Impact of Long Term Pesticide Usage on Soil Properties Using Radiotracer Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Long Term Pesticide Usage on Soil Properties Using Radiotracer Techniques XA0200258-C«7(P IAEA-TECDOC-1248 Impact of long term pesticide usage on soil properties using radiotracer techniques Proceedings of a Final Research Coordination meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held in Hangzhou, Zhejiang, China, 24-28 May 1999 ( J November 2001 The IAEA does not normally maintain stocks of reports in this series. They are however collected by the International Nuclear Information System (INIS) as non-conventional literature. Should a document be out of print, a copy on microfiche or in electronic format can be purchased from the INIS Document Delivery Services: INIS Clearinghouse International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria Telephone: (43) 1 2600 22880 or 22866 Fax: (43) 1 2600 29882 E-mail: [email protected] Orders should be accompanied by prepayment of 100 Austrian Schillings in the form of a cheque or credit card (VISA, Mastercard). More information on the INIS Document Delivery Services and a list of national document delivery services where these reports can also be ordered can be found on the INIS Web site at http://www.iaea.org/inis/dd srv.rrtm. IAEA-TECDOC-1248 Impact of long term pesticide usage on soil properties using radiotracer techniques Proceedings of a Final Research Coordination meeting organized by the Joint FAO/IAEA Division ofNuciear Techniques in Food and Agriculture and held in Hangzhou, Zhejiang, China, 24-28 May 1999 iê) INTERNATIONAL ATOMIC ENERGY AGENCY November 2001 The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria IMPACT OF LONG TERM PESTICIDE USAGE ON SOIL PROPERTIES USING RADIOTRACER TECHNIQUES IAEA, VIENNA, 2001 IAEA-TECDOC-1248 ISSN 1011-4289 © IAEA, 2001 Printed by the IAEA in Austria November 2001 FOREWORD An important activity of the United Nations Food and Agriculture Organization (FAO) is to assist Member States to ensure that, as far as possible, pesticides are used effectively and safely. To this end, FAO has published Guidelines for the Registration and Control of Pesticides, which forms the basis of most national pesticide registration schemes. Among the recommendations is that data should be provided to show that a candidate pesticide has no unacceptable effects on non-target organisms. Soil micro-flora and fauna, because of their central role in maintaining soil fertility, are highly ranked in this context. Concern has been expressed that the data normally presented may not be adequate to predict the effects on soil micro-organisms of repeated, heavy, multiple applications of pesticides that are common in monocultures of crops, such as cotton, maize and rice. Evaluation of the effects of such pesticide regimes requires studies of a range of soil microbial activities, some of which require the use of 14C-labelled pesticides. Therefore, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture organised a Co-ordinated Research project to assess whether or not there is a need to extend the data requirements for pesticide registration to cover such extreme agricultural practices. This TECDOC summarises the outcome of this programme and includes papers presented at the final Research Co-ordination meeting held in Hangzhou, China, 24-28 May 1999. The IAEA officers responsible for this publication were R.J. Hance, M. Hussain and I.G. Ferris of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. EDITORIAL NOTE This publication has been prepared from the original material as submitted by the authors. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The me of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK CONTENTS Summary 1 Impact of long term applications of cotton pesticides on soil biological properties, dissipation of [14C]-methyl parathion and persistence of multi-pesticide residues 15 M.M. Andrea, T.B. Peres, L.C. Luchini, M.A. Marcondes, A. Pettinelli Jr, L.E.Nakagawa Impact of repeated long term application of atrazine on soil properties and bound residues formation 37 R. Behki, S.U. Khan Impact of repeated insecticide application on soil microbial activity 43 Bujin Xu, Yongxi Zhang, Meici Chen, Nanwen Zhu, Hong Ming A study of the fate of methamidophos in soil 51 Bujin Xu, Huang Xiaohua, Yongxi Zhang Mineralization of 14C-labelled agrochemicals in soil 57 Bujin Xu, Huang Xiaohua, HuXiuqing, Yongxi Zhang Effect of repeated applications of pesticides used on cotton on soil properties 63 S.M.A.D. Zayed, M. Farghaly, S.M. Soliman, H. Taha Impact of repeated pesticide applications on the binding and