Challenges in Integrated Pest Management for Massachusetts Cranberry Production: a Historical Perspective to Inform the Future

Total Page:16

File Type:pdf, Size:1020Kb

Challenges in Integrated Pest Management for Massachusetts Cranberry Production: a Historical Perspective to Inform the Future In: Crop Protection Research Advances ISBN: 978-1-60456-040-4 Editors: E. N. Burton and P. V. Williams © 2008 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 1 CHALLENGES IN INTEGRATED PEST MANAGEMENT FOR MASSACHUSETTS CRANBERRY PRODUCTION: A HISTORICAL PERSPECTIVE TO INFORM THE FUTURE Hilary A. Sandler UMass-Amherst Cranberry Station, P.O. Box 569, East Wareham, MA 02538 ABSTRACT Integrated pest management (IPM) was formally introduced to the cranberry industry in 1983 through support of a scouting program by the University of Massachusetts- Amherst. In that year, 6.5 ha of commercial cranberry were scouted by an IPM specialist. IPM has been successfully adopted by cranberry growers. In 2007, estimates indicate private consultants, company personnel, and individual growers combine to scout more than 80% of Massachusetts’ cranberries (>4,050 ha). During the past 25 years, IPM has come to mean much more than simply sweep netting for insect pests and installing pheromone traps. Successful modern cranberry growers must have a working knowledge of insect biology, weed ecology, plant physiology, and disease life cycles. They must know how to apply products with novel chemistry, have proficiency with several pesticide-delivery systems, integrate traditional cultural practices into modern horticulture, select new varieties, cost-effectively renovate out-dated farms, and adjust to the pressures stemming from the encroachment of urbanization. In the 1980’s and 1990’s, growers primarily determined their response to reaching economic and action thresholds based on the current price of cranberry and the cost of the product they had chosen to apply. Over the past few years, the decision tree has changed. Growers must truly weigh their chosen management strategies in terms of social and environmental costs in addition to the simple economics of product and commodity price. Research by scientists at the UMass Cranberry Station, in collaboration with their colleagues across North America, has been addressing the current and future needs of the cranberry industry. This paper describes the history of IPM in Massachusetts, the challenges of managing a dynamic and 22 Hilary A. Sandler expansive pest complex in a suburbanized environment, and the research that has supported and promoted sustainable cranberry production in Massachusetts. OVERVIEW The American cranberry (Vaccinium macrocarpon Ait.) is one of three fruits native to North America. Cranberry production has a long history in Massachusetts, and the state is considered to be the birthplace of the industry. Cranberries are found in peat bogs and the sand dune swales of Cape Cod, Nantucket, Martha’s Vineyard and Southeastern Massachusetts. Although Captain Henry Hall of Cape Cod is acknowledged as the first to successfully cultivate cranberries (ca. 1810), native Indians had already incorporated the cranberry into their culture, recognizing its nutritional value as well as its usefulness as a dye long before the first European settlers arrived [Eck 1990]. The majority of U.S. cranberries are produced in Massachusetts, Wisconsin, New Jersey, Oregon and Washington; the contributions of Quebec, British Columbia, and the Atlantic Maritime Provinces comprise the substantial remainder of the North American production. Recent assessments estimate that there are approximately 16,200 producing hectares in the U.S. [Farrimond 2005] and about 4,000 hectares in the Canadian provinces (S. Fitzpatrick and K. MacKenzie, pers. comm.). Historically, Massachusetts had the greatest number of hectares and the greatest production in North America. However, as Massachusetts’ holdings have remained basically stable (ca. 5,670 ha) since the early 1900’s [Mason 1926], Wisconsin’s properties have increased from 4,050 to 7,050 hectares (74%) during the years 1992 to 2004. Due to the industry’s high production efficiency and low pest pressure, Wisconsin currently produces more than half of the total U.S. cranberry crop [Farrimond 2005]. Contributions to cranberry research have been made by scientists from every growing region. However, one of the earliest horticultural bulletins and research publications was written by a plant pathologist working in the United States [Shear 1907]. Many scientists were affiliated with universities and some worked with the United States Department of Agriculture (USDA). H.F. Bergman, who worked at the UMass Cranberry Station, provided early research on various responses of cranberry to flooding [Bergman 1921; Bergman 1925]. C.S. Beckwith, who worked for Rutgers University in New Jersey, produced an illustrated text on weeds of the cranberry farm [Beckwith and Fiske 1925] and a bulletin on an insect- vectored disease [Beckwith and Hutton 1929]. C.L. Shear, N.E. Stevens, and H.F. Bain were USDA pathologists who collaborated to write a classic treatise on cranberry diseases [Shear et al. 1931]. E.L. Eaton and I.V. Hall worked in Nova Scotia [Eaton 1957; Hall 1959] and G.W. Eaton, from the University of British Columbia, produced well-referenced papers on reproductive traits and yield components [Eaton 1978; Eaton and Kyte 1978]. The most definitive historical works on insects were authored by H. J. Franklin, the first director of the UMass Cranberry