Filomat 29:2 (2015), 361–370 Published by Faculty of Sciences and Mathematics, DOI 10.2298/FIL1502361C University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Radial Growth and Hardy-Littlewood-Type Theorems on Hyperbolic Harmonic Functions

Shaolin Chena, Zhenhua Sub

In celebration of Matti Vuorinen’s 65-th birthday aDepartment of Mathematics and Computational Science, Normal University, Hengyang, 421008, People’s Republic of China. bDepartment of Mathematics, University, Huaihua, Hunan 418008, People’s Republic of China.

Abstract. In this paper, we first show that a result of Girela et al. on analytic functions can be extended to hyperbolic-harmonic functions, and then we establish Hardy-Littlewood-type theorems on hyperbolic harmonic functions.

1. Introduction and main results

For n 2, let Rn denote the usual real vector space of dimension n. Sometimes it is convenient to ≥ n identify each point x = (x ,..., xn) R with an n 1 column matrix so that 1 ∈ ×    x1    x  .  =  .  .   xn

n For a = (a ,..., an) and x R , we define the Euclidean inner product , by 1 ∈ h· ·i

x, a = x a + + xnan h i 1 1 ··· so that the Euclidean length of x is defined by

1/2 2 2 1/2 x = x, x = ( x + + xn ) . | | h i | 1| ··· | | n Denote a ball in R with center x0 and radius r by

Bn(x , r) = x Rn : x x < r . 0 { ∈ | − 0| }

2010 Mathematics Subject Classification. Primary 31C05, 46E15; Secondary 30J60, 30C62 Keywords. Hardy-Littlewood type theorem; majorant; hyperbolic harmonic function. Received: 9 November 2014; Accepted: 12 January 2015 Communicated by Miodrag Mateljevic´ This research was partly supported by the National Natural Science Foundation of China (No. 11401184 and No. 11326081), the Hunan Province Natural Science Foundation of China (No. 2015JJ3025), the Excellent Doctoral Dissertation of Special Foundation of Hunan Province (higher education 2050205), the Construct Program of the Key Discipline in Hunan Province. Email addresses: [email protected]. (Shaolin Chen), [email protected] (Zhenhua Su) Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 362

In particular, Bn denotes the unit ball Bn(0, 1). Set D = B2, the open unit disk in the complex plane C. Let Ω be a proper subdomain of Rn. A function f 2(Ω) is called hyperbolic harmonic (briefly, h- harmonic, in the following) function in Ω if it satisfies the∈hyperbolic C Laplace’s equation

2 2 2 ∆hu = (1 x ) ∆u + 2(n 2)(1 x ) u, x = 0, − | | − − | | h∇ i where ∆ denotes the ordinary Laplacian operator and denotes the gradient. Recall that hyperbolic harmonic functions are solutions of the Laplace-Beltrami equation∇ with respect to the Poincar´emetric

Xn ds2 = (1 x 2)2 dx2 − | | k k=1 in the unit ball Bn. Obviously, when n = 2, all h-harmonic functions are harmonic functions. We refer to [2, 3, 6, 14, 18, 28, 29] for more details of h-harmonic functions. It turns out that if ψ (∂Bn), then the Dirichlet problem ∈ C   n ∆h f = 0 in B   f = ψ on ∂Bn

n has an unique solution in (B ) and can be represented by C Z f (x) = Ph[ψ](x) = Ph(x, ζ)ψ(ζ)dσ(ζ), (1) ∂Bn

n where dσ is the unique normalized surface measure on ∂B and Ph(x, ζ) is the hyperbolic Poisson kernel defined by !n 1 2 − 1 x n n Ph(x, ζ) = − | | (x B , ζ ∂B ). x ζ 2 ∈ ∈ | − | Throughout this paper, we use C to denote the various positive constants, whose value may change from one occurrence to the next. A continuous increasing function ω : [0, ) [0, ) with ω(0) = 0 is called a majorant if ω(t)/t is non-increasing for t > 0. Given a subset Ω of∞Rn,→ a function∞ f : Ω Rm (m 1) is said to belong to the → ≥ Lipschitz space Λω(Ω) if there is a positive constant C such that

