Meeting Minutes

Total Page:16

File Type:pdf, Size:1020Kb

Meeting Minutes Meeting Minutes A Roundtable on Consideration for Primary Vaccine Container Selection in Developing Countries – Defining the Evidence and Framework for Decision Making May 9-10, 2012 PATH, 455 Massachusetts Ave NW Suite 1000, Washington DC Executive Summary Vaccine containers are often chosen based on easily identifiable and quantifiable criteria, such as procurement price or storage volume, but container choices can have additional impacts on safety, coverage, and affordability that are harder to observe. In an effort to articulate those tradeoffs, the Vaccine Primary Container Roundtable convened a group of experts from countries, agencies, academia, and the private sector in order to: present and respond to available evidence and a preliminary framework for primary container decision-making; identify the most relevant data gaps inhibiting evidence-based decision-making; understand diverse needs of stakeholders involved in container decisions; and identify opportunities for improved data and decision-making to affect product development, programs and policy. Key themes of the discussion included: The need to balance the country and global perspectives. Analyzing systems and data at the aggregate level can lead to programs or policies that don’t meet the needs of specific regions. For instance, in regions without an airport able to accept large cold-chain shipments, EPI managers may need to prioritize low volume above all other considerations, regardless of international recommendations. The importance of safety impacts. Participants agreed that decision-makers often make trade-offs between safety, affordability, wastage and coverage without realizing it. While some of these trade-offs may ultimately be appropriate, they should be understood and appreciated. Making trade-offs transparent and quantifiable will ensure that they are made deliberately. The need for accurate market forecasting to incentivize product development. Manufacturers expressed willingness to provide new presentations in response to global health community requests, but highlighted the need for accurate, consistent forecasting in order to ensure that research and development investments are appropriately directed and high up-front costs can be recouped. The diversity of stakeholder perspectives. In considering primary containers, different stakeholders will have different needs, priorities, and resources. A useful approach to decision-making will allow for these differences, understanding that there is no one right answer for every situation. Improving the understanding and appreciation of mutual needs and constraints can help inform stakeholder choices. Uses and structure of the draft framework. Participants agreed that different users will need differing levels of complexity. Specifying cost drivers will be helpful to many users. Ideally, the framework can help standardize the decision processes leading to new product development requests, reducing the risk for manufacturers and facilitating appropriate decisions for both manufacturers and consumers. The need for data. Priority data gaps identified included information about safety and contamination issues, wastage rates, cold chain capacity, session sizes, and cost per administered dose. Cost per administered dose is a function of several other data inputs, such as price per dose, wastage, and cost of storage and transport; there was agreement that quantifying and monetizing these data points would be valuable. Future proofing. Primary container design impacts but cannot solve all the issues arising from the recent addition of several new vaccines such as Rotavirus and S. pneumoniae on existing systems. Introduction of these vaccines and, from 2017, subsequent replacement of pentavalent vaccine with hexavalent DTP combinations in single rather than multidose presentations (due to interactions between thimerosol preservative and IPV) will for many countries necessitate focus on cold-chain expansion rather than trying to fit all of their scheduled vaccines within an existing infrastructure. Next steps for this group include the dissemination of a meeting report, a policy brief, a revised decision framework, presentation at relevant conferences, and preliminary mathematical modeling of different container scenarios. Day One: Sharing Perspectives, Setting the Stage The opening remarks laid out key themes of the meeting, including the importance of thoughtful container decisions in resource-limited settings, the timeliness of the discussion given the global increase in new vaccine introductions, the need to identify and address the data gaps hindering evidence-based decision-making, and the difficulty of achieving optimal balance when tradeoffs are necessary. The overarching objective of the meeting was to organize a complex landscape of stakeholders, competing domains, and data in such a way that those complexities become manageable, tradeoffs become transparent, stakeholders are satisfied, and recommending bodies can make informed decisions. More specifically, participants set the following goals for the meeting and follow-up: • Progress towards a decision-tree or model that (a) can be