Suppl. Material (.Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 8,323,640 B2 Sakuraba Et Al
USOO8323640B2 (12) United States Patent (10) Patent No.: US 8,323,640 B2 Sakuraba et al. (45) Date of Patent: *Dec. 4, 2012 (54) HIGHLY FUNCTIONAL ENZYME HAVING OTHER PUBLICATIONS O-GALACTOSIDASE ACTIVITY Broun et al., Catalytic plasticity of fatty acid modification enzymes (75) Inventors: Hitoshi Sakuraba, Abiko (JP); Youichi underlying chemical diversity of plant lipids. Science, 1998, vol. 282: Tajima, Tokyo (JP); Mai Ito, Tokyo 1315-1317. (JP); Seiichi Aikawa, Tokyo (JP); Cameron ER. Recent advances in transgenic technology. 1997, vol. T: 253-265. Fumiko Aikawa, Tokyo (JP) Chica et al., Semi-rational approaches to engineering enzyme activ (73) Assignees: Tokyo Metropolitan Organization For ity: combining the benefits of directed evolution and rational design. Curr, opi. Biotechnol., 2005, vol. 16:378-384. Medical Research, Tokyo (JP); Altif Couzin et al. As Gelsinger case ends, Gene therapy Suffers another Laboratories, Tokyo (JP) blow. Science, 2005, vol. 307: 1028. Devos et al., Practical Limits of Function prediction. Proteins: Struc (*) Notice: Subject to any disclaimer, the term of this ture, Function, and Genetics. 2000, vol. 41: 98-107. patent is extended or adjusted under 35 Donsante et al., AAV vector integration sites in mouse hapatocellular U.S.C. 154(b) by 0 days. carcinoma. Science, 2007. vol. 317: 477. Juengst ET., What next for human gene therapy? BMJ., 2003, vol. This patent is Subject to a terminal dis 326: 1410-1411. claimer. Kappel et al., Regulating gene expression in transgenic animals. Current Opinion in Biotechnology 1992, vol. 3: 548-553. (21) Appl. No.: 13/052,632 Kimmelman J. Recent developments in gene transfer: risk and eth ics. -
Supplementary Information Biocementation of Soil by Calcite/Aragonite Precipitation Using Pseudomonas Azotoformans and Citrobact
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supplementary Information Biocementation of soil by calcite/aragonite precipitation using Pseudomonas azotoformans and Citrobacter freundii derived enzymes Heba Abdel-Aleem1, Tarek Dishisha1, Amal Saafan2, Abduallah A. AbouKhadra3 and Yasser Gaber1,4,* 1Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511, Beni-Suef, Egypt 2Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia university, Shebeen El-kom, Egypt 3Department of Civil Engineering, Facutly of Engineering, Beni-Suef University, 62511, Beni- Suef, Egypt 4Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-karak, 61710, Jordan *Corresponding author: E-mail: [email protected] Tel. int +20 82 216 2133 ; Fax. int +20 82 216 2133 1 Supplementary Table 1: strains identified using BCL card (Gram positive spore forming bacilli) Sample/test A1 B1 B2 Y1a Y2a BXYL - - - - - BXYL (betaxylosidase), LysA - - - - - LysA (L- lysine arylamidase), AspA - - - + - AspA (L aspartate arylamidase), LeuA + + + + + LeuA (leucine arylamidase), PheA - + - - - PheA (phenylalanine arylamidase), ProA - - - + - ProA (L-proline arylamidase), BGAL - - - - - BGAL (beta galactosidase), PyrA + + + + + PyrA (L-pyrrolydonyl arylamidase), AGAL - - - - - AGAL (alpha galactosidase), AlaA - - - + - AlaA (alanine arylamidase), TyrA - - - - - TyrA (tyrosine arylamidase), BNAG + + + + + BNAG (beta-N-acetyl -
Base Excision Repair Deficient Mice Lacking the Aag Alkyladenine DNA Glycosylase
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 13087–13092, November 1997 Genetics Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase BEVIN P. ENGELWARD*†,GEERT WEEDA*‡,MICHAEL D. WYATT†,JOSE´ L. M. BROEKHOF‡,JAN DE WIT‡, INGRID DONKER‡,JAMES M. ALLAN†,BARRY GOLD§,JAN H. J. HOEIJMAKERS‡, AND LEONA D. SAMSON†¶ †Department of Molecular and Cellular Toxicology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115; ‡Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus University, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands; and §Eppley Institute for Research in Cancer and Allied Diseases and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6805 Edited by Philip