f (x) f (y) Cω( x y ) for all x, y Ω. (2) | − | ≤ | − | ∈

For δ0 > 0, let Z δ ω(t) dt C ω(δ), 0 < δ < δ0 (3) 0 t ≤ · and Z ∞ ω(t) dt C δ 2 ω(δ), 0 < δ < δ0, (4) δ t ≤ · where ω is a majorant. A majorant ω is said to be regular if it satisfies the conditions (3) and (4) (see [12, 13, 26]). n Let Ω be a proper subdomain of R . We use dΩ(x) to denote the Euclidean distance from x to the boundary ∂Ω of Ω. In particular, we always use d(x) to denote the Euclidean distance from x to the boundary of Bn. Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 363

n A proper subdomain G of R is said to be Λω-extension if Λω(G) = locΛω(G), where locΛω(G) denotes the set of all functions f : G Rm (m 1) satisfying (2) with a fixed positive constant C, whenever x G →1 ≥ n ∈ and y G such that x y < dG(x). Obviously, B is a Λ -extension domain. ∈ | − | 2 ω In [22], the author proved that G is a Λω-extension domain if and only if each pair of points x, y G can be joined by a rectifiable curve γ G satisfying ∈ ⊂ Z ω(d (τ)) G ds(τ) Cω( x y ) (5) γ dG(τ) ≤ | − | with some fixed positive constant C = C(G, ω), where ds stands for the arc length measure on γ. Furthermore, the author also proved that Λω-extension domains exist only for majorants ω satisfying (3). See [13, 15, 22] for more details on Λω-extension domains. For p (0, ], the Hardy class Hp(Bn) consists of those functions f : Bn R such that f is measurable, ∈ ∞ → Mp(r, f ) exists for all r (0, 1) and f p < , where ∈ k k ∞   sup Mp(r, f ), if p (0, ), Z !1/p  ∈ ∞ f = 0

Theorem 1.1. ([16, Theorem 1(a)]) Let p (2, ). For r (0, 1), if f is an analytic function in D such that ∈ ∞ ∈  1  Mp(r, f 0) = O as r 1, 1 r → − then for all β > 1/2,

 1 β Mp(r, f ) = O log as r 1. (6) 1 r → − In [16, P464, Equation (26)], Girela and Pelaez´ asked whether β in (6) can be substituted by 1/2. This problem was affirmatively settled by Girela, Pavlovic and Pelaez´ in [17] (see [17, Theorem 1.1]). We show that Theorem 1.6 can be extended to h-harmonic functions in Bn with β = 1/2. On the related topics, see [5, 7, 8, 10, 27].

Theorem 1.2. Let p [2, ) and ω be a majorant. For r (0, 1), if f is h-harmonic from Bn into R such that ∈ ∞ ∈  1  Mp(r, f ) Cω , ∇ ≤ 1 r − then

1 " n 2 2 Z 1 # 2 2 rp(p 1)(1 + r) − C ω(1)  1  Mp(r, f ) f (0) + − ω dt . ≤ | | n 1 1 rt − 0 − Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 364

Especially, if n = 2 and ω(t) = t, then

1 !  1  2 Mp(r, f ) = O log as r 1 (7) 1 r → − and the estimate of (7) is sharp. Krantz [21] proved a Hardy-Littlewood-type theorem for harmonic functions in Bn with respect to the majorant ω(t) = ω (t) = tα (0 < α 1) as follows. For the extended discussion on this topic, see [4, 9]. α ≤ Theorem 1.3. ([21, Theorem 15.8]) Let u be a harmonic function in Bn and 0 < α 1. Then u satisfies   ≤ ωα d(x) u(x) C for any x Bn |∇ | ≤ d(x) ∈ if and only if u(x) u(y) Cω ( x y ) for any x, y Bn. | − | ≤ α | − | ∈ We generalize Theorem 1.3 to the following form.