adapted for developed and developing country audiences choosing between existing options; (b) can inform product profile proposals; (c) can provide some guidance into quantifying trade-offs between options; and (d) be acceptable and workable to stakeholders with different primary needs • Progress towards guidelines at two levels: Generic product profile guidance for industry at the beginning of the product development cycle, along with post-development decision-making guidance to help countries choose between existing options • Improved understanding and appreciation of safety issues • Identification of knowledge gaps • Identification of multiple perspectives and the areas in which multiple stakeholders have overlap in their goals • Improved understanding of the complexity of constraints for each stakeholder There was consensus among participants that this group is not a recommending body, and the goal of this event is not to recommend a particular course of action. Instead, the goal is to improve the tools available to recommending bodies as they make their decisions. The full presentation from the opening remarks is available here. Detailed reports and links to each participant presentation are attached as Appendix One. Key themes included the importance of safety impacts from both affordability and demand creation perspectives; the need for improved market forecasting in order to reduce manufacturer risk and facilitate new product development; and the diversity of stakeholder needs at different levels (country versus global) and across sectors. Modeling efforts and other tools for decision-making were discussed, along with the need to make those tools accessible and relevant for a range of stakeholders. Day Two: A framework for decision-making The second day of the meeting was discussion-based. Participants broke out into three small groups . Moderators presented a draft decision-making framework created by IVAC; participants reviewed and provided feedback on document, identifying missing components, areas for improvement, and priority data gaps. Small group feedback was presented to the full roundtable during a report-back session at the end of the day. The draft framework as presented and the edited versions from each group are attached as Appendix Two. For ease, the group feedback is also summarized below: Structure of framework While one group suggested simplifying the framework and focusing on a key drivers of coverage, safety and affordability, a second group wanted more detail and a third group was satisfied with the level of detail as presented. The takeaway from this varying feedback is that different users will need differing levels of complexity, and a successful final product will allow users to interact with the framework at whatever level of detail is appropriate to their needs. Participants also suggested that the framework should more explicitly represent some of the complex feedback loops and interactions between domains; the presented draft implied a simpler, more hierarchical process than is generally observed. Components of framework Participants suggested that several components should be added or more explicitly noted. Proposed vaccine characteristics to add to the existing draft framework (Appendix 2) included were whether or not the vaccine is packaged with ancillary materials, the label type and clarity, route of administration, disposal requirements, and thermostability out of cold chain. Contextual characteristics to include were urban/rural status, distribution of session types (fixed, outreach, or campaign), program landscape, and the regulatory environment and technical feasibility constraints governing manufacturers. Timeliness of immunization should be included as an outcome. Groups also suggested including global supply dynamics and some measure of acceptable risk thresholds. There was general agreement that, given the importance of cost as a driver for many other outcomes, it would be appropriate to add more specificity to the cost and pricing section. Costs for syringes and other ancillary budget items should be factored in. Additional detail is particularly important for logistics costs, as those are often borne by countries and therefore highly relevant to country decision-making. One group proposed a more defined and central role for factors related to political environment;
Recommended publications
  • Achieving Immunization Targets with the Comprehensive Effective Vaccine Management (EVM) Framework