Station [Franklin 1948; Franklin 1951]. Franklin wrote during the time of rapid development of new chemistries for pesticides and his writings do include discussions of chemical management. Franklin was a keen observer of insect behavior. Many of his observations relating to cultural practices and water management of insects provide insights and support for current cranberry pest management [Franklin and Cross 1948; Franklin 1951]. Through his writings, Franklin provided the baseline knowledge and research for the development of the integrated management of cranberry insects. Challenges in Integrated Pest Management for Massachusetts Cranberry… 23 In the same decade as the publication of Franklin’s pioneering observations, the term integrated control was defined by B.R. Bartlett in 1956 as the blending of biological control agents with chemical controls [Metcalf and Luckman 1975]. Since then, IPM has been described as an ecological approach to pest control, based upon sound biological knowledge and principles [Metcalf and Luckman 1975] and the intelligent selection and use of pest control actions that will ensure favorable economic, ecological, and sociological consequences [Rabb 1972]. The philosophy of IPM hinges upon the integration of biological, cultural, and chemical control practices to manage pest problems. As in many other commodities, an integrated approach to cranberry pest management is based upon dynamic principles rather than a definitive set of rules for control of a particular pest situation. In Massachusetts cranberry production, IPM involves pest monitoring by using sweep nets, pheromone traps, and visual inspection. Cultural, chemical, and biological control strategies are used to develop a broad-based approach to controlling the most economically threatening pests. Cultural practices, such as flooding, the application of a thin layer of sand, and the use of resistant varieties, can reduce the severity of a pest problem. Pesticides remain a vital part of cranberry IPM programs, tempered by their compatibility with other control measures and their consistency with IPM philosophy. Although economical and logistical constraints often hamper wide-scale adoption, biological controls can be successfully utilized to manage pests in specific situations [Mahr 1999]. Historically, many cranberry farmers who used IPM could reduce the number of spray applications made in a growing season. More recently, applications of broad-spectrum organophosphates have declined and the use of target-specific, reduced risk compounds has become more prevalent. To achieve efficacy with these newer chemicals, multiple applications are often needed. Thus, the traditional benchmark of success in IPM - reduction in the number of pesticide applications - is no longer appropriate. Success in cranberry IPM in the 21st century will likely be measured by such parameters as seasonal and long-term reduction in pest pressure and damage, promotion of sustainable vine health and crop yield performance, and promotion of environmental stewardship. THE MASSACHUSETTS CRANBERRY INDUSTRY To be competitive in the global market, cranberry growers and manufacturers must produce fruit and processed products that meet or exceed national and international quality standards. Consistently harvesting saleable crops depends upon managing pest damage to vines and fruit. To appreciate the history and the challenges of pest management in the cranberry industry, a brief description of cranberry production and cranberry culture in Massachusetts is provided here. Cranberries are low-growing evergreen perennial vines that typically grow in acidic peat soils, often with a water table that is
Recommended publications
  • Bmps) for Wildland Stewardship
    Best Management Practices (BMPs) for Wildland Stewardship Protecting Wildlife When Using Herbicides for Invasive Plant Management California Invasive Plant Council & Pesticide Research Institute ontrolling invasive plants is often a high priority when protecting wildlife habitat, and those working to protect Cwildlife from invasive plants want to be sure their approach is safe for wildlife. This manual of Best Management Practices focuses on how land managers can best protect wildlife when using herbicides to control invasive plants. While any invasive plant control method can potentially impact wildlife, chemical control methods are the focus of this report. The toxicology information presented shows data on herbicides most commonly used for invasive plant management in California natural areas. The Best Management Practices are drawn from methods used by experienced land managers. Along with providing guidance for land managers, this document is designed to inform the interested public about how herbicides are used to control invasive plants in natural areas. ©2015 California Invasive Plant Council Available at www.cal-ipc.org Cite this report as: Cal-IPC. 2015. Best Management Practices for Wildland Stewardship: Protecting Wildlife When Using Herbicides for Invasive Plant Management. Cal-IPC Publication 2015-1. California Invasive Plant Council, Berkeley, CA. Available: www.cal-ipc.org Cover photos: Large photo: American goldfinch by Gary Kramer, USFWS Top small photo: Herbicide applicator by Jim Dempsey, California State Parks Bottom small photo: Pacific tree frog by Sandy DeSimone, Audubon Starr Ranch Contents 1. Introduction . 1 Wildland Stewardship, Invasive Plant Management and Wildlife . 1 The Importance of Best Management Practices . 3 2. Invasive Plant Management and Wildlife .