Theorem 1.4. Let ω be a majorant satisfying (3), Ω be a Λω-extension domain and f be a h-harmonic function from Ω into R. Then f Λω(Ω) if and only if ∈   ω dΩ(x) f (x) C for any x Ω. |∇ | ≤ dΩ(x) ∈ n B Let ω be a majorant and D be a bounded set of R . We use Λω(D) to denote all the bounded continuous functions f in D with the norm ( ) f (x) f (y) f ω,D = sup | − | < . k k x,y D,x,y ω( x y ) ∞ ∈ | − | Taking another majorant ω0, we define the operator norm

n Ph[ f ] ω0,B Ph ω ω0 = sup k k . k k → B n f Bn f Λ (∂B ), f Bn ,0 ω,∂ ∈ ω k kω,∂ k k For each a ∂Bn, we define ∈ n ηa (ζ) = ω( ζ a ) for ζ ∂B . ,ω | − | ∈ We refer to [1] for the similar definitions of harmonic functions. B n Proposition 1.5. Let ω be a majorant. Then ηa Λ (B ). ,ω ∈ ω The following result is the classical Hardy-Littlewood Theorem. Theorem 1.6. ([11, Theorem 5.1]) Let f be an analytic function in D and continuous in D. Then for some 0 < α 1, ≤ iθ iθ f (e 1 ) f (e 2 ) Cω ( θ θ ) for any 0 θ , θ < 2π | − | ≤ α | 1 − 2| ≤ 1 2 if and only if   ωα d(z) f 0(z) C for any z D. | | ≤ d(z) ∈ The following result is a Hardy-Littlewood-type theorem for hyperbolic functions. For the extensive discussions on this topics, see [1, 13, 23–25]. Theorem 1.7. Let ω be a majorant. Then for each a ∂Bn and any x Bn, there is a constant C 1 such that ∈ ∈ ≥ Ph[ηa,ω](x) Cω( x a ), if and only if Ph ω ω < . ≤ | − | k k → ∞ We will prove Theorems 1.2, 1.4 and 1.7 in section 2. Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 365

2. Proofs of the main results

Lemma 2.1. ([28, Lemma 3.2]) If f 2(Bn), then 1 n 2 n 2 ∈ C d R r − (1 r ) − R a f r d − f x d x and ( ) dr ∂Bn ( ζ) σ(ζ) = n Bn (r) ∆h ( ) τ( ) R R R b f r d f 1 x r f x d x where ( ) ∂Bn ( ζ) σ(ζ) = (0) + Bn (r) ( , )∆h ( ) τ( ), R | |

Z r 1 (1 s2)n 2 1 x r − ds ( , ) = −n 1 , | | n x s − | |

dVN Bn dτ = (1 x 2)n and dVN denotes the normalized Lebesgue volume measure on . −| |

Proof of Theorem 1.2

Let f be h-harmonic in Bn. By elementary calculations, we see that

p 2 2 p 2 2 ∆h( f ) = p(p 1)(1 x ) f − f . (8) | | − − | | | | |∇ | For r [0, 1), the Holder’s¨ inequality yields ∈ Z p 2 2 2 p 2 f (rζ) − f (rζ) dσ(ζ) Mp(r, f ) Mp− (r, f ). (9) ∂Bn | | |∇ | ≤ ∇ ·

By (8), (9) and Lemma 2.1, we obtain

Z p p p Mp(r, f ) = f (0) + 1( x , r)∆h( f (x) )dτ(x) | | Bn(0,r) | | | | Z p p 2 2 2 2 = f (0) + p(p 1) f (x) − f (x) 1( x , r)(1 x ) dτ(x) | | − Bn(0,r) | | |∇ | | | − | | Z r n 1 Z ρ − 1(ρ, r) f p np p f p 2 f 2d d = (0) + ( 1) 2 n 2 (ρζ) − (ρζ) σ(ζ) ρ | | − (1 ρ ) n | | |∇ | 0 − − ∂B Z r n 11 p ρ − (ρ, r) 2 p 2 f (0) + np(p 1) M (ρ, f )M − (ρ, f )dρ. (10) ≤ | | − (1 ρ2)n 2 p ∇ p 0 − −