Hanawalt, Stanford University, Stanford, CA, and approved September 30, 1997 (received for review August 8, 1997) ABSTRACT 3-methyladenine (3MeA) DNA glycosylases 11). The precise biological effects of all of the DNA lesions remove 3MeAs from alkylated DNA to initiate the base repaired by mammalian 3MeA DNA glycosylases are not yet excision repair pathway. Here we report the generation of mice known for mammals, though there is strong evidence that deficient in the 3MeA DNA glycosylase encoded by the Aag 3MeA is cytotoxic (12), and other lesions may be mutagenic, (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the namely Hx (13), 8oxoG (14), 1,N6-ethenoadenine («A), and major DNA glycosylase not only for the cytotoxic 3MeA DNA N2,3-ethenoguanine (15, 16). It is important to note that each lesion, but also for the mutagenic 1,N6-ethenoadenine («A) of these DNA lesions can arise spontaneously in the DNA of and hypoxanthine lesions. -
Targeted Deletion of Alkylpurine-DNA-N-Glycosylase in Mice Eliminates Repair of 1,N6-Ethenoadenine and Hypoxanthine but Not of 3,N4-Ethenocytosine Or 8-Oxoguanine
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12869–12874, November 1997 Biochemistry Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine B. HANG*, B. SINGER*†,G.P.MARGISON‡, AND R. H. ELDER‡ *Donner Laboratory, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and ‡Cancer Research Campaign Section of Genome Damage and Repair, Paterson Institute for Cancer Research, Christie Hospital (National Health Service) Trust, Manchester, M20 4BX, United Kingdom Communicated by H. Fraenkel-Conrat, University of California, Berkeley, CA, October 2, 1997 (received for review September 18, 1997) ABSTRACT It has previously been reported that 1,N6- A separate line of experimentation to assess the in vivo ethenoadenine («A), deaminated adenine (hypoxanthine, Hx), mutagenicity of various modified bases in differing repair and 7,8-dihydro-8-oxoguanine (8-oxoG), but not 3,N4- backgrounds used defined synthetic oligonucleotides or glo- ethenocytosine («C), are released from DNA in vitro by the bally modified vectors (12–15). Related to this are numerous DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG). in vitro experiments also using site-directed mutagenesis in To assess the potential contribution of APNG to the repair of which replication efficiency and changed base pairing could be each of these mutagenic lesions in vivo, we have used cell-free quantitated [reviewed by Singer and Essigmann, (15)]. These extracts of tissues from APNG-null mutant mice and wild-type data all yielded basic information on the potential biological controls. The ability of these extracts to cleave defined oli- role of modified bases in the absence of any repair capacity. -
Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and Ph-Sensitivity of Pullulanase from Bacillus Naganoensis
RESEARCH ARTICLE Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and pH-Sensitivity of Pullulanase from Bacillus naganoensis Qing-Yan Wang1☯, Neng-Zhong Xie1☯, Qi-Shi Du1,2*, Yan Qin1, Jian-Xiu Li1,3, Jian- Zong Meng3, Ri-Bo Huang1,3 a1111111111 1 State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non- Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China, 2 Gordon Life Science Institute, a1111111111 Belmont, MA, United States of America, 3 Life Science and Technology College, Guangxi University, a1111111111 Nanning, Guangxi, China a1111111111 a1111111111 ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Citation: Wang Q-Y, Xie N-Z, Du Q-S, Qin Y, Li J-X, A method, so called ªactive hydrogen bond networkº (AHBN), is proposed for site-directed Meng J-Z, et al. (2017) Active Hydrogen Bond mutations of hydrolytic enzymes. In an enzyme the AHBN consists of the active residues, Network (AHBN) and Applications for functional residues, and conservative water molecules, which are connected by hydrogen Improvement of Thermal Stability and pH- bonds, forming a three dimensional network. In the catalysis hydrolytic reactions of hydro- Sensitivity of Pullulanase from Bacillus naganoensis. PLoS ONE 12(1): e0169080. lytic enzymes AHBN is responsible for the transportation of protons and water molecules, doi:10.1371/journal.pone.0169080 and maintaining the active and dynamic structures of enzymes. The AHBN of pullulanase Editor: Eugene A. Permyakov, Russian Academy of BNPulA324 from Bacillus naganoensis was constructed based on a homologous model Medical Sciences, RUSSIAN FEDERATION structure using Swiss Model Protein-modeling Server according to the template structure of Received: October 6, 2016 pullulanase BAPulA (2WAN). -