    WHO/UNICEF JOINT STATEMENT Achieving immunization targets with the comprehensive effective vaccine management (EVM) framework WHO and UNICEF joint statement on the comprehensive EVM framework and the vital role of immunization supply chains in achieving targets set by the Global Vaccine Action Plan (GVAP). The World Health Organization (WHO) and the United can more effectively catalyse immunization supply chain Nations Children’s Fund (UNICEF) are intensifying and improvements in countries. coordinating efforts to catalyse immunization supply chain To that end, this joint statement: improvements and performance in countries through the comprehensive EVM framework – a four-step strategy for 1. Reiterates the vital role of immunization supply chains in continuous immunization supply chain improvement, quality achieving vaccination coverage and equity targets set by management, optimization and innovation. the GVAP; 2. Summarizes the evidence indicating that vaccines are The comprehensive EVM framework builds on the success of not always available when needed; that weak cold chain the EVM initiative launched in 2010 to help countries evaluate systems are putting vaccines at risk and delaying new the performance of their immunization supply chains, and vaccine introduction; and that vaccines are wasted as a benchmark this performance against best-practice standards. result of poor supply chain management; In five years, the EVM initiative has helped to uncover 3. Describes the comprehensive EVM framework and how important shortcomings in the
    [Show full text]
  • Guidance on Developing a National Deployment and Vaccination Plan
    Guidance on developing a national deployment and vaccination plan for COVID-19 vaccines INTERIM GUIDANCE 16 NOVEMBER 2020 Guidance on developing a national deployment and vaccination plan for COVID-19 vaccines INTERIM GUIDANCE 16 NOVEMBER 2020 WHO/2019-nCoV/Vaccine_deployment/2020.1 © World Health Organization 2020 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. (http://www.wipo.int/amc/en/mediation/rules/) Suggested citation. Guidance on developing a national deployment and vaccination plan for COVID-19 vaccines. Geneva: World Health Organization; 2020 (WHO/2019-nCoV/Vaccine_deployment/2020.1).
    [Show full text]
  • Chain of Cold Food
    Journal of Microbiology & Experimentation Opinion Open Access Chain of cold food Volume 4 Issue 3 - 2017 Opinion Carla Pagano The cold chain is the system formed by each of the steps that Engineer in food, Argentina constitute the process of refrigeration or freezing necessary for the perishable or frozen food to reach the consumer safely. It includes a Correspondence: Carla Pagano, Engineer in food, Avenida whole set of elements and activities necessary to guarantee the quality Escalada 1817, Buenos Aires, Argentina, Tel 0111561270830, Email and safety of a food, from its origin to its consumption. It is called “string” because it is composed of different stages or links. If any Received: March 16, 2017 | Published: March 23, 2017 of the points in the cold chain were compromised, all of it would be affected, damaging the quality and safety of the product. On the one hand it facilitates the microbial development of both altering microorganisms and disease-causing pathogens, and the alteration of the food by degrading enzymatic reactions. Cold on microorganisms When the temperature is reduced, so does the rate of development of the vast majority of microorganisms, preventing a population increase (a group of microorganisms, the psychrophilic, which develop at low temperatures). The cold acts on the metabolism of microorganisms slowing (cooling) to stop (freezing), but does not eliminate them (although it can be seen some microbial mortality, the cold is not hygienizing, as it is the intense heat). Between -4ºC and -7ºC the growth of pathogenic microorganisms during transport, which takes place between the different stages: at the is inhibited.
    [Show full text]
  • Cold Chain 101 Cold Chain 101
    Cold Chain 101 Cold Chain 101 Even some railroads are providing temperature- “Logistics providers are aware of the controlled shipping, with the ability to plug in reefers. increasing need for controlling temperatures in multiple ranges, and are Temperature Monitoring building out their facilities accordingly.” Even with these advances, temperature controlled products still need to be monitored. The reason is What is Cold Chain? simple. Equipment, no matter how new, sometimes Whether a product is sitting in a warehouse or being fails. Accidents happen. shipped across the country or across the globe, if temperature matters, that product is part of the cold Human error also is a factor. New logistics personnel, chain. Until recently, the term “cold chain” referred impressed with the thermal sensitivity of vaccines and only to products that needed to be cooled. Now it has the potentially deadly repercussions of temperature expanded to also include products that must be kept at excursions, have placed packages in coolers until room temperature. More recently, as products that must refrigerated carriers arrived for pickup. Some of those be protected from the cold enter the mix, “cold chain” is shipments actually froze, causing the very damage morphing to “controlled temperature.” handlers tried to prevent. Other times, truckers actually disconnected cargo refrigeration equipment to conserve fuel. Seafood and pharmaceuticals are two obvious examples of products needing cold chain handling, but the type of During transshipment, when cargo containers are products requiring controlled temperatures is expanding offloaded from ships and transferred to other vessels, dramatically. Chemical products (like paints and coatings), reefers may not be plugged in to shore power sometimes use temperature controlled shipping to prevent Likewise, once loaded, they may not be plugged back them from separating so they will maintain consistency and, into the ship’s power.