By computations, we obtain

Z r 1 (1 s2)n 2 1 r − ds (ρ, ) = −n 1 n ρ s − Z r 1 s2 n 2ds n 1 (1 ) − ≤ nρ − ρ − Z r (1 + r)n 2 − s n 2ds n 1 (1 ) − ≤ nρ − ρ − n 2 n 1 (1 + r) (1 ρ) − − − . (11) ≤ n(n 1) ρn 1 − − Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 366

Applying (10) and (11), we get

Z r n 1 ρ − 1(ρ, r) M2(r, f ) f (0) 2 + np(p 1) M2(ρ, f )dρ p ≤ | | − (1 ρ2)n 2 p ∇ 0 − − n 2 Z r p(p 1)(1 + r) − f (0) 2 + − (1 ρ)M2(ρ, f )dρ ≤ | | n 1 − p ∇ − 0 n 2 Z 1 rp(p 1)(1 + r) − = f (0) 2 + − (1 rt)M2(tr, f )dt | | n 1 − p ∇ − 0 n 2 2 Z 1   rp(p 1)(1 + r) − C 1 f (0) 2 + − (1 rt)ω2 dt ≤ | | n 1 − 1 rt − 0 − n 2 2 Z 1   rp(p 1)(1 + r) − C  1   1  = f (0) 2 + − ω (1 tr) ω dt | | n 1 1 rt − 1 rt − 0 − − n 2 2 Z 1 rp(p 1)(1 + r) − C ω(1)  1  f (0) 2 + − ω dt, ≤ | | n 1 1 rt − 0 − which gives 1 " n 2 2 Z 1 # 2 2 rp(p 1)(1 + r) − C ω(1)  1  Mp(r, f ) f (0) + − ω dt . ≤ | | n 1 1 rt − 0 − In particular, if n = 2 and ω(t) = t, then the estimate of (7) is sharp. The proof of the sharpness part follows from [16, Theorem 1(b)]. The proof of this theorem is complete.

Lemma 2.2. Let ω be a majorant. Then (1) ω is subadditive, that is, if t, s > 0, then ω(s + t) ω(s) + ω(t); (2) for t > 0, if λ 1, then ω(λt) λω(t). ≤ ≥ ≤ Proof. We first prove (1). Since ω(t)/t is nonincreasing for t > 0, we see that for s, t > 0,

ω(s) ω(t) ω(t + s) ω(s) + ω(t) ω(s + t) = s + t (s + t) − s t − t + s ! ! ω(s) ω(s + t) ω(t) ω(s + t) = s + t s − s + t t − s + t 0. ≥ (2) easily follows from the monotonicity of ω(t)/t for t > 0. The proof of this lemma is complete.

Proof of Theorem 1.4

We first prove the sufficiency. Since Ω is a Λω-extension domain, we see that for any x, y Ω, by using (5), there is a rectifiable curve γ Ω joining x to y such that ∈ ⊂ Z f (x) f (y) f (ζ) ds(ζ) | − | ≤ γ |∇ |   Z ω dΩ(ζ) C ds(ζ) ≤ γ dΩ(ζ) Cω( x y ). ≤ | − | Now we come to prove the necessity. Let x = (x1, , xn) Ω and r = dΩ(x)/2. Then by Lemma 2.2, for n ··· ∈ all y = (y1, , yn) B (x, r), ··· ∈ f (x) f (y) Cω( x y ) 2Cω(d (x)). | − | ≤ | − | ≤ Ω Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 367

For all y Bn(x, r), using (1), we get ∈ Z f (y) = Ph(y, ζ) f (rζ + x)dσ(ζ), ∂Bn where !n 1 2 2 − r y x n Ph(y, ζ) = − | − | and ζ = (ζ , , ζn) ∂B . y x rζ 2 1 ··· ∈ | − − | By elementary calculations, for each k 1, 2, , n , we have ∈ { ··· } h 2 2 2 i n 2 (y x ) y x rζ + (r y x )(y rζ x ) ∂Ph(y, ζ)   n−1 k k k k k n y − − | − − | − | − | − − = 2( 1) Ph( , ζ) 4 . ∂yk − − y x rζ | − − | Then for all y Bn(x, r/2), ∈