    [Show full text]
  • Impact of Pesticide Use on Health in Developing Countries
    Impact of pesticide use on health in developing countries Proceedings of a symposium held in Ottawa, Canada, 1 7-20 September 1990 IDRC CRDI International Development Research Centre Centre de recherches pour le devetoppement international 1 March 1993 Dear Reader/Librarian, IDRC is a public corporation created by the Canadian parliament in 1970 to help developing countries find viable solutions to their problems through research. At the 1992 Earth Summit, IDRC's mandate was broadened to emphasize sustainable development issues. As part of IDRC's strengthened commitment to global action and harüony, we are pleased to send you a complimentary copy of our most recent publication: The impact of pesticide use on health in developing countries (March 1993, 352 pages, 0-88936-560-1, $17.95). The first part of this book presents a brief survey of the global situation and the results of twelve epidemiological studies carried out by researchers from Africa, Latin America, Asia and the Middle East. These focus on poisonings resulting from organophosphates, herbicides, and pyrethroids. The second part illustrates the role of the process of development, production, spraying techniques and legislation in protecting the health of workers. A discussion of the benefits and modalities of access to pertinent information for the prevention of pesticide poisonings is provided in the third section. Finally, in the fourth section, consideration is given to the advantages and disadvantages of certain alternatives to the use of synthetic pesticides in agriculture and public health, such as botanical pesticides and integrated pest management strategies. We hope this book is a valuable addition to your collection.
    [Show full text]
  • Consortium for International Crop Protection Pest Management & Related Environmental Protection Project*
    CONSORTIUM FOR INTERNATIONAL CROP PROTECTION PEST MANAGEMENT & RELATED ENVIRONMENTAL PROTECTION PROJECT* ANNUAL REPORT TO AGENCY FOR INTERNATIONAL DEVELOPMENT OCTOBER 1983 - SEPIEMBER 1984 Ray F. Smith, University of California, Executive Director Member Institutions: Cornell University North Carolina State University Oregon State University Texas A&M University University of California University of Florida University of Hawaii University of Illinois University of Maryland University of Miami, Florida University of Minnesota Purdue University University of Puerto Rico U. S. Department of Agriculture * Contract No. AID/DSAN-C-0252 Project No. 931-0930 TABLE OF CONTENTS Page Introduction .......................................................... 1 Response to USAID Mission Requests for Technical Assistance ....................................... 6 Sudan ............................................... 7 Niger .......... ............................ ..... ..... 20 Thailand ........ ............................ .... ..... 23 Bolivia......................... ................. 28 Ecuador .............................................. 31 Belize ......................................... 35 Caribbean................. ....................... 40 Kenya........................................... 51 Grenada ..... ..................................... 54 Mexico ........... ....... .................... .. 58 Program Evaluation or Design .......................................... 62 Cameroon .................................................... 63 Central
    [Show full text]
  • Pesticide Toxicology, PPP-40
    PPP-40 PURDUE PESTICIDE PROGRAMS Purdue University Cooperative Extension Service PESTICIDE TOXICOLOGY Evaluating Safety and Risk Fred Whitford, Coordinator, Purdue Pesticide Programs Tom Fuhremann, Director of Agricultural Toxicology and Risk Assessment, Monsanto K.S. Rao, Global Product Registration Manager, Dow AgroSciences Gail Arce, Toxicologist, Elf Atochem James E. Klaunig, Professor and Director of Toxicology, Indiana University School of Medicine Edited by Arlene Blessing, Purdue Pesticide Programs TABLE OF CONTENTS PAGE Public Debate About Pesticides and Human Health ........................................................................ 3 The Science of Toxicology ................................................................................................................. 4 Pesticide and Animal Interaction ................................................................................................... 5 Effect of the Chemical on the Animal ............................................................................................6 Effect of the Animal on the Chemical ............................................................................................7 The Relationship Between Dose and Response .......................................................................... 10 Describing Adverse Toxicological Effects...................................................................................... 14 Animal Testing Crucial to Safety Evaluation ...................................................................................