    [Show full text]
  • Impacts of Vaccine Cold Chain Logistics on Vaccine Epidemiology
    IMPACTS OF VACCINE COLD CHAIN LOGISTICS ON VACCINE EPIDEMIOLOGY by Tina-Marie Assi BS, McGill University, 2007 MPH, University of Pittsburgh, 2009 Submitted to the Graduate Faculty of Graduate School of Public Health in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2011 UNIVERSITY OF PITTSBURGH GRADUATE SCHOOL OF PUBLIC HEALTH This dissertation was presented by Tina-Marie Assi It was defended on June 30, 2011 and approved by Shawn T. Brown, PhD Assistant Professor Department of Biostatistics Graduate School of Public Health University of Pittsburgh Bryan A. Norman, PhD Associate Professor Department of Industrial Engineering Swanson School of Engineering University of Pittsburgh Jayant Rajgopal, PhD Associate Professor Department of Industrial Engineering Swanson School of Engineering University of Pittsburgh Stephen R. Wisniewski, PhD Professor Department of Epidemiology, Graduate School of Public Health University of Pittsburgh Dissertation Advisor: Bruce Y. Lee, MD, MBA Assistant Professor Departments of Medicine, Epidemiology and Biomedical Informatics School of Medicine and Graduate School of Public Health University of Pittsburgh ii Copyright © by Tina-Marie Assi 2011 iii Bruce Y. Lee, MD, MBA IMPACTS OF VACCINE COLD CHAIN LOGISTICS ON VACCINE EPIDEMIOLOGY Tina-Marie Assi, PhD University of Pittsburgh, 2011 The performance of vaccine logistics systems (i.e., the steps in a supply chain necessary to get vaccines from manufacturers to patients) can impact whether vaccines are delivered at the right time, place and in the right condition for patients during immunization sessions. Immunization coverage in a population depends on a well-functioning vaccine supply chain. If target populations are not immunized before exposure, they are left unprotected against vaccine preventable diseases (VPD’s) and can contribute to infectious disease transmission in their communities.
    [Show full text]
  • Vaccines: Harnessing Science to Drive Innovation for Patients
    VACCINES: HARNESSING SCIENCE TO DRIVE INNOVATION FOR PATIENTS BOLDLY INTRODUCTION Advances in science and technology are driving increases in survival and improved quality of life for people around the world. Vaccines represent some of the most impactful public health advances, helping to prevent the spread of many infectious diseases and, in many parts of the world, eliminating some of the most devastating conditions. Examples of vaccine successes are numerous and significant: • Smallpox, at one point one of the deadliest diseases in existence, has been eradicated around the world as a result of vaccination.1 • Following the introduction of the first polio vaccine in 1955, the crippling infectious disease has been eliminated in the United States (U.S.) and by 2015 just 74 cases of the disease were reported around the world.2 3 • The recent introduction of the human papilloma virus (HPV) vaccine has changed the trajectory of cervical cancer, by preventing infection of the HPV strains most likely to cause cancers.4 • A new wave of therapeutic vaccines has the potential to treat diseases, including many cancers.5 As our understanding of the science grows, uncovering the complex biological drivers of many diseases, and regulatory requirements expand, the research and development (R&D) process to develop medicines also grows more challenging. Innovative biopharmaceutical companies are working with stakeholders from across the research and development ecosystem to develop new ways of preventing and treating illnesses, with vaccines at the forefront. As of October 2017, there are more than 260 vaccines in development by biopharmaceutical companies for the treatment or prevention of disease.