∂Ph(y, ζ)

∂yk  n 2 h i 2 2 − 2 2 2 r y x yk xk y x rζ + (r y x ) yk rζk xk 2(n 1) − | − | | − || − − | − | − | | − − | ≤ − y x rζ 2n ! | − − | r2n 4 9r3 3r3 2(n 1) − + ≤ − y x rζ 2n 8 2 | − − | 2n 1 21(n 1) r − − 2n ≤ 4  r  2 2(n 1) 2 − 21(n 1) = · − , r which implies that

  1 Xn 2  2  f (y) =  f (y) |∇ |  yk  k=1 n Z 2 1 n X  ∂ o 2 = Ph(y, ζ)( f (rζ + x) f (x))dσ(ζ) Bn ∂yk − k=1 ∂ n Z X ∂ Ph(y, ζ)( f (rζ + x) f (x))dσ(ζ) ≤ Bn ∂yk − k=1 ∂ Xn Z ∂ Ph(y, ζ) f (rζ + x) f (x) dσ(ζ) ≤ Bn ∂yk − k=1 ∂ Z

√n Ph(y, ζ) f (rζ + x) f (x) dσ(ζ) ≤ ∂Bn ∇ − 2(n 1) Z 2 − 21n(n 1) · − f (rζ + x) f (x) dσ(ζ) ≤ r ∂Bn − 2(n 1) 2 − 21n(n 1)Cω(r) · − ≤ r   ω dΩ(x) 2n 1 2 − 21n(n 1)C . ≤ · − dΩ(x) The proof of this theorem is complete. Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 368

Proof of Proposition 1.5 n Let ζ1, ζ2 ∂B . Without loss of generality, we may assume ζ1 a < ζ2 a . Then by Lemma 2.2, we have ∈ | − | | − |

ηa (ζ ) ηa (ζ ) = ω( ζ a ) ω( ζ a ) | ,ω 2 − ,ω 1 | | 2 − | − | 1 − | = ω( ζ a ζ a + ζ a ) ω( ζ a ) | 2 − | − | 1 − | | 1 − | − | 1 − | ω( ζ a ζ a ) + ω( ζ a ) ω( ζ a ) ≤ | 2 − | − | 1 − | | 1 − | − | 1 − | ω( ζ ζ ), ≤ | 2 − 1| which gives ηa,ω(ζ2) ηa,ω(ζ1) | − | 1. ω( ζ ζ ) ≤ | 2 − 1| n Hence ηa Bn 1 < . On the other hand, for each a ∂B , k ,ωkω,∂ ≤ ∞ ∈ n ηa (ζ) = ω( ζ a ) ω(2) < for ζ ∂B . ,ω | − | ≤ ∞ ∈ B n Then ηa is bounded and ηa Λ (B ). The proof of this Proposition is complete. ,ω ,ω ∈ ω Proof of Theorem 1.7 B n n We first prove the necessity. Let f Λω(∂B ). We only need to prove that for any x, y B , there is a positive constant C such that ∈ ∈

Ph[ f ](x) Ph[ f ](x) C f w,∂Bn ω( x y ). − ≤ k k | − | Without loss of generality, we assume that

0 < d(y) d(x). (12) ≤ Let x , y ∂Bn such that d(x) = x x and d(y) = y y , respectively. For ζ ∂Bn, let F(ζ) = f (ζ) f (x ). 0 0 ∈ | − 0| | − 0| ∈ − 0 We divide the proof into two cases. Case 1. x y d(x)/2. For z Bn(x, d(x)/2), using Lemma 2.2, we see that | − | ≤ ∈ d(x) 3d(x) z x z x + x x + d(x) = , | − 0| ≤ | − | | − 0| ≤ 2 2 which yields that

Ph[F](z) f Bn Ph[ηx ](z) | | ≤ k kw,∂ | 0,ω | C f w,∂Bn ω( x y ) ≤ k k | − |! 3d(x) C f Bn ω ≤ k kw,∂ 2 3C f Bn ω(d(x)). ≤ 2 k kw,∂ Using arguments similar to those in the necessity’s proof of Theorem 1.4, for z Bn(x, d(x)/2), there is a positive constant C such that ∈

