Sparassodonta, Metatheria) Using a Bayesian Framework Sergio D

Total Page:16

File Type:pdf, Size:1020Kb

Sparassodonta, Metatheria) Using a Bayesian Framework Sergio D ANALYSIS OF DIVERSIFICATION HISTORIES IN EXTINCT CARNIVOROUS MARSUPIALS (SPARASSODONTA, METATHERIA) USING A BAYESIAN FRAMEWORK SERGIO D. TARQUINI1*, SANDRINE LADEVÈZE2, AND FRANCISCO J. PREVOSTI1, 3 1 Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, UNCa, SEGEMAR, CONICET, Entre Ríos y Mendoza s.n., CP 5301, Anillaco, La Rioja, Argentina. 2 Centre de Recherche en Paléontologie, Paris (CR2P, UMR 7207), MNHN CNRS Sorbonne Université, Muséum national d'Histoire naturelle, 57 rue Cuvier CP 38, F-75005 Paris, France. 3 Departamento de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de la Rioja (UNLaR). Av. Luis M. de la Fuente s/n (5300), La Rioja, Argentina. Corresponding autor: [email protected] South America was isolated during a great time of the Cenozoic, which allowed an endemic terrestrial biota to evolve in that continent. Within mammals, the carnivore guild was occupied by the Sparassodonta. The oldest records of these carnivorous metatherians (Metatheria being the clade including all mammals more closely related to marsupials than to placentals) would be from the early Palaeocene of Bolivia (just after the Cretaceous/Tertiary crisis), while the last come from the Pliocene of Argentina. Moreover, from the late Miocene - Pliocene, carnivorous placentals (Carnivora) began to colonize the continent from North America, following the formation of the Isthmus of Panama (ca. 3 Myrs). Given the evidence, some authors justified the extinction of the sabertooth sparassodont (Thylacosmilus) by the arrival of the sabertooth placental (Smilodon), while other authors are opposed to the “competitive displacement” hypothesis and propose an “opportunistic replacement”. We compiled a data set of fossil occurrences for Sparassodonta collected from the bibliography and museums databases. We also compiled fossil data for the six families of Carnivora that subsequently dispersed into South America and have been potentially competing for resources against sparassodonts, as suggested by previous hypotheses. We carried out analyses of the fossil datasets using a Bayesian framework implemented in the PyRate software. First, we estimated the preservation rate, the times of speciation and extinction for all species, and the speciation and extinction rates through a reversible jump Markov Chain Monte Carlo (RJMCMC). We ran 20,000,000 RJMCMC iterations and sampled once every 5,000 to obtain posterior estimates of the parameters. Additionally we tested whether the diversification dynamics of Sparassodonta may be linked with changes in body mass (using the Covar birth–death model) and with changes in global temperature (using a birth–death model with time-varying rates). Information of body mass and temperatures were obtained from the literature. Finally we assessed the effect of competition on the diversification of Sparassodonta with a Multiple Clade Diversity Dependence model. Our results show temporal changes in both speciation and extinction rates for Sparassodonta. Therefore, our results support the idea that the demise of a clade is controlled by the two factors. With respect to body size there is a trend where the larger body mass in Sparassodonta appears later in the evolutionary history of the group. Although the changes in body mass are not related to the speciation rate, body mass being related to the extinction rate. That is to say that as the size increased, the extinction rate decreased (the opposite pattern was previously discovered in large mammals). No significant correlations emerged between the global temperature curve and changes in diversification rates. Finally, clade competition did not affect the diversification dynamics of Sparassodonta; speciation rate fell before the dispersion of Carnivora in South America. In conclusion, these new techniques can improve our knowledge of the evolution of the taxa but more studies are required to elucidate the demise of Sparassodonta. .