release of methyl 14C-monocrotophos and ring labelled 14C-carbaryl to soil matrices under field conditions 75 S.M.A.D.Zayed, M. Farghaly,S.M. Soliman, H. Taha Mineralization of 14C-labelled aromatic pesticide molecules in Egyptian soils under aerobic and anaerobic conditions 83 S.M.A.D. Zayed, M. Farghaly, F. Mahdy, S. El-Maghraby, H. Taha, S.M. Soliman Long term fate and effects of the herbicide bromoxynil in soil cropped with maize 89 /. Scheunert, A. Gunthner, P. Rosenbrock Effect of repeated pesticide applications on soil properties in cotton fields: I. Impact on microbes, iron reduction capacity and respiration 99 K. Vig, D.K. Singh, H.C. Agarwal, A.K. Dhawan, P. Dureja Effect of repeated pesticide applications on soil properties in cotton fields: II. Insecticide residues and impact on dehydrogenase and arginine deaminase activities 119 K. Vig, D.K. Singh, H.C. Agarwal, A.K. Dhawan, P. Dureja Mineralization and volatilization of ring labelled 14C-2,4-D in three different soils 129 M. Shrivastwa, D.K. Singh, T. Jindal, H.C. Agarwal Dissipation and leaching of 14C-monocrotophos in soil columns 135 K. Vig, D.K. Singh, H.C. Agarwal Impact of heavy repeated long term pesticide applications on soil properties in a cotton agroecosystem 141 Altaf Hussain, Muhammad Rafique Asi, Zafar Iqbal, Jamil Anwar Chaudhry Mineralization and volatilization of 14C-ring labelled 2,4-dichlorophenoxy acetic acid in Pakistani soils 157 Altaf Hussain, Zafar Iqbal, Muhammad Rafique Asi, Jamil Anwar Chaudhry Impact of repeated pesticide applications on the binding and release of 14C-methamidohpos to soil matrices under field conditions 161 Altaf Hussain, Zafar Iqbal, Muhammad Rafique Asi, Jamil Anwar Chaudhry Impact of continued use of profenofos on soil as a consequence of cotton crop protection 165 A. W. Tejada, R.G. Bayot, B.B. Quintana, L.M. Austria, S.C. Bobiles, A.G.R. Villanueva Impact of long - term pesticide usage on soil microbial activities and 14C - monocrotophos degradation 173 N. Tayaputch, P. Pimpan, Y. Phaikaew, L. Chukiatwatana APPENDIX: EXPERIMENTAL PROTOCOLS 181 List of Participants 189 SUMMARY OF THE CO-ORDINATED RESEARCH PROGRAMME 1. Introduction Crop losses to pests, pathogens and weed competition exceeded 40% worldwide in 1989-90 [1], ranging from 28% in Europe to almost 49% in Africa. In financial terms this is of the order of $250 billion. To try to contain these losses, farmers and growers use chemical pesticides. Although pesticides are credited with success in increasing food production and helping to protect man and animals against disease vectors, there are concerns that they have the potential to harm human and environmental health and even compromise the sustainability of agricultural systems. Part of a pesticide application usually reaches the soil, even if sprayed on the growing crop, and so may have an effect on organisms living in the soil. Therefore, it is important to study the possible effects of specific practices on soil properties. Such possibilities are of particular concern where pesticides are applied at high rates, repeatedly, over many years, as occurs in crops such as maize and cotton which often receive multiple applications of several pesticides during a single growing season. Soil is a dynamic living system with a variety of micro-and macro-flora and fauna including bacteria, actinomycetes, fungi, nematodes, arthropods, crustaceans and earthworms. They play a primary role in the degradation of plant and animal residues and other organic matter in the environment as well as in nitrogen fixation, nitrification and the release of nutrients from soil minerals [2]. Anything that affects their activities might affect the function of soils not only in crop production, but also in the global carbon and nitrogen cycles and in the removal of a range of environmental pollutants. The consequences could thus be serious. Hence the FAO Guidelines for the Registration and Control of Pesticides [3], which are followed by national registration schemes, require studies of the effects of candidate compounds on soil activities. This requirement has lead to considerable research on the impact of pesticides on soil and their fate and degradation following single applications for short periods. The observed effects have been minor and short lived [4] even for old compounds that were developed before the introduction of modern, rigorous registration procedures. However, little work has been reported on the effects of heavy, repeated and long term applications of pesticides on soil other than a UK study with four herbicides applied individually for 16 years which found no effects on soil properties and crop yield [5].