ω(d(x)) Ph[ f ](z) = Ph[F](z) C f Bn , |∇ | |∇ | ≤ k kw,∂ d(x) Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 369 which gives that Z

Ph[ f ](x) Ph[ f ](y) Ph[ f ](z) dz − ≤ [x,y] |∇ || | ω(d(x)) C f Bn x y ≤ k kw,∂ d(x) | − | C f Bn ω( x y ), ≤ k kw,∂ | − | where [x, y] denotes the segment from x to y. Case 2. x y > d(x)/2. We use the similar approach as in the proof of [1, Theorem 1.1] to prove this case. By (12),| we− know| that x y > d(x)/2 d(y)/2. By elementary calculations, we see that there is positive constant C such that | − | ≥

n n Ph[ f ](x) f (x0) = Ph[F](x) C f w,∂B Ph[ηx0,ω](x) C f w,∂B ω(d(x)) − | | ≤ k k | | ≤ k k C f Bn ω( x y ). (13) ≤ k kw,∂ | − | Similarly,

Ph[ f ](y) f (y0) C f w,∂Bn ω( x y ). (14) − ≤ k k | − |

By using x0 y0 x y + d(x) + d(y) < 5 x y and Lemma 2.2, we know that there is positive constant C such that | − | ≤ | − | | − |

f (x0) f (y0) C f w,∂Bn ω( x0 y0 ) 5C f w,∂Bn ω( x y ). (15) − ≤ k k | − | ≤ k k | − | By (13), (14) and (15), we conclude that

  Ph[ f ](x) Ph[ f ](y) Ph[ f ](x) f (x0) Ph[ f ](y) f (y0) + f (x0) f (y0) − ≤ − − − −

Ph[ f ](x) f (x0) + Ph[ f ](y) f (y0) + f (x0) f (y0) ≤ − − − 7C f Bn ω( x y ). ≤ k kw,∂ | − | Now we come to prove the sufficiency. By Proposition 1.5, we have

Ph[ηa,ω] ω ,Bn Ph ω ω ηa,ω ω,∂Bn < , k k 0 ≤ k k → k k ∞ which implies that, for x, y Bn, there is a positive constant C such that ∈

Ph[ηa,ω](x) Ph[ηa,ω](y) Cω( x y ). − ≤ | − | Let x ∂Bn such that d(x) = x x . By letting y tends to x yields that 0 ∈ | 0 − | 0

Ph[ηa,ω](x) ηa,ω(x0) Cω( x0 x ), − ≤ | − | which gives

Ph[ηa ](x) ηa (x ) + Cω( x x ) ω( x a ) + Cω( x a ). (16) ,ω ≤ ,ω 0 | 0 − | ≤ | 0 − | | − | Applying (16) and the inequality x a x x + x a 2 x a , we conclude that | 0 − | ≤ | 0 − | | − | ≤ | − |

Ph[ηa ](x) Cω( x a ) + ω( x a ) (C + 2)ω( x a ). ,ω ≤ | − | | 0 − | ≤ | − | The proof of this theorem is complete. Sh. Chen, Z. Su / Filomat 29:2 (2015), 361–370 370