Recommended publications
  • Chronostratigraphy of the Mammal-Bearing Paleocene of South America 51
    Thierry SEMPERE biblioteca Y. Joirriiol ofSoiiih Ainorirari Euirli Sciriin~r.Hit. 111. No. 1, pp. 49-70, 1997 Pergamon Q 1‘197 PublisIlcd hy Elscvicr Scicncc Ltd All rights rescrvcd. Printed in Grcnt nrilsin PII: S0895-9811(97)00005-9 0895-9X 11/97 t I7.ol) t o.(x) -. ‘Inshute qfI Human Origins, 1288 9th Street, Berkeley, California 94710, USA ’Orstom, 13 rue Geoffroy l’Angevin, 75004 Paris, France 3Department of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA Absfract - Land mammal faunas of Paleocene age in the southern Andean basin of Bolivia and NW Argentina are calibrated by regional sequence stratigraphy and rnagnetostratigraphy. The local fauna from Tiupampa in Bolivia is -59.0 Ma, and is thus early Late Paleocene in age. Taxa from the lower part of the Lumbrera Formation in NW Argentina (long regarded as Early Eocene) are between -58.0-55.5 Ma, and thus Late Paleocene in age. A reassessment of the ages of local faunas from lhe Rfo Chico Formation in the San Jorge basin, Patagonia, southern Argentina, shows that lhe local fauna from the Banco Negro Infeiior is -60.0 Ma, mak- ing this the most ancient Cenozoic mammal fauna in South,America. Critical reevaluation the ltaboraí fauna and associated or All geology in SE Brazil favors lhe interpretation that it accumulated during a sea-level lowsland between -$8.2-56.5 Ma. known South American Paleocene land inammal faunas are thus between 60.0 and 55.5 Ma (i.e. Late Paleocene) and are here assigned to the Riochican Land Maminal Age, with four subages (from oldest to youngest: Peligrian, Tiupampian, Ilaboraian, Riochican S.S.).
    [Show full text]
  • What Technology Wants / Kevin Kelly
    WHAT TECHNOLOGY WANTS ALSO BY KEVIN KELLY Out of Control: The New Biology of Machines, Social Systems, and the Economic World New Rules for the New Economy: 10 Radical Strategies for a Connected World Asia Grace WHAT TECHNOLOGY WANTS KEVIN KELLY VIKING VIKING Published by the Penguin Group Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, U.S.A. Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario, Canada M4P 2Y3 (a division of Pearson Penguin Canada Inc.) Penguin Books Ltd, 80 Strand, London WC2R 0RL, England Penguin Ireland, 25 St. Stephen's Green, Dublin 2, Ireland (a division of Penguin Books Ltd) Penguin Books Australia Ltd, 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pty Ltd) Penguin Books India Pvt Ltd, 11 Community Centre, Panchsheel Park, New Delhi - 110 017, India Penguin Group (NZ), 67 Apollo Drive, Rosedale, North Shore 0632, New Zealand (a division of Pearson New Zealand Ltd) Penguin Books (South Africa) (Pty) Ltd, 24 Sturdee Avenue, Rosebank, Johannesburg 2196, South Africa Penguin Books Ltd, Registered Offices: 80 Strand, London WC2R 0RL, England First published in 2010 by Viking Penguin, a member of Penguin Group (USA) Inc. 13579 10 8642 Copyright © Kevin Kelly, 2010 All rights reserved LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA Kelly, Kevin, 1952- What technology wants / Kevin Kelly. p. cm. Includes bibliographical references and index. ISBN 978-0-670-02215-1 1. Technology'—Social aspects. 2. Technology and civilization. I. Title. T14.5.K45 2010 303.48'3—dc22 2010013915 Printed in the United States of America Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of both the copyright owner and the above publisher of this book.
    [Show full text]
  • Person, J.J. 2012. Saber Teeth. Geo News 39(2)
    Saber Teeth Jeff J. Person Carnivores of all kinds have always been of interest to me. Arguably Smilodon is only the last iteration of saber-teeth in the fossil it is a much more difficult lifestyle to hunt and kill another animal record. Carnivorous mammals with large sabers have appeared than it is to browse or graze on non-mobile plants. Carnivorous four times across unrelated groups of carnivorous mammals over animals have evolved to stalk and kill their prey in many, many the last 60 million years (or so) of Earth’s history. varied ways. Just think of the speed of a frog’s tongue or the speed of a cheetah, the stealth and camouflage of an octopus, Types of Saber-teeth or the intelligence of some birds. These are only a few examples Not only were there four different groups of mammals that of modern carnivores; the variety of carnivores through time is evolved saber-teeth separately, there are also two different kinds broader and even more fascinating. of saber-teeth. There are the dirk-toothed forms, and the scimitar- toothed forms. The scimitar-toothed animals tended to be more Convergent evolution is the reappearance of the same solution lightly built with coarsely serrated and somewhat elongated to a biological problem across unrelated groups of animals. This canines (fig. 1) (Martin, 1998a). The dirk-toothed animals tended has happened many times throughout Earth’s history. The similar to be more powerfully built with long, finely serrated, dagger-like body shapes of sharks, fish, ichthyosaurs (a group of swimming canines which sometimes included a large flange on the lower jaw reptiles) and dolphins is a great example of unrelated groups of (fig.