Recommended publications
  • Bmps) for Wildland Stewardship
    Best Management Practices (BMPs) for Wildland Stewardship Protecting Wildlife When Using Herbicides for Invasive Plant Management California Invasive Plant Council & Pesticide Research Institute ontrolling invasive plants is often a high priority when protecting wildlife habitat, and those working to protect Cwildlife from invasive plants want to be sure their approach is safe for wildlife. This manual of Best Management Practices focuses on how land managers can best protect wildlife when using herbicides to control invasive plants. While any invasive plant control method can potentially impact wildlife, chemical control methods are the focus of this report. The toxicology information presented shows data on herbicides most commonly used for invasive plant management in California natural areas. The Best Management Practices are drawn from methods used by experienced land managers. Along with providing guidance for land managers, this document is designed to inform the interested public about how herbicides are used to control invasive plants in natural areas. ©2015 California Invasive Plant Council Available at www.cal-ipc.org Cite this report as: Cal-IPC. 2015. Best Management Practices for Wildland Stewardship: Protecting Wildlife When Using Herbicides for Invasive Plant Management. Cal-IPC Publication 2015-1. California Invasive Plant Council, Berkeley, CA. Available: www.cal-ipc.org Cover photos: Large photo: American goldfinch by Gary Kramer, USFWS Top small photo: Herbicide applicator by Jim Dempsey, California State Parks Bottom small photo: Pacific tree frog by Sandy DeSimone, Audubon Starr Ranch Contents 1. Introduction . 1 Wildland Stewardship, Invasive Plant Management and Wildlife . 1 The Importance of Best Management Practices . 3 2. Invasive Plant Management and Wildlife .
    [Show full text]
  • Impact of Pesticide Use on Health in Developing Countries
    Impact of pesticide use on health in developing countries Proceedings of a symposium held in Ottawa, Canada, 1 7-20 September 1990 IDRC CRDI International Development Research Centre Centre de recherches pour le devetoppement international 1 March 1993 Dear Reader/Librarian, IDRC is a public corporation created by the Canadian parliament in 1970 to help developing countries find viable solutions to their problems through research. At the 1992 Earth Summit, IDRC's mandate was broadened to emphasize sustainable development issues. As part of IDRC's strengthened commitment to global action and harüony, we are pleased to send you a complimentary copy of our most recent publication: The impact of pesticide use on health in developing countries (March 1993, 352 pages, 0-88936-560-1, $17.95). The first part of this book presents a brief survey of the global situation and the results of twelve epidemiological studies carried out by researchers from Africa, Latin America, Asia and the Middle East. These focus on poisonings resulting from organophosphates, herbicides, and pyrethroids. The second part illustrates the role of the process of development, production, spraying techniques and legislation in protecting the health of workers. A discussion of the benefits and modalities of access to pertinent information for the prevention of pesticide poisonings is provided in the third section. Finally, in the fourth section, consideration is given to the advantages and disadvantages of certain alternatives to the use of synthetic pesticides in agriculture and public health, such as botanical pesticides and integrated pest management strategies. We hope this book is a valuable addition to your collection.
    [Show full text]
  • Consortium for International Crop Protection Pest Management & Related Environmental Protection Project*
    CONSORTIUM FOR INTERNATIONAL CROP PROTECTION PEST MANAGEMENT & RELATED ENVIRONMENTAL PROTECTION PROJECT* ANNUAL REPORT TO AGENCY FOR INTERNATIONAL DEVELOPMENT OCTOBER 1983 - SEPIEMBER 1984 Ray F. Smith, University of California, Executive Director Member Institutions: Cornell University North Carolina State University Oregon State University Texas A&M University University of California University of Florida University of Hawaii University of Illinois University of Maryland University of Miami, Florida University of Minnesota Purdue University University of Puerto Rico U. S. Department of Agriculture * Contract No. AID/DSAN-C-0252 Project No. 931-0930 TABLE OF CONTENTS Page Introduction .......................................................... 1 Response to USAID Mission Requests for Technical Assistance ....................................... 6 Sudan ............................................... 7 Niger .......... ............................ ..... ..... 20 Thailand ........ ............................ .... ..... 23 Bolivia......................... ................. 28 Ecuador .............................................. 31 Belize ......................................... 35 Caribbean................. ....................... 40 Kenya........................................... 51 Grenada ..... ..................................... 54 Mexico ........... ....... .................... .. 58 Program Evaluation or Design .......................................... 62 Cameroon .................................................... 63 Central
    [Show full text]
  • The Comparative Effects of Three Toxic Substances on Bluegill Behavior Mary Gerard Henry Iowa State University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 The comparative effects of three toxic substances on bluegill behavior Mary Gerard Henry Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons, and the Environmental Sciences Commons Recommended Citation Henry, Mary Gerard, "The ompc arative effects of three toxic substances on bluegill behavior " (1984). Retrospective Theses and Dissertations. 8996. https://lib.dr.iastate.edu/rtd/8996 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages.