    [Show full text]
  • A Study of Waste in the Cold Food Chain and Opportunities for Improvements
    A study of waste in the cold food chain and opportunities for improvement Prepared for: Department of Agriculture, Water and the Environment and Refrigerants Australia Phone Web +61 3 9592 9111 www.expertgroup.com.au Table of Contents 1 Executive summary ........................................................................................................... 5 2 Introduction ...................................................................................................................... 6 3 Scope of this study ............................................................................................................. 7 3.1 Refrigerated cold food chain .............................................................................................................................. 8 4 Food sector profiles ........................................................................................................... 9 4.1 Fruit and vegetable sector ............................................................................................................................. 9 4.1.1 Supply chain profile ...................................................................................................................................... 9 4.1.2 Role of the cold food chain ......................................................................................................................... 9 4.2 Meat sector ....................................................................................................................................................
    [Show full text]
  • Unprecedented Famine Risk Threatens 2.5 Million Children
    Quarterly Activity Report May 15, 2017 Unprecedented Famine Risk Threatens 2.5 Million Children Amina, with her daughter, holds up her empty cooking pot inside their makeshift home near the town of Ainabo, Somalia. © UNICEF/UN056039/HOLT ime is running out for at least 2.5 million children who million people at risk in the hardest hit regions, the magnitude are at imminent risk of death this year from severe acute and urgency of the situation is overwhelming. By accelerating T malnutrition in 13 countries spanning Africa and the funds through its Bridge Fund, UNICEF USA is doing everything Middle East. Conflict and displacement in these countries, in its power to save children’s lives. As Leila Pakkala, UNICEF exacerbated by drought and water scarcity, have resulted in what Regional Director for Eastern and Southern Africa, said during the United Nations is saying is the largest humanitarian crisis a recent visit to the UNICEF USA offices, “In a time of famine, since the Second World War. Famine has been declared in South impact does not come gradually. It is sudden. If we respond right Sudan and could ensue in Nigeria, Somalia and Yemen. With 80 now, for every dollar received, we’re able to save a child’s life.” Sustained conflict across multiple countries, Unprecedented Humanitarian Crisis which has forced millions of children and families from their homes, has caused Looms Across 13 Countries massive social and economic disruption. It has also resulted in grave violations of children’s rights. In Northeast Nigeria, children who have fled Boko Haram’s attempts to conscript them as child soldiers or kidnap them as child “brides” are now at risk of starvation.
    [Show full text]
  • Cold Chain in Seafood Industry
    COLD CHAIN IN SEAFOOD INDUSTRY Alex Augusto Gonçalves1, Ph.D and Francisco Blaha2, MSc. Abstract: When seafood is freshly caught eating quality is high, but over time quality will deteriorate and eventually will become unsuitable for consumption. Maintenance of the cold chain and careful handling are a fundamental part in minimizing seafood spoilage. The cold chain in seafood industry is a temperature chain and begins once the seafood is caught. From the quality and regulatory perspective fresh seafood means that has been stored at 0°C and for frozen seafood it means –18°C or colder (from the sea to the consumer). The cold chain is broken every time the temperature of the seafood rises above 1°C. Fluctuations in the cold chain increases quality loss, these losses cannot be reversed by any means after the event. There are many avoidable and unavoidable occurrences that cause fluctuation in the cold chain. Good chilling and/or freezing practices on board harvest vessels are a condition sine qua non for maximizing the best possible quality of all seafoods. Best practices on seafood handling and the minimization of temperature fluctuations are paramount for seafood distributed under refrigeration (i.e., chilled and/or frozen) to maintain its quality and maximize its shelf–life. The present chapter addresses some of the developments in seafood cold chain under four mainly headings: i) cold chain in seafood industry; ii) selected aspects of refrigeration (chilling and freezing) process (including equipment and storage conditions); iii) safety and shelf–life issues in seafood cold chain; iv) regulation and legislation. 1.