Letters to Nature
letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997). -
A Phosphopantetheinylating Polyketide Synthase Producing a Linear Polyene to Initiate Enediyne Antitumor Antibiotic Biosynthesis
A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis Jian Zhang†, Steven G. Van Lanen‡, Jianhua Ju‡, Wen Liu‡, Pieter C. Dorrestein§, Wenli Li‡, Neil L. Kelleher§, and Ben Shen†‡¶ʈ †Department of Chemistry, ‡Division of Pharmaceutical Sciences, and ¶University of Wisconsin National Cooperative Drug Discovery Group, University of Wisconsin, Madison, WI 53705; and §Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Communicated by Arnold L. Demain, Drew University, Madison, NJ, December 11, 2007 (received for review November 29, 2007) The enediynes, unified by their unique molecular architecture and can have anywhere from all to none of these activities, resulting mode of action, represent some of the most potent anticancer drugs in a product with various levels of oxidation. ever discovered. The biosynthesis of the enediyne core has been Bacterial PKSs are often categorized by domain architecture predicted to be initiated by a polyketide synthase (PKS) that is distinct and the iterative or noniterative nature during polyketide for- from all known PKSs. Characterization of the enediyne PKS involved mation, and this classification has led to three groupings (17). in C-1027 (SgcE) and neocarzinostatin (NcsE) biosynthesis has now Noniterative type I PKS are large proteins with multiple domains revealed that (i) the PKSs contain a central acyl carrier protein domain forming modules, a minimal module consisting of a KS, AT, and and C-terminal phosphopantetheinyl transferase domain; (ii) the PKSs ACP domain, wherein each domain catalyzes a single event are functional in heterologous hosts, and coexpression with an during polyketide biosynthesis (18). -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
The Emerging Role of Cohesin in the DNA Damage Response
G C A T T A C G G C A T genes Review The Emerging Role of Cohesin in the DNA Damage Response Ireneusz Litwin * , Ewa Pilarczyk and Robert Wysocki Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland; [email protected] (E.P.); [email protected] (R.W.) * Correspondence: [email protected]; Tel.: +48-71-375-4126 Received: 29 October 2018; Accepted: 21 November 2018; Published: 28 November 2018 Abstract: Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR. Keywords: cohesin; cohesin loader; DNA double-strand breaks; replication stress; DNA damage tolerance 1. Introduction Genomes of all living organisms are continuously challenged by endogenous and exogenous insults that threaten genome stability. It has been estimated that human cells suffer more than 70,000 DNA lesions per day, most of which are single-strand DNA breaks (SSBs) [1]. -
Product Sheet Info
Master Clone List for NR-19279 ® Vibrio cholerae Gateway Clone Set, Recombinant in Escherichia coli, Plates 1-46 Catalog No. NR-19279 Table 1: Vibrio cholerae Gateway® Clones, Plate 1 (NR-19679) Clone ID Well ORF Locus ID Symbol Product Accession Position Length Number 174071 A02 367 VC2271 ribD riboflavin-specific deaminase NP_231902.1 174346 A03 336 VC1877 lpxK tetraacyldisaccharide 4`-kinase NP_231511.1 174354 A04 342 VC0953 holA DNA polymerase III, delta subunit NP_230600.1 174115 A05 388 VC2085 sucC succinyl-CoA synthase, beta subunit NP_231717.1 174310 A06 506 VC2400 murC UDP-N-acetylmuramate--alanine ligase NP_232030.1 174523 A07 132 VC0644 rbfA ribosome-binding factor A NP_230293.2 