    [Show full text]
  • Acknowledgements
    Acknowledgements We would like to thank those involved in creating Planning a Drift Catcher Project and Organizing a Drift Campaign, including: Jeff Conant from the Hesperian Foundation; Mateo Rutherford and Roy Rojas of BITTS for translation; Brenda J. Willoughby (Pesticide Action Network North America) for layout; and contributors Andrea Wilson and Tracey Brieger (Californians for Pesticide Reform) and Katherine Mills, Susan Kegley, Tanya Brown, Kelly Campbell and Christine Riordan (Pesticide Action Network North America). Major funding for this guide and development of the Drift Catcher was provided by the Cedar Tree Foundation. Additional support was provided by grants to Pesticide Action Network North America and/or Californians for Pesticide Reform by the Beldon Fund, The California Endowment, The California Wellness Foundation, Columbia Foundation, Nathan Cummings Foundation, David B. Gold Foundation, Richard and Rhoda Goldman Foundation, Clarence E. Heller Charitable Foundation, David H. Klein, Jr. Foundation and John Merck Fund. The authors bear responsibility for any factual errors. Recommendations and views expressed are those of Pesticide Action Network North America, and do not necessarily represent the views of our funders and supporters. © 2012 by Pesticide Action Network North America. Permission is granted to reproduce portions of this report, provided the title and publishing organizations—Pesticide Action Network and Californians for Pesticide Reform—are acknowledged. Our sincerest thanks to the Hesperian Foundation for providing many of the images used in these materials. Copyright © 2003 by the Hesperian Foundation. The Hesperian Foundation encourages others to copy, reproduce, or adapt to meet local needs any or all of this pamphlet provided that what is reproduced is distributed free or at cost—not for profit.
    [Show full text]
  • Carbaryl Human Health and Ecological Risk Assessment Revised Final Report
    SERA TR-052-01-05a Carbaryl Human Health and Ecological Risk Assessment Revised Final Report Submitted to: Paul Mistretta, COR USDA/Forest Service, Southern Region 1720 Peachtree RD, NW Atlanta, Georgia 30309 USDA Forest Service Contract: AG-3187-C-06-0010 USDA Forest Order Number: AG-43ZP-D-06-0009 SERA Internal Task No. 52-01 Submitted by: Patrick R. Durkin and Cynthia King Syracuse Environmental Research Associates, Inc. 5100 Highbridge St., 42C Fayetteville, New York 13066-0950 Fax: (315) 637-0445 E-Mail: [email protected] Home Page: www.sera-inc.com February 9, 2008 Table of Contents Table of Contents............................................................................................................................ ii List of Figures................................................................................................................................. v List of Tables .................................................................................................................................. v List of Attachments........................................................................................................................ vi List of Appendices ......................................................................................................................... vi COMMON UNIT CONVERSIONS AND ABBREVIATIONS................................................... ix CONVERSION OF SCIENTIFIC NOTATION ............................................................................ x EXECUTIVE SUMMARY ..........................................................................................................
    [Show full text]
  • Spray Drift of Pesticides
    G1773 Spray Drift of Pesticides Robert N. Klein, Extension Cropping Systems Specialist; Larry Schulze, Extension Pesticide Education Specialist; and Clyde L. Ogg, Extension Pesticide Educator Table I. Effect of droplet size on drift potential (Ross and This NebGuide discusses conditions that cause Lembi, 1985) particle drift, and methods private and commercial applicators may employ to reduce drift potential from Diameter, microns Time to fall 10 feet in still air pesticide spray applications. 1 (Fog) 28 hours 10 (Fog) 17 minutes Spray drift of pesticides away from the target is an im­ 100 (Mist) 11 seconds portant and costly problem facing both commercial and private 200 (Fine Spray) 4 seconds applicators. Drift causes many problems including: 400 (Coarse Spray) 2 seconds 1,000 (Coarse Spray) 1 second 1) damage to susceptible off­target sites, 2) a lower rate than intended, which can reduce the ef­ fectiveness of the pesticide and waste pesticide and acting upon the emerging droplets. These forces — gravity money, and and air resistance — greatly influence the speed and move­ 3) environmental contamination, such as water pollution ment of spray droplets. and illegal pesticide residues. Droplet speed is reduced by air resistance, which breaks up the droplets. After their initial speed slows, the droplets Drift occurs by two methods; vapor drift and particle continue to fall under the gravitational pull. drift. This NebGuide focuses mainly on conditions that cause With lower boom heights, the initial speed may be great particle drift, and methods to reduce the drift potential of enough that the droplet reaches the target before drift occurs.
