Biased S1PR1 Signaling in B Cells Subverts Responses To

Total Page:16

File Type:pdf, Size:1020Kb

Biased S1PR1 Signaling in B Cells Subverts Responses To Biased S1PR1 Signaling in B Cells Subverts Responses to Homeostatic Chemokines, Severely Disorganizing Lymphoid Organ Architecture This information is current as of October 3, 2021. Il-Young Hwang, Chung Park, Kathleen Harrison and John H. Kehrl J Immunol published online 23 September 2019 http://www.jimmunol.org/content/early/2019/09/20/jimmun ol.1900678 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/09/20/jimmunol.190067 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 3, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 23, 2019, doi:10.4049/jimmunol.1900678 The Journal of Immunology Biased S1PR1 Signaling in B Cells Subverts Responses to Homeostatic Chemokines, Severely Disorganizing Lymphoid Organ Architecture Il-Young Hwang, Chung Park, Kathleen Harrison, and John H. Kehrl Ligand-engaged chemoattractant receptors trigger Gai subunit nucleotide exchange, stimulating the activation of downstream effector molecules. Activated chemoattractant receptors also dock G protein–coupled receptor kinases (GRKs) that help mediate receptor desensitization. In this study, we show that the B cell–specific loss of GRK2 severely disrupts B cell trafficking and immune cell homeostasis. The GRK2 deficiency in developing murine B cells leads to a severe immune phenotype, including a major reduction of bone marrow IgD+ cells, splenomegaly with a loss of white pulp and grossly expanded red pulp, a deficit of Peyer patches, and small lymph nodes with marked reductions in B cell numbers. The major phenotypes in these mice arise from excessive S1PR1 signaling combined with inadequate homeostatic chemokine receptor signaling. CXCL13 signaling is the most Downloaded from severely compromised. In B cells, our data also indicate that S1PR1 signals constitutively, as blocking S1PR1 signaling with an S1PR1 antagonist enhanced CXCL13-triggered wild-type B cell migration. Furthermore, blocking S1PR1 signaling in the GRK2-deficient B cells partially corrected their poor response to chemokines. Treating mice lacking GRK2 expression in their B cells with an S1PR1 antagonist partially normalized B cell trafficking into lymph node and splenic follicles. These findings reveal the critical interdependence of Gai-linked signaling pathways in controlling B lymphocyte trafficking. The Journal of Immunology, 2019, 203: 000–000. http://www.jimmunol.org/ n array of chemoattractant receptors modulates the Activated G protein–coupled receptors (GPCRs) also recruit positioning and trafficking of B lymphocytes (1–3). GPCR kinases (GRKs). They are proposed to dock the 20-aa A Each of these receptors use Gai proteins to activate N-terminal a helix of GRKs much like they bind the C-terminal downstream effector molecules (4, 5). Mice whose lymphocytes a5 helix of the Ga subunit of GDP-bound heterotrimeric G pro- lack Gai2 and Gai3 proteins or that possess Gai proteins un- teins (8). Consequently, GRKs and heterotrimeric G proteins able to interact with regulator of G protein–signaling proteins compete for the same site on the activated receptor. Typically, G exhibit severe defects in chemoattractant receptor signaling protein binding precludes GRK binding and vice versa. However, by guest on October 3, 2021 and in the organization of B cell compartments (5, 6). By specific receptor conformations may favor the binding of one adopting an active conformation ligand, engaged receptors protein versus the other. Structural studies indicate that activated recruit heterotrimeric G proteins (7). The activated receptor GPCRs adopt a dynamic conformational landscape rather a sin- opens a cleft between the helical and ras domains in the Gai gle “active” conformation (7). Based on the structural