    [Show full text]
  • Environmental Health Criteria 206 Methyl Tertiary-Butyl Ether -J
    INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY Environmental Health Criteria 206 Methyl tertiary-Butyl Ether -J. l \r LNTER-ORGAN1ZATON PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS I JiVJ A cooperative agreement among UNEP, ILO, FAO, WHO, UNIDO, UNITAR and OECD THE ENVIRONMENTAL HEALTH CRITERIA SERIES Acetaldehyde (No. 167, 1995) Chiorofluorocarbons, partially halogenated Acetonitrile (No. 154, 1993) (ethane derivatives) (No. 139, 1992) Acrolein (No. 127, 1991) (methane derivatives) (No. 126, 1991) Acrylamide (No. 49, 1985) Chloroform (No. 163, 1994) Acrylic acid (No. 191, 1997) Chlorophenols (No. 93, 1989) Acrylonitrile (No. 28, 1983) Chlorothalonil (No. 183, 1996) Aged population, principles for evaluating Chromium (No. 61, 1988) the effects of chemicals (No. 144, 1992) Chrysotile asbestos (No. 203, 1998) Aldicarb (No. 121, 1991) Copper (No. 200, 1998) Aldrin and dieldrin (No. 91, 1989) Cresols (No. 168, 1995) Allethrins (No. 87, 1989) Cyhalothrin (No. 99, 1990) Aluminium (No. 194, 1997) Cypermethrin (No. 82, 1989) Amitrole (No. 158, 1994) Cypermethrin, alpha- (No. 142, 1992) Ammonia (No. 54, 1986) DOT and its derivatives (No. 9, 1979) Anticoagulant rodenticides (No. 175, 1995) DOT and its derivatives - Arsenic (No. 18, 1981) environmental aspects (No, 83, 1989) Asbestos and other natural mineral fibres Deltamethrjn (No. 97, 1990) (No. 53, 1986) Demeton-S-methyl (No. 197, 1997) Barium (No. 107, 1990) Diaminotoluenes (No. 74, 1987) Benomyl (No. 148, 1993) Diazinon (No. 198, 1997) Benzene (No. 150, 1993) 1,2-Dibromoethane (No. 177, 1996) Beryllium (No. 106, 1990) Oi-n-butyl phthalate (No. 189, 1997) Biomarkers and risk assessment: concepts 1 ,2-Dichloroethane and principles (No. 155, 1993) (No. 62, 1987, 1St edition) Blotoxins, aquatic (marine and freshwater) (No.
    [Show full text]
  • Pesticide Toxicology, PPP-40
    PPP-40 PURDUE PESTICIDE PROGRAMS Purdue University Cooperative Extension Service PESTICIDE TOXICOLOGY Evaluating Safety and Risk Fred Whitford, Coordinator, Purdue Pesticide Programs Tom Fuhremann, Director of Agricultural Toxicology and Risk Assessment, Monsanto K.S. Rao, Global Product Registration Manager, Dow AgroSciences Gail Arce, Toxicologist, Elf Atochem James E. Klaunig, Professor and Director of Toxicology, Indiana University School of Medicine Edited by Arlene Blessing, Purdue Pesticide Programs TABLE OF CONTENTS PAGE Public Debate About Pesticides and Human Health ........................................................................ 3 The Science of Toxicology ................................................................................................................. 4 Pesticide and Animal Interaction ................................................................................................... 5 Effect of the Chemical on the Animal ............................................................................................6 Effect of the Animal on the Chemical ............................................................................................7 The Relationship Between Dose and Response .......................................................................... 10 Describing Adverse Toxicological Effects...................................................................................... 14 Animal Testing Crucial to Safety Evaluation ...................................................................................