    [Show full text]
  • A Evolução Dos Metatheria: Sistemática, Paleobiogeografia, Paleoecologia E Implicações Paleoambientais
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS ESPECIALIZAÇÃO EM GEOLOGIA SEDIMENTAR E AMBIENTAL LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS RECIFE 2017 LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS Dissertação de Mestrado apresentado à coordenação do Programa de Pós-graduação em Geociências, da Universidade Federal de Pernambuco, como parte dos requisitos à obtenção do grau de Mestre em Geociências Orientador: Prof. Dr. Édison Vicente Oliveira RECIFE 2017 Catalogação na fonte Bibliotecária: Rosineide Mesquita Gonçalves Luz / CRB4-1361 (BCTG) C289e Carneiro, Leonardo de Melo. A evolução dos Metatheria: sistemática, paleobiogeografia, paleoecologia e implicações paleoambientais / Leonardo de Melo Carn eiro . – Recife: 2017. 243f., il., figs., gráfs., tabs. Orientador: Prof. Dr. Édison Vicente Oliveira. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Geociências, 2017. Inclui Referências. 1. Geociêcias. 2. Metatheria . 3. Paleobiogeografia. 4. Paleoecologia. 5. Sistemática. I. Édison Vicente Oliveira (Orientador). II. Título. 551 CDD (22.ed) UFPE/BCTG-2017/119 LEONARDO DE MELO CARNEIRO A EVOLUÇÃO DOS METATHERIA: SISTEMÁTICA, PALEOBIOGEOGRAFIA, PALEOECOLOGIA E IMPLICAÇÕES PALEOAMBIENTAIS Dissertação de Mestrado apresentado à coordenação do Programa de Pós-graduação
    [Show full text]
  • Fossils? the Phylogeny of Herpetotheriid and Peradectid Metatherians, Based on New Features from the Petrosal Anatomy S
    What are “opossum-like” fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy S. Ladevèze, Charlène Selva, Christian de Muizon To cite this version: S. Ladevèze, Charlène Selva, Christian de Muizon. What are “opossum-like” fossils? The phy- logeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy. Journal of Systematic Palaeontology, Taylor & Francis, 2020, 18 (17), pp.1463-1479. 10.1080/14772019.2020.1772387. hal-03099643 HAL Id: hal-03099643 https://hal.archives-ouvertes.fr/hal-03099643 Submitted on 6 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 What are “opossum-like” fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy Sandrine Ladevèze, Charlène Selva & Christian de Muizon To cite this article: Sandrine Ladevèze, Charlène Selva & Christian de Muizon (2020): What are “opossum-like” fossils? The phylogeny of herpetotheriid and peradectid metatherians, based on new features from the petrosal anatomy, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2020.1772387 To link to this article: https://doi.org/10.1080/14772019.2020.1772387 View supplementary material Published online: 22 Jun 2020.
    [Show full text]
  • 108 ©2017 by the Society of Vertebrate Paleontology
    Technical Session XII (Friday, August 25, 2017, 11:15 AM) We present the first comprehensive exploration of body size evolution in all major amniote clades during the Permo-Triassic (PT). Using phylogenetic comparative methods ELSHAFIE, Sara J., UC Berkeley, Berkeley, CA, United States of America that allow for rate variation we examined evolutionary rates in parareptiles, Caudal autotomy, the ability to shed the tail, is common among lizards as a defense archosauromorphs and therapsids. mechanism to escape predation. Caudal autotomy is a basal synapomorphy of Models that allow for rate variation between different branches outperform homogeneous Lepidosauria. About two-thirds of extant lizard families include species that retain the rate models for Parareptilia. Early diverging parareptiles experienced low evolutionary ability. Many can also regenerate the tail after shedding it. The oldest known fossil rates but rates increased to normal with the emergence of the first Ankyramorpha, as evidence of caudal autotomy in a reptile comes from early Permian captorhinids. Here I expected from a Brownian model of evolution. Evolutionary rates accelerated further report the earliest and only documented evidence of caudal autotomy for Squamata, in a with the appearance of the pareiasaurs and peaked within procolophonids at the PT glyptosaurine specimen from the early middle Eocene Bridger Formation in the Bridger boundary. Rates then plateaued in the Triassic, being an order of magnitude higher than Basin of southwestern Wyoming. normal rates. I identified signs of caudal autotomy in this specimen based on disproportions in an intact A heterogeneous rate model is also favoured for Therapsida. Early diverging members of 1.5-cm segment of the tail.