analysis subunit, which facilitates GDP release, allowing GTP to bind. of GRK5/b2–adrenergic receptors interactions, receptor docking The GTP-bound Gai and -freed Gbg subunits can then stimulate causes a GRK conformation change reorienting the catalytic do- the activity of downstream effector molecules. Precise regulation main increasing catalytic activity (9). This contrasts with most of Gbg– and GTP–Gai signaling coordinate an assortment of other protein kinases, whose catalytic activity depends upon a post- signaling pathways that enable B cell integrin activation and di- translational modification such as phosphorylation. Once recruited rected migration. and activated, GRKs phosphorylate GPCRs, typically on their C-terminal serine/threonine residues. An activated, phosphory- lated receptor becomes a target for b-arrestins, whose recruitment B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, leads to receptor desensitization and receptor endocytosis. Fol- MD 20892 lowing endocytosis, the receptor is degraded or recycles to the ORCIDs: 0000-0002-7819-5333 (C.P.); 0000-0002-6526-159X (J.H.K.). plasma membrane (10). Received for publication June 18, 2019. Accepted for publication August 29, 2019. The GRKs are the serine/threonine protein kinases most related This work was supported by an intramural program of the National Institute of to the AGC kinase subfamily (8). They have a central catalytic Allergy and Infectious Disease. domain located within a regulator of G protein–signaling homology I.-Y.H. designed and performed the experiments, helped analyze the data; C.P. did the (RH) domain, which is flanked by a short N-terminal a-helical intravital imaging and confocal microscopy; K.H. managed the mice and helped with domain and a variable C-terminal lipid-binding region. Among the the experiments; J.H.K. conceived the experiments, helped in data analysis, and wrote the manuscript. seven mammalian GRKs, Grk2 and Grk6 are most prominently Address correspondence and reprint requests to Dr. John H. Kehrl, Laboratory of expressed in lymphocytes (http://www.immgen.org/databrowser/ Immunoregulation, National Institute of Allergy and Infectious Diseases, National index.html). Linking heterotrimeric G protein signaling to GRK2 Institutes of Health, Building 10, Room 6A01, 10 Center Drive, MSC 1876, regulation, the C-terminal lipid-binding domain in GRK2 (PH Bethesda, MD 20892. E-mail address: [email protected] domain) allows Gbg subunits to recruit GRK2 to the plasma mem- The online version of this article contains supplemental material. brane. In contrast, GRK6 undergoes C-terminal palmitoylation to Abbreviations used in this article: FO, follicular; GPCR, G protein–coupled receptor; GRK, GPCR kinase; HEV, high endothelial venule; KO, knockout; LN, lymph node; mediate membrane localization (11, 12). A limited immune pheno- MZ, marginal zone; S1P, sphingosine-1-phosphate; T, transitional-type; WT, wild-type. typing of Grk6-deficient mice revealed normal B cell chemotaxis to www.jimmunol.org/cgi/doi/10.4049/jimmunol.1900678 2 GRK2-DEFICIENT B CELLS CXCL12 but reduced transendothelial migration (13). Whereas Beads (Thermo Fisher Scientific) individually stained with each fluorochrome. GRK2 deficiency causes embryonic lethality, an analysis of mice Compensation matrices were calculated with FACSDiva software. Data with conditional deletion of Grk2 in B or T lymphocytes has been acquisition was done on FACSCanto II (BD Biosciences) flow cytometer and analyzed with FlowJo software version 9.9.6 (Treestar). reported (14). Follicular (FO) B cells from these mice resisted sphingosine-1-phospate (S1P) R1 desensitization, migrated better S1PR1 immunostaining, internalization, and recovery to S1P in standard chemotaxis assays, but entered lymph nodes For the S1PR1 immunostaining, cells were fixed in 2% paraformaldehyde (LNs) poorly. The S1PR1 receptors on marginal zone (MZ) B cells for 10 min, washed, and stained with S1PR1-PE, which is directed against also resisted desensitization, which impaired MZ B cell shuttling. an external S1PR1 epitope (R & D Systems). To assess S1PR1 internali- In contrast, CXCR4 and CXCR5 signaling was reported as not zation, the splenocytes were rested in DMEM/10 mM HEPES for 30 min at 37˚C/5% CO2 before stimulation with 1 mM S1P or solvent (DMSO) for significantly altered. This study implicated GRK2 as a central 10 or 30 min. Cells were stained with S1PR1-PE prior to stimulation and at regulator of S1PR1 desensitization. the indicated time points. To examine S1PR1 recovery, cells were incu- Building on these results, we have examined in greater detail bated for 10, 30, or 60 min in DMEM/10 mM HEPES at 37˚C/5% CO2. the origins of the phenotypes when B cells lack GRK2. We Cells were washed and stained with S1PR1-PE prior to incubation and at confirmed the finding of impaired S1PR1 desensitization but the indicated times. have also found severe defects in B cell responses to homeostatic
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Benchmarking Study on Virtual Ligand Screening Against Homology Models of Human Gpcrs
    bioRxiv preprint doi: https://doi.org/10.1101/284075; this version posted March 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A benchmarking study on virtual ligand screening against homology models of human GPCRs Victor Jun Yu Lima,b, Weina Dua, Yu Zong Chenc, Hao Fana,d aBioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, 138671, Singapore; bSaw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117549, Singapore; cDepartment of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore; dDepartment of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558 To whom correspondence should be addressed: Dr. Hao Fan, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, 138671, Singapore; Telephone: +65 64788500; Email: [email protected] Keywords: G-protein-coupled receptor, GPCR, X-ray crystallography, virtual screening, homology modelling, consensus enrichment 1 bioRxiv preprint doi: https://doi.org/10.1101/284075; this version posted March 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract G-protein-coupled receptor (GPCR) is an important target class of proteins for drug discovery, with over 27% of FDA-approved drugs targeting GPCRs. However, being a membrane protein, it is difficult to obtain the 3D crystal structures of GPCRs for virtual screening of ligands by molecular docking.
    [Show full text]
  • Supplementary Table S5. Differentially Expressed Gene Lists of PD-1High CD39+ CD8 Tils According to 4-1BB Expression Compared to PD-1+ CD39- CD8 Tils
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Supplementary Table S5. Differentially expressed gene lists of PD-1high CD39+ CD8 TILs according to 4-1BB expression compared to PD-1+ CD39- CD8 TILs Up- or down- regulated genes in Up- or down- regulated genes Up- or down- regulated genes only PD-1high CD39+ CD8 TILs only in 4-1BBneg PD-1high CD39+ in 4-1BBpos PD-1high CD39+ CD8 compared to PD-1+ CD39- CD8 CD8 TILs compared to PD-1+ TILs compared to PD-1+ CD39- TILs CD39- CD8 TILs CD8 TILs IL7R KLRG1 TNFSF4 ENTPD1 DHRS3 LEF1 ITGA5 MKI67 PZP KLF3 RYR2 SIK1B ANK3 LYST PPP1R3B ETV1 ADAM28 H2AC13 CCR7 GFOD1 RASGRP2 ITGAX MAST4 RAD51AP1 MYO1E CLCF1 NEBL S1PR5 VCL MPP7 MS4A6A PHLDB1 GFPT2 TNF RPL3 SPRY4 VCAM1 B4GALT5 TIPARP TNS3 PDCD1 POLQ AKAP5 IL6ST LY9 PLXND1 PLEKHA1 NEU1 DGKH SPRY2 PLEKHG3 IKZF4 MTX3 PARK7 ATP8B4 SYT11 PTGER4 SORL1 RAB11FIP5 BRCA1 MAP4K3 NCR1 CCR4 S1PR1 PDE8A IFIT2 EPHA4 ARHGEF12 PAICS PELI2 LAT2 GPRASP1 TTN RPLP0 IL4I1 AUTS2 RPS3 CDCA3 NHS LONRF2 CDC42EP3 SLCO3A1 RRM2 ADAMTSL4 INPP5F ARHGAP31 ESCO2 ADRB2 CSF1 WDHD1 GOLIM4 CDK5RAP1 CD69 GLUL HJURP SHC4 GNLY TTC9 HELLS DPP4 IL23A PITPNC1 