    [Show full text]
  • Acknowledgements
    Acknowledgements We would like to thank those involved in creating Planning a Drift Catcher Project and Organizing a Drift Campaign, including: Jeff Conant from the Hesperian Foundation; Mateo Rutherford and Roy Rojas of BITTS for translation; Brenda J. Willoughby (Pesticide Action Network North America) for layout; and contributors Andrea Wilson and Tracey Brieger (Californians for Pesticide Reform) and Katherine Mills, Susan Kegley, Tanya Brown, Kelly Campbell and Christine Riordan (Pesticide Action Network North America). Major funding for this guide and development of the Drift Catcher was provided by the Cedar Tree Foundation. Additional support was provided by grants to Pesticide Action Network North America and/or Californians for Pesticide Reform by the Beldon Fund, The California Endowment, The California Wellness Foundation, Columbia Foundation, Nathan Cummings Foundation, David B. Gold Foundation, Richard and Rhoda Goldman Foundation, Clarence E. Heller Charitable Foundation, David H. Klein, Jr. Foundation and John Merck Fund. The authors bear responsibility for any factual errors. Recommendations and views expressed are those of Pesticide Action Network North America, and do not necessarily represent the views of our funders and supporters. © 2012 by Pesticide Action Network North America. Permission is granted to reproduce portions of this report, provided the title and publishing organizations—Pesticide Action Network and Californians for Pesticide Reform—are acknowledged. Our sincerest thanks to the Hesperian Foundation for providing many of the images used in these materials. Copyright © 2003 by the Hesperian Foundation. The Hesperian Foundation encourages others to copy, reproduce, or adapt to meet local needs any or all of this pamphlet provided that what is reproduced is distributed free or at cost—not for profit.
    [Show full text]
  • PESTICIDES Criteria for a Recommended Standard
    CRITERIA FOR A RECOMMENDED STANDARD OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES criteria for a recommended standard... OCCUPATIONAL EXPOSURE DURING THE MANUFACTURE AND FORMULATION OF PESTICIDES * U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health July 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DISCLAIMER Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health. DHEW (NIOSH) Publication No. 78-174 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and provide for the safety of workers occupationally exposed to an ever-increasing number of potential hazards. The National Institute for Occupational Safety and Health (NIOSH) has implemented a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the effects of exposure on health. The Secretary of Labor will weigh these recommendations along with other considerations, such as feasibility and means of implementation, in developing regulatory standards. Successive reports will be presented as research and epideiriologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of workers. The contributions to this document on pesticide manufacturing and formulating industries by NIOSH staff members, the review consultants, the reviewer selected by the American Conference of Governmental Industrial Hygienists (ACGIH), other Federal agencies, and by Robert B.
    [Show full text]
  • Carbaryl Human Health and Ecological Risk Assessment Revised Final Report
    SERA TR-052-01-05a Carbaryl Human Health and Ecological Risk Assessment Revised Final Report Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-06-0009 SERA Internal Task No. 52-01 Submitted by: Patrick R. Durkin and Cynthia King Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com February 9, 2008 Table of Contents Table of Contents............................................................................................................................ ii List of Figures................................................................................................................................. v List of Tables .................................................................................................................................. v List of Attachments........................................................................................................................ vi List of Appendices ......................................................................................................................... vi COMMON UNIT CONVERSIONS AND ABBREVIATIONS................................................... ix CONVERSION OF SCIENTIFIC NOTATION ............................................................................ x EXECUTIVE SUMMARY ..........................................................................................................