References

[1] H. Aikawa, Modulus of continuity of the Dirichlet solutions, Bulletin London Mathematical Society 42 (2010), 857–867. [2] L. V. Ahlfors, Mobius¨ transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. [3] S. Burgeth, A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions, Manuscripta Mathematica 77 (1992), 283–291. [4] Sh. Chen, M. Mateljevic,´ S. Ponnusamy, X. Wang, Lipschitz type spaces and Landau-Bloch type theorems for harmonic functions and Poisson equations, arXiv:1407.7179 [math.CV], 2014. [5] SH. Chen, S. Ponnusamy and X. Wang, Integral means and coefficient estimates on planar harmonic mappings, Annales Academiæ Scientiarum Fennicæ Mathematica 37 (2012), 69–79. [6] SH. Chen, S. Ponnusamy and X. Wang, Weighted Lipschitz continuity, Schwarz-Pick’s lemma and Landau-Bloch’s theorem for hyperbolic-harmonic mappings in Cn, Mathematical Modelling and Analysis 18 (2013), 66–79. [7] SH. Chen, A. Rasila and X. Wang, Radial growth, Lipschitz and Dirichlet spaces on solutions to the non-homogenous Yukawa equation, Israel Journal of Mathematics 204 (2014), 261–282. [8] Sh. Chen, S. Ponnusamy and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, Mathematische Zeitschrift 279 (2015), 163–183. [9] SH. Chen, S. Ponnusamy and A. Rasila, Lengths, areas and Lipschitz-type spaces of planar harmonic mappings, Nonlinear Analysis: Theory, Methods Applications 115 (2015), 62–70. [10] Sh. Chen and S. Ponnusamy, Lipschitz-type spaces and Hardy spaces on some classes of complex-valued functions, Integral Equations and Operator Theory 77 (2013), 261–278. [11] P. Duren, Theory of Hp spaces, 2nd ed., Dover, Mineola, N. Y., 2000. [12] K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Mathematica 178 (1997), 143–167. [13] K. M. Dyakonov, Holomorphic functions and quasiconformal mappings with smooth moduli, Advances in Mathematics 187 (2004), 146–172. [14] S. Eriksson and H. Orelma, A mean-value theorem for some eigenfunctions of the Laplace-Beltrami operator on the upper-half space, Annales Academiæ Scientiarum Fennicæ Mathematica 36 (2011), 101–110. [15] F. W. Gehring and O. Martio, Lipschitz-classes and quasiconformal mappings, Annales Academiæ Scientiarum Fennicæ Mathe- matica 10 (1985), 203–219. [16] D. Girela and J. A. Pelaez,´ Integral means of analytic functions, Annales Academiæ Scientiarum Fennicæ Mathematica 29 (2004), 459–469. [17] D. Girela, M. Pavlovic´ and J. A. Pelaez,´ Spaces of analytic functions of Hardy-Bloch type, Journal D Analyse Mathematique 100 (2006), 53–81. [18] S. Grellier and P. Jaming, Harmonic functions on the real hyperbolic ball II. Hardy-Sobolev and Lipschitz spaces, Mathematische Nachrichten 268 (2004), 50–73. [19] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, Journal fur¨ die reine und angewandte Mathematik 167 (1931), 405–423. [20] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Mathematische Zeitschrift 34 (1932), 403–439. [21] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Mathematicae 3 (1983), 193–260. [22] V. Lappalainen, Liph-extension domains, Annales Academiæ Scientiarum Fennicæ Mathematica Dissertationes 56, 1985. [23] M. Mateljevic,´ Distortion of quasiregular mappings and equivalent norms on Lipschitz-type spaces, Abstract and Applied Analysis Volume 2014 (2014), Article ID 895074, 20 pages, Link http://dx.doi.org/10.1155/2014/895074. [24] M. Mateljevic,´ M. Arsenovic´ and V.Manojlovic,´ Lipschitz-type spaces and Quasiregular harmonic mappings in the space, Annales Academiæ Scientiarum Fennicæ Mathematica 35 (2010), 379–387. [25] M. Mateljevic´ and M. Vuorinen, On harmonic quasiconformal quasi-isometries, Journal of Inequalities and Applications Volume 2010, Article ID 178732, 19 pages doi:10.1155/2010/1787. [26] M. Pavlovic,´ On Dyakonov’s paper Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Mathematica 183 (1999), 141–143. [27] S. Stevic,´ Area type inequalities and integral means of harmonic functions on the unit ball, Journal of the Mathematical Society of Japan 59 (2007), 583–601. [28] M. Stoll, Weighted Dirichlet spaces of harmonic functions on the real hyperbolic ball, Complex Variables and Elliptic Equations 57 (2012), 63–89. [29] L. F. Tam and T. Y. H. Wan, On quasiconformal harmonic maps, Pacific Journal of Mathematics 53 (1998), 464–471.