicobiologico Federico Focher (Istituto di Genetica Molecolare “Luigi Luca Cavalli Sforza”, CNR, Pavia) Dopo aver rilanciato con successo la teoria epigenetica della generazione, reinterpretata alla luce dell’attrazione newtoniana e delle affinità chimiche (Vénus physique, 1745), Pierre-Louis Moreau de Maupertuis (1698-1759) approfondì le proprie indagini teoretiche nel campo della genesi degli organismi e delle specie nel Système de la Nature (1754). In quest’opera, al fine di conciliare il postulato di oggettività della scienza - che respinge il ricorso alle cause finali - con le evidenti proprietà teleonomiche degli esseri viventi, e riconoscendo nel contempo inadeguati a tale scopo i pur originali principii meccanicistici avanzati nella Vénus physique, Maupertuis propose un’ardita teoria panpsichista del vivente, di ispirazione spinoziana. Postulando quindi la materia viva, dotata di istinto e di sentimento, Maupertuis immaginò che una qualche forma di intelligenza o di memoria psichica, associata alla materia, dirigesse lo sviluppo dei viventi. Alla luce delle recenti scoperte della biologia, l’originale determinismo psicobiologico avanzato da Maupertuis nel Système de la Nature appare una geniale intuizione della logica dei processi genetici ed evolutivi. Keywords: Maupertuis, teleonomia, scienze della vita, storia della biologia, informazione genetica, panpsichismo, Buffon. Introduzione Mezzo secolo dopo la scoperta della legge della gravitazione universale -
The Spontaneous Generation Controversy (340 BCE–1870 CE)
270 4. Abstraction and Unification ∗ ∗ ∗ “O`uen ˆetes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to his devoted pupils, watching over him). The Spontaneous Generation Controversy (340 BCE–1870 CE) “Omne vivium ex Vivo.” (Latin proverb) Although the theory of spontaneous generation (abiogenesis) can be traced back at least to the Ionian school (600 B.C.), it was Aristotle (384-322 B.C.) who presented the most complete arguments for and the clearest statement of this theory. In his “On the Origin of Animals”, Aristotle states not only that animals originate from other similar animals, but also that living things do arise and always have arisen from lifeless matter. Aristotle’s theory of sponta- neous generation was adopted by the Romans and Neo-Platonic philosophers and, through them, by the early fathers of the Christian Church. With only minor modifications, these philosophers’ ideas on the origin of life, supported by the full force of Christian dogma, dominated the mind of mankind for more that 2000 years. According to this theory, a great variety of organisms could arise from lifeless matter. For example, worms, fireflies, and other insects arose from morning dew or from decaying slime and manure, and earthworms originated from soil, rainwater, and humus. Even higher forms of life could originate spontaneously according to Aristotle. Eels and other kinds of fish came from the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came from slime. 1846 CE 271 Rather than examining the claims of spontaneous generation more closely, Aristotle’s followers concerned themselves with the production of even more remarkable recipes. -
Introduction and Historical Perspective
Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful -
New Yorkers Had Been Anticipating His Visit for Months. at Columbia
INTRODUCTION ew Yorkers had been anticipating his visit for months. At Columbia University, where French intellectual Henri Bergson (1859–1941) Nwas to give twelve lectures in February 1913, expectations were es- pecially high. When first approached by officials at Columbia, he had asked for a small seminar room where he could directly interact with students and faculty—something that fit both his personality and his speaking style. But Columbia sensed a potential spectacle. They instead put him in the three- hundred-plus-seat lecture theater in Havemeyer Hall. That much attention, Bergson insisted, would make him too nervous to speak in English without notes. Columbia persisted. So, because rhetorical presentation was as impor- tant to him as the words themselves, Bergson delivered his first American lec- ture entirely in French.1 Among the standing-room-only throng of professors and editors were New York journalists and “well-dressed” and “overdressed” women, all fumbling to make sense of Bergson’s “Spiritualité et Liberté” that slushy evening. Between their otherwise dry lines of copy, the reporters’ in- credulity was nearly audible as they recorded how hundreds of New Yorkers strained to hear this “frail, thin, small sized man with sunken cheeks” practi- cally whisper an entire lecture on metaphysics in French.2 That was only a prelude. Bergson’s “Free Will versus Determinism” lec- ture on Tuesday, February 4th—once again delivered in his barely audible French—caused the academic equivalent of a riot. Two thousand people attempted to cram themselves into Havemeyer. Hundreds of hopeful New Yorkers were denied access; long queues of the disappointed snaked around the building and lingered in the slush. -
Darwin in the Press: What the Spanish Dailies Said About the 200Th Anniversary of Charles Darwin’S Birth