    [Show full text]
  • Spray Drift of Pesticides
    G1773 Spray Drift of Pesticides Robert N. Klein, Extension Cropping Systems Specialist; Larry Schulze, Extension Pesticide Education Specialist; and Clyde L. Ogg, Extension Pesticide Educator Table I. Effect of droplet size on drift potential (Ross and This NebGuide discusses conditions that cause Lembi, 1985) particle drift, and methods private and commercial applicators may employ to reduce drift potential from Diameter, microns Time to fall 10 feet in still air pesticide spray applications. 1 (Fog) 28 hours 10 (Fog) 17 minutes Spray drift of pesticides away from the target is an im­ 100 (Mist) 11 seconds portant and costly problem facing both commercial and private 200 (Fine Spray) 4 seconds applicators. Drift causes many problems including: 400 (Coarse Spray) 2 seconds 1,000 (Coarse Spray) 1 second 1) damage to susceptible off­target sites, 2) a lower rate than intended, which can reduce the ef­ fectiveness of the pesticide and waste pesticide and acting upon the emerging droplets. These forces — gravity money, and and air resistance — greatly influence the speed and move­ 3) environmental contamination, such as water pollution ment of spray droplets. and illegal pesticide residues. Droplet speed is reduced by air resistance, which breaks up the droplets. After their initial speed slows, the droplets Drift occurs by two methods; vapor drift and particle continue to fall under the gravitational pull. drift. This NebGuide focuses mainly on conditions that cause With lower boom heights, the initial speed may be great particle drift, and methods to reduce the drift potential of enough that the droplet reaches the target before drift occurs.
    [Show full text]
  • Country Situation on Persistent Organic Pollutants (Pops) in India
    3.7 International POPs Elimination Project Fostering Active and Efficient Civil Society Participation in Preparation for Implementation of the Stockholm Convention Country Situation on Persistent Organic Pollutants (POPs) in India Toxics Link India March 2006 H-2 (Ground Floor), Jungpura Extension New Delhi 110014, INDIA T: +91-(0)11-24328006, 24320711 F: +91-(0)11-24321747 E: [email protected] I: www.toxicslink.org About the International POPs Elimination Project On May 1, 2004, the International POPs Elimination Network (IPEN http://www.ipen.org) began a global NGO project called the International POPs Elimination Project (IPEP) in partnership with the United Nations Industrial Development Organization (UNIDO) and the United Nations Environment Program (UNEP). The Global Environment Facility (GEF) provided core funding for the project. IPEP has three principal objectives: • Encourage and enable NGOs in 40 developing and transitional countries to engage in activities that provide concrete and immediate contributions to country efforts in preparing for the implementation of the Stockholm Convention; • Enhance the skills and knowledge of NGOs to help build their capacity as effective stakeholders in the Convention implementation process; • Help establish regional and national NGO coordination and capacity in all regions of the world in support of longer term efforts to achieve chemical safety. IPEP will support preparation of reports on country situation, hotspots, policy briefs, and regional activities. Three principal types of activities
    [Show full text]
  • Research on Pest Control and Pesticide Reduction in Sweden, Denmark and the Netherlands
    Research on pest control and pesticide reduction in Sweden, Denmark and the Netherlands - ongoing work and new ideas for the future Fredrik Fogelberg Dept. Agricultural Engineering Swedish University of Agricultural Sciences 2001 Contents Introduction 5 Aims and limitations of the report 5 What's the problem ? 5 Pesticide use in Sweden 6 Insecticides 6 Fungicides 6 Herbicides 7 Agriculture without pesticides - a possible future ? 7 Alternatives to conventional insecticides 8 Fungi control without conventional fungicides 9 Non-chemical weed control 9 Mechanical methods 10 Weed harrowing 10 Row cultivation 10 In-row weeding 10 Thermal weed control 11 Freezing 11 Flame weeding 11 Hot water 11 Steam 12 Electromagnetic methods 12 Electricity and electroporation 12 Microwave radiation 13 Laser 13 UV-light 14 Other techniques for weed control 14 Watercutting 14 Solrization 14 Cropping techniques 15 Allelopathy 15 Pesticide research in some European countries 16 Sweden 16 Denmark 18 The Netherlands 19 Can pesticides be reduced in future agriculture ? 22 Strategies for pesticide reduction 22 New techniques for future agriculture 23 Recommendations for future research 24 Near future (1-5 years) 24 In the longer perspective (5-10 years) 25 Concluding remarks 25 References 26 Personal Communication 31 Introduction During the last decade society has experienced a growing interest in organic farming partly due to the public debate about environmental degradation and contamination of soil and water. The drawbacks with pesticide use has been recognised and a wide range of projects have been initiated to identify and minimise the negative impact of pesticides (eg Kreuger, 1999). Representatives from science and society have pointed out that a sustainable development of the society and particular the agricultural sector, cannot be based on use of high amounts of agrochemicals.
    [Show full text]