    [Show full text]
  • Country Situation on Persistent Organic Pollutants (Pops) in India
    3.7 International POPs Elimination Project Fostering Active and Efficient Civil Society Participation in Preparation for Implementation of the Stockholm Convention Country Situation on Persistent Organic Pollutants (POPs) in India Toxics Link India March 2006 H-2 (Ground Floor), Jungpura Extension New Delhi 110014, INDIA T: +91-(0)11-24328006, 24320711 F: +91-(0)11-24321747 E: [email protected] I: www.toxicslink.org About the International POPs Elimination Project On May 1, 2004, the International POPs Elimination Network (IPEN http://www.ipen.org) began a global NGO project called the International POPs Elimination Project (IPEP) in partnership with the United Nations Industrial Development Organization (UNIDO) and the United Nations Environment Program (UNEP). The Global Environment Facility (GEF) provided core funding for the project. IPEP has three principal objectives: • Encourage and enable NGOs in 40 developing and transitional countries to engage in activities that provide concrete and immediate contributions to country efforts in preparing for the implementation of the Stockholm Convention; • Enhance the skills and knowledge of NGOs to help build their capacity as effective stakeholders in the Convention implementation process; • Help establish regional and national NGO coordination and capacity in all regions of the world in support of longer term efforts to achieve chemical safety. IPEP will support preparation of reports on country situation, hotspots, policy briefs, and regional activities. Three principal types of activities
    [Show full text]
  • Research on Pest Control and Pesticide Reduction in Sweden, Denmark and the Netherlands
    Research on pest control and pesticide reduction in Sweden, Denmark and the Netherlands - ongoing work and new ideas for the future Fredrik Fogelberg Dept. Agricultural Engineering Swedish University of Agricultural Sciences 2001 Contents Introduction 5 Aims and limitations of the report 5 What's the problem ? 5 Pesticide use in Sweden 6 Insecticides 6 Fungicides 6 Herbicides 7 Agriculture without pesticides - a possible future ? 7 Alternatives to conventional insecticides 8 Fungi control without conventional fungicides 9 Non-chemical weed control 9 Mechanical methods 10 Weed harrowing 10 Row cultivation 10 In-row weeding 10 Thermal weed control 11 Freezing 11 Flame weeding 11 Hot water 11 Steam 12 Electromagnetic methods 12 Electricity and electroporation 12 Microwave radiation 13 Laser 13 UV-light 14 Other techniques for weed control 14 Watercutting 14 Solrization 14 Cropping techniques 15 Allelopathy 15 Pesticide research in some European countries 16 Sweden 16 Denmark 18 The Netherlands 19 Can pesticides be reduced in future agriculture ? 22 Strategies for pesticide reduction 22 New techniques for future agriculture 23 Recommendations for future research 24 Near future (1-5 years) 24 In the longer perspective (5-10 years) 25 Concluding remarks 25 References 26 Personal Communication 31 Introduction During the last decade society has experienced a growing interest in organic farming partly due to the public debate about environmental degradation and contamination of soil and water. The drawbacks with pesticide use has been recognised and a wide range of projects have been initiated to identify and minimise the negative impact of pesticides (eg Kreuger, 1999). Representatives from science and society have pointed out that a sustainable development of the society and particular the agricultural sector, cannot be based on use of high amounts of agrochemicals.