    [Show full text]
  • (Meningitis a Vaccine) in a Controlled Temperature Chain (CTC) During Campaigns
    WHO/IVB/13.04 Use of MenAfriVac™ (meningitis A vaccine) in a controlled temperature chain (CTC) during campaigns Guidance for immunization programme decision-makers and managers Immunization, Vaccines and Biologicals WHO/IVB/13.04 Use of MenAfriVac™ (meningitis A vaccine) in a controlled temperature chain (CTC) during campaigns Guidance for immunization programme decision-makers and managers Immunization, Vaccines and Biologicals The Department of Immunization, Vaccines and Biologicals thanks the donors whose unspecified financial support has made the production of this document possible. This document was produced by the Expanded Programme on Immunization (EPI) of the Department of Immunization, Vaccines and Biologicals This document forms part 1 of 3 parts of the training guide for the Use of MenAfriVac™ (meningitis A vaccine) in a controlled temperature chain (CTC) during campaigns Ordering code: WHO/IVB/13.04 Printed: July 2013 This publication is available on the Internet at: www.who.int/vaccines-documents/ Copies of this document as well as additional materials on immunization, vaccines and biologicals may be requested from: World Health Organization Department of Immunization, Vaccines and Biologicals CH-1211 Geneva 27, Switzerland • Fax: + 41 22 791 4227 • Email: [email protected] • © World Health Organization 2013 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]).
    [Show full text]
  • Vaccine Storage and Handling Toolkit-March 2021
    Vaccine Storage and Handling Toolkit Updated with COVID-19 Vaccine Storage and Handling Information Addendum added September 29, 2021 September 2021 CS296544-B Table of Contents The Vaccine Storage and Handling Toolkit has been updated with an addendum to address proper storage, handling, transport, and emergency handling of COVID-19 vaccines. The addendum will be updated as new COVID-19 vaccine products are approved. Please check the CDC Vaccine Storage and Handling Toolkit website (www.cdc.gov/vaccines/hcp/admin/storage/toolkit/index.html) regularly for the most current version of the toolkit during the COVID-19 response. The addendum can be found on page 49. Introduction .........................................................................................................................................................................................................2 SECTION ONE: Vaccine Cold Chain ..............................................................................................................................................................4 SECTION TWO: Staff and Training .................................................................................................................................................................6 SECTION THREE: Vaccine Storage and Temperature Monitoring Equipment ......................................................................................8 SECTION FOUR: Vaccine Inventory Management ....................................................................................................................................16
    [Show full text]
  • What Is the Cold Chain?
    What Is the Cold Chain? Vaccines must be stored properly from the time they are manufactured until the time they are administered. Excess heat or cold will reduce their potency, increasing the risk that recipients will not be protected against vaccine- preventable diseases. The system used to keep and distribute vaccines in good condition is called the cold chain. The cold chain has three main components: transport and storage equipment, trained personnel, and efficient management procedures. All three elements must combine to ensure safe vaccine transport and storage. The cold chain begins with the cold storage Proper storage temperatures unit at the vaccine manufacturing plant, must be maintained at every link extends through the transfer of vaccine to in the chain. the distributor and then to the provider’s office, and ends with the administration of the vaccine to the patient. Proper storage temperatures must be maintained at every link in the chain. The Cold Chain Vaccine is transported in a refrigerated or frozen state, as appropriate (refrigerator 35°– 46°F [2°– 8°C]; freezer 5°F [-15°C] or colder), using an insulated container or a refrigerated truck. Importance of Maintaining the Cold Chain Vaccine Potency Excessive heat or cold exposure damages vaccine, resulting in loss of potency. Once potency is lost, it can never be restored. Furthermore, each time vaccine is exposed to heat or cold, the loss of potency increases and eventually, if the cold chain is not correctly maintained, all potency will be lost, and the vaccine becomes useless. Excessive heat or cold damages vaccines. Vaccine Appearance After Exposure to Inappropriate Storage Conditions Some vaccines may show physical evidence of altered potency when exposed to inappropriate storage conditions, such as clumping in the solution that does not go away when the vial is shaken.
    [Show full text]