CONTRIBUTIONS to SCIENCE, 5 (2): 193–198 (2009) Institut d’Estudis Catalans, Barcelona Celebration of the Darwin Year 2009 DOI: 10.2436/20.7010.01.75 ISSN: 1575-6343 www.cat-science.cat Darwin in the press: What the Spanish dailies said about the 200th anniversary of Charles Darwin’s birth Esther Díez, Anna Mateu, Martí Domínguez Mètode, University of Valencia, Valencia, Spain Resum. El bicentenari del naixement de Charles Darwin, cele- Summary. The bicentenary of Charles Darwin’s birth, cele- brat durant el passat any 2009, va provocar un considerable brated in 2009, caused a surge in the interest shown by the augment de l’interés informatiu de la figura del naturalista an- press in the life and work of the renowned English naturalist. glès. En aquest article s’analitza la cobertura informativa This article analyzes the press coverage devoted to the Darwin d’aquest aniversari en onze diaris generalistes espanyols, i Year in eleven Spanish daily papers during the week of Dar- s’estableix grosso modo quines són les principals postures de win’s birthday and provides a brief synopsis of the positions la premsa espanyola davant de la teoria de l’evolució. D’aques- adopted by the Spanish press regarding the theory of evolu- ta anàlisi, queda ben palès com el creacionisme és encara molt tion. The analysis makes very clear the relatively strong support viu en els mitjans espanyols més conservadors. for creationism by the conservative press in Spain. Paraules clau: Charles Darwin ∙ ciència vs. creacionisme ∙ Keywords: Charles Darwin ∙ science vs. creationism ∙ tractament informatiu científic scientific news coverage “The more we know of the fixed laws of nature the more In this article, we examine to what extent and in what form incredible do miracles become.” this controversy persists in Spanish society, focusing on the print media’s response to the celebration, in 2009, of the 200th Charles Darwin (1887). -
Biography (Modified, After Festetics 1983)
Konrad Lorenz’s Biography (modified, after Festetics 1983) 1903: Konrad Zacharias Lorenz (KL) was born in Altenberg /Austria on Nov. 7 as the last of three children of Emma Lorenz and Dr. Adolf Lorenz, professor for orthopedics at the Medical branch of the University of Vienna. In the same year the representative and spacious Altenberg family home was finished. 1907: KL starts keeping animals, such as spotted newts in aquaria, raises some ducklings and is not pleased by his first experiences with a dachshound. Niko Tinbergen, his lifelong colleague and friend, is born on April 15 in Den Haag, The Netherlands. 1909: KL enters elementary school and engages in systematic studies in crustaceans. 1910: Oskar Heinroth, biologist and founder of "Vergleichende Verhaltensforschung" (comparative ethology) from Berlin and fatherlike scientific mentor of the young KL publishes his classical paper on the ethology of ducks. 1915: KL enters highschool (Schottengymnasium Wien), keeps and breeds songbirds. 1918: Wallace Craig publishes the comparative ethology of Columbidae (pigeons), a classics of late US biologist Charles O. Whitman, who was like O. Heinroth, a founding father of comparative ethology. 1921: KL excels in his final exams. Together with friend Bernhard Hellmann, he observes and experiments with aggression in a cichlid (Herichthys cyanoguttatum). This was the base for KL's psychohydraulic model of motivation. 1922: Father Adolf sends KL to New York to take 2 semesters of medicine courses at the ColumbiaUniversity, but mainly to interrupt the relationship of KL with longterm girlfriend Gretl Gebhart, his later wife. This paternal attempt to influence the mate choice of KL failed. -
Michael N Dawson
M. N Dawson CV page 1 of 40 CURRICULUM VITAE — MICHAEL N DAWSON University of California, Merced 5200 North Lake Road, Merced, CA 95343, USA [email protected] / [email protected] CONTENTS PAGE EDUCATION 2 RESEARCH APPOINTMENTS 2 Research Positions, Field Research Experience PUBLICATIONS 3 Journal Articles (71), Book Chapters (9), Book Reviews (3), Correspondence & Commentaries (5), Editorials (11), Technical Reports & Information Booklets (5), Popular Articles (3), Submitted Articles (2), Internet resources & Videos (9) AWARDS AND FELLOWSHIPS 13 RESEARCH GRANTS 15 INVITED SEMINARS 19 SYMPOSIUM AND WORKSHOP ORGANIZATION 22 WORKING GROUPS 23 WORKSHOPS & TRAINING 23 CONFERENCE PRESENTATIONS 24 Plenary / Keynote, Invited, Oral, Poster TEACHING EXPERIENCE 29 Teaching Positions, Guest Lectures, Seminar Organization, Course Development, Professional Development, Postdoctoral scholars mentored, Student Supervision, Educational Outreach SERVICE 35 Centre / Graduate Groups / School, UC Merced, University of California, National, International, Consulting PROFESSIONAL MEMBERSHIPS 40 M. N Dawson CV page 2 of 40 EDUCATION back to index page 2000 Ph.D., Biology, University of California, Los Angeles, USA. Thesis: “Molecular variation and evolution in coastal marine taxa.” 1994 M.Sc., Biological Computation, University of York, England. Thesis: “REEFISH: modelling coral reef fisheries.” 1993 B.Sc., Marine Biology, University of Newcastle-Upon-Tyne, England. Thesis: “Hylleberg’s concept of ‘gardening’ and the nutrition of Arenicola marina (Linné).” RESEARCH APPOINTMENTS back to index page Research Positions July 17 – Present Full Professor, University of California, Merced. July 12 – Jun 17 Associate Professor, University of California, Merced. Oct 06 – Jun 12 Assistant Professor, University of California, Merced. Mar 05 – Sep 06 Post-doctoral Researcher, w/ R. K. Grosberg, University of California, Davis. -