    [Show full text]
  • Radiotracer Studies of Fungicide Residues in Food Plants Iaea, Vienna, 1990 Iaea-Tecdoc-554 Issn 1011-4289
    IAEA-TECDOC-554 RADIOTRACER STUDIES OF FUNGICIDE RESIDUES FOON I D PUNTS PROCEEDING FINAA F SO L RESEARCH CO-ORDINATION MEETING ORGANIZED BY THE JOINT FAO/IAEA DIVISION OF NUCLEAR TECHNIQUES IN FOOD AND AGRICULTURE AND HEL ANKARADN I , 13-17 MARCH 1989 ATECHNICAL DOCUMENT ISSUED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1989 RADIOTRACER STUDIES OF FUNGICIDE RESIDUES IN FOOD PLANTS IAEA, VIENNA, 1990 IAEA-TECDOC-554 ISSN 1011-4289 Printe IAEe th Austrin Ay i d b a April 1990 The IAEA does not normally maintain stocks of reports in this series. However, microfiche copie f thesso e reportobtainee b n sca d from INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse5 0 10 P.Ox Bo . A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons orderee whicb y hdma separately fro e INImth S Clearinghouse. FOREWORD Growing world population and food demand have dictated the introduction of intensive agricultural practice n increasina sf o involvin e us g e rangth g e of pesticide chemicals considerabla o t d . le Thi s seha increas foon ei d crop production. However, wit e increasinhth agriculturaf o e gus l chemicaln so crops, there is a major concern from a toxicological standpoint. Such use must not result in the retention of appreciable (and potentially toxic) residue foon so d products. Even when pesticid e conformeus currentlo st y adopted standards of good management practice, undesirable side effects may occu d couldan r timest ,a , conceivably endanger public health o ensurT .
    [Show full text]
  • Proceedings Iomc
    UNITED NATIONS ENVIRONMENT PROGRAMME Chemicals PROCEEDINGS of the Regional Workshop on the Management of Persistent Organic Pollutants (POPs) Hanoi, Vietnam, 16-19 March 1999 INTER-ORGANIZATION PROGRAMME FOR THE SOUND MANAGEMENT OF CHEMICALS IOMC A cooperative agreement among UNEP, ILO, FAO, WHO, UNIDO, UNITAR and OECD PROCEEDINGS of the Regional Workshop on the Management of Persistent Organic Pollutants (POPs) Hanoi, Vietnam, 16-19 March 1999 CONTENTS Introduction................................................................................................................................1 Programme of the Meeting.........................................................................................................2 List of Participants......................................................................................................................9 Working Group 1 Report..........................................................................................................23 Working Group 2 Report..........................................................................................................25 Dr. Pham Khoi Nguyen, Vice-Minister, MOSTE, Vietnam Opening Statement....................................................................................................................29 Presentations 1. Mr. J. Willis, Director, UNEP/Chemicals, Switzerland Global Action on POPs: Objectives and Strategy......................................................31 2. Mr. J. Willis, Director, UNEP/Chemicals, Switzerland Progress in
    [Show full text]
  • Persistence of Chlorpyrifos and Fenpropathrin Alone and in Combination with Fertilizers in Soil and Their Effect on Soil Microbes
    Pak. J. Bot., 36(4): 863-870, 2004. PERSISTENCE OF CHLORPYRIFOS AND FENPROPATHRIN ALONE AND IN COMBINATION WITH FERTILIZERS IN SOIL AND THEIR EFFECT ON SOIL MICROBES SHAHIDA AKHTAR, SYEDA TALAT SHAHEEN GILANI AND NUSRAT HASAN Pesticide Research Institute, Southern-Zone Agricultural Research Centre, Pakistan Agricultural Research Council, Karachi University Campus, Karachi-75270, Pakistan Abstract The study was designed to determine the persistence of chlorpyrifos (an organophosphate) and fenpropathrin (pyrethroid) pesticide alone and in combination with synthetic fertilizers viz., Urea, DAP, SOP and Foliar fertilizer Polydol with tap/hard water. All the fertilizers were added @ 1% to the soil collected from vegetable growing area of Memon Goth, Karachi and insecticide fortification was done @ 100 ppm and 1000 ppm. Results indicated that the addition of fertilizers had no effect on the persistence of OP and pyrethroid pesticides. Similarly, the changes observed in the pH both with tap and hard water had no effect on the persistence. The 2-months study showed 100% persistence of both the pesticides. Introduction Pesticide formulations, mostly organic in nature, are likely to be degraded after application to plant/soil. The degradation/persistence of pesticide formulations depends upon a number of variables like temperature, moisture, acidity, adjuvants and structure of the compounds etc. Due to the introduction of high yielding varieties and new technologies, the soil is continuously being depleted in major nutrients as well as trace elements. To overcome this deficiency, chemical fertilizers are applied along with pesticide formulations if they are compatible and advantageous. Widespread use of pesticides over the past 30 years has resulted in the imbalance of the natural biological system, (Agnihotri et al., 1981).
    [Show full text]