TOX ARHGEF9 EXO1 SLC4A4 CKAP4 CARMIL3 NHSL2 DZIP3 GINS1 FUT8 UBASH3B CDCA5 PDE7B SOGA1 CDC45 NR3C2 TRIB1 KIF14 TRAF5 LIMS1 PPP1R2C TNFRSF9 KLRC2 POLA1 CD80 ATP10D CDCA8 SETD7 IER2 PATL2 CCDC141 CD84 HSPA6 CYB561 MPHOSPH9 CLSPN KLRC1 PTMS SCML4 ZBTB10 CCL3 CA5B PIP5K1B WNT9A CCNH GEM IL18RAP GGH SARDH B3GNT7 C13orf46 SBF2 IKZF3 ZMAT1 TCF7 NECTIN1 H3C7 FOS PAG1 HECA SLC4A10 SLC35G2 PER1 P2RY1 NFKBIA WDR76 PLAUR KDM1A H1-5 TSHZ2 FAM102B HMMR GPR132 CCRL2 PARP8 A2M ST8SIA1 NUF2 IL5RA RBPMS UBE2T USP53 EEF1A1 PLAC8 LGR6 TMEM123 NEK2 SNAP47 PTGIS SH2B3 P2RY8 S100PBP PLEKHA7 CLNK CRIM1 MGAT5 YBX3 TP53INP1 DTL CFH FEZ1 MYB FRMD4B TSPAN5 STIL ITGA2 GOLGA6L10 MYBL2 AHI1 CAND2 GZMB RBPJ PELI1 HSPA1B KCNK5 GOLGA6L9 TICRR TPRG1 UBE2C AURKA Leem G, et al.
    [Show full text]
  • Cancer Stem Cells—Key Players in Tumor Relapse
    cancers Review Cancer Stem Cells—Key Players in Tumor Relapse Monica Marzagalli *, Fabrizio Fontana, Michela Raimondi and Patrizia Limonta Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milano, Italy; [email protected] (F.F.); [email protected] (M.R.); [email protected] (P.L.) * Correspondence: [email protected]; Tel.: +39-02-503-18427 Simple Summary: Cancer is one of the hardest pathologies to fight, being one of the main causes of death worldwide despite the constant development of novel therapeutic strategies. Therapeutic failure, followed by tumor relapse, might be explained by the existence of a subpopulation of cancer cells called cancer stem cells (CSCs). The survival advantage of CSCs relies on their ability to shape their phenotype against harmful conditions. This Review will summarize the molecular mechanisms exploited by CSCs in order to escape from different kind of therapies, shedding light on the potential novel CSC-specific targets for the development of innovative therapeutic approaches. Abstract: Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies Citation: Marzagalli, M.; Fontana, F.; and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their Raimondi, M.; Limonta, P.
    [Show full text]
  • Unveiling Role of Sphingosine-1-Phosphate Receptor 2 As a Brake of Epithelial Stem Cell Proliferation and a Tumor Suppressor in Colorectal Cancer
    Unveiling role of Sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer Luciana Petti Humanitas Clinical and Research Center-IRCCS Giulia Rizzo Humanitas University Federica Rubbino Humanitas University Sudharshan Elangovan Humanitas University Piergiuseppe Colombo Humanitas Clinical and Research Center-IRRCS Restelli Silvia Humanitas University Andrea Piontini Humanitas University Vincenzo Arena Policlinico Universitario Agostino Gemelli Michele Carvello Humanitas Clinical and Research Center-IRCCS Barbara Romano Universita degli Studi di Napoli Federico II Dipartimento di Medicina Clinica e Chirurgia Tommaso Cavalleri Humanitas Clinical and Research Center-IRCCS Achille Anselmo Humanitas Clinical and Research Center-IRCCS Federica Ungaro Humanitas University Silvia D’Alessio Humanitas University Antonino Spinelli Humanitas University Sanja Stifter Page 1/28 University of Rijeka Fabio Grizzi Humanitas Clinical and Research Center-IRCCS Alessandro Sgambato Istituto di Ricovero e Cura a Carattere Scientico Centro di Riferimento Oncologico della Basilicata Silvio Danese Humanitas University Luigi Laghi Universita degli Studi di Parma Alberto Malesci Humanitas University STEFANIA VETRANO ( [email protected] ) Humanitas University Research Keywords: colorectal cancer, Lgr5, S1PR2, PTEN, epithelial proliferation Posted Date: October 13th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-56319/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on November 23rd, 2020. See the published version at https://doi.org/10.1186/s13046-020-01740-6. Page 2/28 Abstract Background. Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer.