    [Show full text]
  • Caudal Cranium of Thylacosmilus Atrox (Mammalia, Metatheria, Sparassodonta), a South American Predaceous Sabertooth
    CAUDAL CRANIUM OF THYLACOSMILUS ATROX (MAMMALIA, METATHERIA, SPARASSODONTA), A SOUTH AMERICAN PREDACEOUS SABERTOOTH ANALÍA M. FORASIEPI, ROSS D. E. MACPHEE, AND SANTIAGO HERNANDEZ DEL PINO BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CAUDAL CRANIUM OF THYLACOSMILUS ATROX (MAMMALIA, METATHERIA, SPARASSODONTA), A SOUTH AMERICAN PREDACEOUS SABERTOOTH ANALÍA M. FORASIEPI IANIGLA, CCT-CONICET, Mendoza, Argentina ROSS D.E. MacPHEE Department of Mammalogy, American Museum of Natural History, New York SANTIAGO HERNÁNDEZ DEL PINO IANIGLA, CCT-CONICET, Mendoza, Argentina BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 433, 64 pp., 27 figures, 1 table Issued June 14, 2019 Copyright © American Museum of Natural History 2019 ISSN 0003-0090 CONTENTS Abstract.............................................................................3 Introduction.........................................................................3 Materials and Methods................................................................7 Specimens . 7 CT Scanning and Bone Histology....................................................8 Institutional and Other Abbreviations ...............................................12 Comparative Osteology of the Caudal Cranium of Thylacosmilus and Other Sparassodonts . .12 Tympanic Floor and Basicranial Composition in Thylacosmilus . 12 Tympanic Floor Composition in the Comparative Set .................................19 Petrosal Morphology..............................................................26 Tympanic Roof Composition
    [Show full text]
  • Mammalia, Metatheria, Sparassodonta) from the Miocene of Patagonia, Argentina
    Zootaxa 2552: 55–68 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new thylacosmilid (Mammalia, Metatheria, Sparassodonta) from the Miocene of Patagonia, Argentina ANALÍA M. FORASIEPI1 & ALFREDO A. CARLINI2 1Departamento de Paleontología, Museo de Historia Natural de San Rafael, Parque Mariano Moreno s/n (5600), San Rafael, Mendoza, Argentina. E-mail: [email protected] 2Departamento de Paleontología, Museo de La Plata, Paseo del Bosque s/n (1900), La Plata, Buenos Aires, Argentina. E-mail: [email protected] Abstract A new genus and species, Patagosmilus goini, of the family Thylacosmilidae (Mammalia, Metatheria, Sparassodonta) is described here. The new taxon is based on a single specimen collected from the west margin of the Río Chico, in Río Negro Province, Argentina, from the middle Miocene Colloncuran SALMA. Until now, two formally recognized species were encompassed in the family Thylacosmilidae: Thylacosmilus atrox, from the late Miocene-late Pliocene Huayquerian to Chapadmalalan SALMAof Argentina and probably Uruguay; and Anachlysictis gracilis, from the middle Miocene Laventan SALMA of Colombia. Recognition of the Patagonian taxon, Patagosmilus, provides new anatomical data, likely to be included in future phylogenetic analyses. The overall morphology of Patagosmilus suggests that it has a more generalized anatomy than Thylacosmilus. The dental morphology suggests the new Patagonian taxon was probably closer to Thylacosmilus than Anachlysictis. Saber-tooth thylacosmilids have several autapomorphic features in the skull that differentiate them from other sparassodonts, including the delayed replacement or non-replacement of the deciduous last premolar. Key words: saber-tooth metatherians, Cenozoic, South America Introduction The family Thylacosmilidae (Mammalia, Metatheria, Sparassodonta) has one of the most bizarre morphologies among the native Neogene predators of South America.