2862 001 OCR DBL ZIP 0.Pdf
, , .- GREAT SCIENTIFIC EXPERIMENTS Twenty Experiments that Changed our View of the World ROM HARRE Oxford New York OXFORD UNIVERSITY PRESS 1983 Whi'te Oalt OXford Um'wrsity Press, Waftoff Street, OXfordOX'2 6DP LondonGlasgov) New Yorn Toronto Delhi &mbay Calcutta Madras Knrachi Kuala'LumpurSingapore HangKnng·Tokyo Nairobi Dar es Salaam Cape Town Mel~urne Auckland and associates in Beirut Berlin [hac/an Mexico City Nicosia © Phaidon Press limited 1981 First published by Phaidon Press Limited /981 First issued as an Oxford University Press Paperback 1983 All n'ghts reserved. No port of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by atiy means, electronic, mechanical, photocopying, recording, or otherwise, without ., the prior permission oj Oxford University Press This book is sold subject to the condition that it shall n(Jt,~by way oftrade or otherwise, be Jent, re-sold, hired out or otheruxse circulated without the pilblisher's prior consent in any fonn of binding or cover other than that in which it is published and ulithout a similar condition including this condition being imposed on the subsequent purchaser British Library Cataloguing in Publication Data Ham, Rom Great scientific experiments.-{Oxford paperbacks) 1. Science-experiments-History 1. Title SfJ1'.24 Q125 ISBN 0-19-286036-4 library of Congress Cataloging in Publication Data , Harrl, Rmnimo. Great scientific experimetus. (Oxford paperbacks) " Biblwgraphy: p. Includes index. 1. Scieni:e-MethodlJ~(Ue studies. 2.-Science-Expen"men/$-PhI1osopf!y. 3. Science-Histo1y--Sources. 4. Scientists_Biograpf!y. I. Title. QI75.H32541983 507'.2 82';'19035 ISBN 0-19-286036-4 (pbk.) Printed in Great Britain by R. -
On the Trail of Digestion
Middle School Science Eating to Live and Living to Eat Movement of Energy Through Living and Non-living Systems; Student Resource Matter, Its Structure and Changes; From Atoms to the Universe Name On the Trail of Digestion Read the following section on the history of medical science and answer the questions: January 17, 2002 SCoPE SC070104 Page 1 of 6 Middle School Science Eating to Live and Living to Eat Movement of Energy Through Living and Non-living Systems; Student Resource Matter, Its Structure and Changes; From Atoms to the Universe Spallanzani Lazzaro Spallanzani lived in the second half of the 18th Century. You may remember Spallanzani’s experiments on spontaneous generation. His work on digestion is also famous. In Spallanzani’s time, people knew that the stomach was a strong muscle that could grind and mash food. Investigations of bodies told scientists that. But Spallanzani believed that the stomach also held a chemical process. He began his studies using his own falcons. He would feed the falcons small pieces of meat attached firmly to a string, and when the meat had been in the birds stomachs for some time, he would remove it. (You might remember that birds regurgitate quite easily, and some birds feed their babies this way.) Spallanzani believed that digestion was a chemical process. Another noted scientist, Rene Reaumur disagreed. He wrote: "the gastric juice has no more effect out of the living body in dissolving or digesting the food than water, mucilage, milk, or any other bland fluid." Reaumur claimed to have done experiments to see if digestion could take place outside the body as well as in it. -
The Spandrels of Self-Deception: Prospects for a Biological Theory of a Mental Phenomenon
The Spandrels of Self-Deception: Prospects for a Biological Theory of a Mental Phenomenon D. S. Neil Van Leeuwen Self-deception is so undeniable a fact of human life that if anyone tried to deny its existence, the proper response would be to accuse this person of it. —Allen Wood1 1. Introduction to the Problems Even prior to a characterization of self-deception, it’s easy to see that it’s widespread. This is puzzling, because self-deception seems paradoxical. Here are three apparent problems. First, self-deception seems to involve a conceptual contradiction; in order to deceive, one must believe the contrary of the deception one is perpetrating, but if one believes the contrary, it seems impossible for that very self to believe the deception.2 Second, a view of the mind has become widely accepted that makes rationality constitutive and exhaustive of the mental; this is the interpretive view of the mental put forth by Donald Davidson and followers.3 According to this view, the idea of attributing irrational beliefs to agents makes little sense, for we cannot make sense of what someone’s beliefs are unless they are rational. But self-deception is highly irrational.4 Third, a brief survey of other cognitive mechanisms (such as vision) reveals that most are well suited for giving us reliable information about ourselves and our environment. Self- deception, however, undermines knowledge of ourselves and the world. If having good information brings fitness benefits to organisms, how is it that self-deception was not weeded out by natural selection? Otherwise put, why does self-deception exist? (For convenience, I shall refer to these as puzzles 1, 2, and 3.) Puzzles such as these make self-deception an intriguing explanatory target.