174632 A08 322 VC0681 ribF riboflavin kinase-FMN adenylyltransferase NP_230330.1 174930 A09 433 VC0720 phoR histidine protein kinase PhoR NP_230369.1 174953 A10 206 VC1178 conserved hypothetical protein NP_230823.1 174976 A11 213 VC2358 hypothetical protein NP_231988.1 174898 A12 369 VC0154 trmA tRNA (uracil-5-)-methyltransferase NP_229811.1 174059 B01 73 VC2098 hypothetical protein NP_231730.1 174075 B02 82 VC0561 rpsP ribosomal protein S16 NP_230212.1 174087 B03 378 VC1843 cydB-1 cytochrome d ubiquinol oxidase, subunit II NP_231477.1 174099 B04 383 VC1798 eha eha protein NP_231433.1 174294 B05 494 VC0763 GTP-binding protein NP_230412.1 174311 B06 314 VC2183 prsA ribose-phosphate pyrophosphokinase NP_231814.1 174603 B07 108 VC0675 thyA thymidylate synthase NP_230324.1 174474 B08 466 VC1297 asnS asparaginyl-tRNA synthetase NP_230942.2 174933 B09 198 -
(12) Patent Application Publication (10) Pub. No.: US 2011/0086407 A1 Berka Et Al
US 20110086407A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0086407 A1 Berka et al. (43) Pub. Date: Apr. 14, 2011 (54) BACILLUS LCHENFORMS Publication Classification CHROMOSOME (51) Int. Cl. (75) Inventors: Randy Berka, Davis, CA (US); CI2N 9/12 (2006.01) Michael Rey, Davis, CA (US); CI2N 9/90 (2006.01) Preethi Ramaiya, Walnut Creek, C07K I4/32 (2006.01) CA (US); Jens Tonne Andersen, CI2N 9/00 (2006.01) Naerum (DK); Michael Dolberg CI2N 9/56 (2006.01) Rasmussen, Vallensbaek (DK); CI2N 9/16 (2006.01) Peter Bjarke Olsen, Copenhagen O CI2N 9/10 (2006.01) CI2N 9/88 (2006.01) (DK) CI2N 9/78 (2006.01) (73) Assignees: Novozymes A/S, Bagsvaerd (DK); C07K I4/95 (2006.01) Novozymes, Inc., Davis, CA (US) (52) U.S. Cl. ......... 435/194; 435/233; 530/350: 435/183; (21) Appl. No.: 12/972,306 435/222; 435/196; 435/193; 435/232:435/227 (22) Filed: Dec. 17, 2010 Related U.S. Application Data (57) ABSTRACT The present invention relates to an isolated polynucleotide of (62) Division of application No. 12/322.974, filed on Feb. the complete chromosome of Bacillus licheniformis. The 9, 2009, now Pat. No. 7,863,032, which is a division of present invention also relates to isolated genes of the chro application No. 10/983,128, filedon Nov. 5, 2004, now mosome of Bacillus licheniformis which encode biologically Pat. No. 7,494,798. active Substances and to nucleic acid constructs, vectors, and (60) Provisional application No. 60/535.988, filed on Jan. -
Proteome Analysis of Peroxisomes from Dark-Treated Senescent Arabidopsis Leavesfa
Journal of Integrative JIPB Plant Biology Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leavesFA † † Ronghui Pan1 , Sigrun Reumann1,2,3,4 , Piotr Lisik3, Stefanie Tietz1, Laura J. Olsen2 and Jianping Hu1,5* 1. MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA 2. Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 3. Center of Organelle Research, University of Stavanger, N-4021 Stavanger, Norway 4. Department of Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, University of Hamburg, D-22609 Hamburg, Germany 5. Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA † These authors contributed equally to this work *Correspondence: Jianping Hu ([email protected]) doi: 10.1111/jipb.12670 High-Impact Article Abstract Peroxisomes compartmentalize a dynamic suite of a total of 111 peroxisomal proteins and verified the peroxisomal biochemical reactions and play a central role in plant localization for six new proteins with potential roles in fatty metabolism, such as the degradation of hydrogen peroxide, acid metabolism and stress response by in vivo targeting metabolism of fatty acids, photorespiration, and the biosyn- analysis. Metabolic pathways compartmentalized in the three thesis of plant hormones. Plant peroxisomes have been major subtypes of peroxisomes were also compared, which traditionally classified into three major subtypes, and in-depth revealed a higher number of proteins involved in the mass spectrometry (MS)-based proteomics has been per- detoxification of reactive oxygen species in peroxisomes formed to explore the proteome of the two major subtypes from senescent leaves.