    [Show full text]
  • Sabre Tooth Free
    FREE SABRE TOOTH PDF Peter O'Donnell | 288 pages | 01 Sep 2003 | Souvenir Press Ltd | 9780285636767 | English | London, United Kingdom 12 Amazing Saber-Toothed Animals | Live Science Sabre Tooth saber-toothed cat may be the most famous saber-toothed animal, but it's hardly the only one. More than a dozen kinds of animals — many of them now extinct — had saber teeth, including the saber-toothed salmon and the marsupial Thylacosmilus. Today, saber-toothed animals include the walrusmusk deer and warthog, all of which grow incredibly long and sharp canines, the hallmark of a saber tooth. Elephant tusks are long incisor teeth, and thus are not sabers. It's unclear how ancient animals used their saber teeth. The teeth would have broken as the prey bucked around. Instead, perhaps the sabers helped predators tear away at the prey's belly. He added, "Sorry for the graphic details, but this is what happens, and it is supremely effective. The musk deer Moschus moschiferus is Sabre Tooth of the few saber-toothed animals living Sabre Tooth. But it doesn't use its long canines for meaty prey — the ungulate is an herbivore, said Jack Tseng, a paleontologist at the AMNH. The walrus Odobenus rosmarus has one of the longest sabers on record, with some males Sabre Tooth canines extending more than a foot 0. Male walruses use Sabre Tooth sabers both as a display and a weapon, Tseng said. The sabers serve a variety of purposes. These long canines help them with "tooth-walking," or pulling their large bodies out of the water; breaking breathing holes in ice while swimming in the water below; and protecting their territory and Sabre Tooth, according to National Geographic.
    [Show full text]
  • This Is the Time Frame in Which Mammal Lineages
    At 94 million years ago, Gondwana has started rifting apart, with Africa and India the first to break away. or This is the time frame in which mammal lineages are Marsupials appeared in Asia, but they managed to diversifying—Asiatherium, for example, is a Late disperse all the way to Australia, via island chains and Cretaceous marsupial from Mongolia. land bridges. 1 Placental mammals are as Australia still has no old as marsupials, but the native placental few placental lineages that mammals (except for dispersed by land to bats, marine Australia, while that was mammals, and species still possible, died out introduced by there. Marsupials, humans), and the however, radiated into marsupials have forms like the 25 million- radiated into a year-old Ngamaroo, kin to remarkable diversity kangaroos (top) and the of forms, many of 10-20-million year-old which are convergent Ekaltadeta, a galloping, on placental predatory “killer mammals. kangaroo” (bottom) Both marsupials and Marsupials unique to placental mammals South America reached South America, included but not all modern orders Thylacosmilus, of mammals made it. convergent on the Other orders of mammals more famous “saber- evolved in isolation from toothed cats” but not the rest of the world, related—this is a including the vaguely marsupial, not a elephant-like pyrotheres placental mammal! (top), and the In fact, the “saber- notoungulates, which tooth” form evolved ranged from rhino-like convergently at least beasts to the rabbit-like four times in Propachyrukhos (bottom). mammal evolution. 2 The mammal lineages that reached South America also radiated into unique forms that are still with us.
    [Show full text]
  • New Specimens of Sparassodonta (Mammalia, Metatheria) From
    NEW SPECIMENS OF SPARASSODONTA (MAMMALIA, METATHERIA) FROM CHILE AND BOLIVIA by RUSSELL K. ENGELMAN Submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Biology CASE WESTERN RESERVE UNIVERSITY January, 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Russell K. Engelman candidate for the degree of Master of Science*. Committee Chair Hillel J. Chiel Committee Member Darin A. Croft Committee Member Scott W. Simpson Committee Member Michael F. Benard Date of Defense July 20, 2018 *We also certify that written approval has been obtained for any proprietary material contained therein. ii TABLE OF CONTENTS NEW SPECIMENS OF SPARASSODONTA (MAMMALIA, METATHERIA) FROM CHILE AND BOLIVIA ....................................................................................................... i TABLE OF CONTENTS ................................................................................................... iii LIST OF TABLES ............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ACKNOWLEDGEMENTS ................................................................................................ 1 LIST OF ABBREVIATIONS ............................................................................................. 4 ABSTRACT .......................................................................................................................
    [Show full text]
  • Biomechanics of Felid Skulls: a Comparative Study Using Finite Element Approach
    Biomechanics of felid skulls: A comparative study using finite element approach Uphar Chamoli Supervisor: Dr. Stephen Wroe Submitted in partial fulfilment of the requirements for the degree of Master of Philosophy School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales August 2011 CERTIFICATE OF ORIGINALITY I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged. Signature ...................... Date.............................. ii Dedicated to my parents and my deep rooted faith in Karma iii A major component of this thesis is published in Journal of Theoretical Biology x Chamoli, U. & Wroe, S., 2011. Allometry in the distribution of material properties and geometry of the felid skull: Why larger species may need to change and how they may achieve it. Journal of Theoretical Biology 283(1):217- 226. Some of the other methodologies used in this project, OR developed during the course of this project are also published in following journals x Attard, M., Chamoli, U., Ferrara, T., Rogers, T., and Wroe, S., 2011.
    [Show full text]