    [Show full text]
  • Inflammatory Modulation of Hematopoietic Stem Cells by Magnetic Resonance Imaging
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014 Inflammatory modulation of hematopoietic stem cells by Magnetic Resonance Imaging (MRI)-detectable nanoparticles Sezin Aday1,2*, Jose Paiva1,2*, Susana Sousa2, Renata S.M. Gomes3, Susana Pedreiro4, Po-Wah So5, Carolyn Ann Carr6, Lowri Cochlin7, Ana Catarina Gomes2, Artur Paiva4, Lino Ferreira1,2 1CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal, 2Biocant, Biotechnology Innovation Center, Cantanhede, Portugal, 3King’s BHF Centre of Excellence, Cardiovascular Proteomics, King’s College London, London, UK, 4Centro de Histocompatibilidade do Centro, Coimbra, Portugal, 5Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK, 6Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, UK, 7PulseTeq Limited, Chobham, Surrey, UK. *These authors contributed equally to this work. #Correspondence to Lino Ferreira ([email protected]). Experimental Section Preparation and characterization of NP210-PFCE. PLGA (Resomers 502 H; 50:50 lactic acid: glycolic acid) (Boehringer Ingelheim) was covalently conjugated to fluoresceinamine (Sigma- Aldrich) according to a protocol reported elsewhere1. NPs were prepared by dissolving PLGA (100 mg) in a solution of propylene carbonate (5 mL, Sigma). PLGA solution was mixed with perfluoro- 15-crown-5-ether (PFCE) (178 mg) (Fluorochem, UK) dissolved in trifluoroethanol (1 mL, Sigma). This solution was then added to a PVA solution (10 mL, 1% w/v in water) dropwise and stirred for 3 h. The NPs were then transferred to a dialysis membrane and dialysed (MWCO of 50 kDa, Spectrum Labs) against distilled water before freeze-drying. Then, NPs were coated with protamine sulfate (PS).
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • GPCR Expression Profiles Were Determined Using
    Supplemental Figures and Tables for Tischner et al., 2017 Supplemental Figure 1: GPCR expression profiles were determined using the NanoString nCounter System in 250 ng of pooled cell RNA obtained from freshly isolated CD4 T cells from naïve lymph nodes (CD4ln), spinal cord infiltrating CD4 T cells at peak EAE disease (CD4sc), and primary lung endothelial cells (luEC). Supplemental Figure 2: Array design and quality controls. A, Sorted leukocytes or endothelial cells were subjected to single‐cell expression analysis and re‐evaluated based on the expression of various identity‐defining genes. B, Expression of identity‐defining and quality control genes after deletion of contaminating or reference gene‐negative cells. Expression data are calculated as 2(Limit of detection(LoD) Ct – sample Ct) ; LoD Ct was set to 24. Supplemental Figure 3: Overview over GPCR expression frequencies in different freshly isolated immune cell populations and spinal cord endothelial cells as determined by single cell RT‐PCR. Abbreviations: CD4ln‐Tcon/CD4ln‐Treg, conventional (con) and regulatory (reg) CD4 T cells from lymph nodes (CD4ln) of naïve mice; CD4dr/CD4sc, CD4 T cells from draining lymph nodes (dr) or spinal cord (sc) at peak EAE disease; CD4spn2D/ CD4spn2DTh1/ CD4spn2DTh17, splenic CD4 T cells from 2D2 T cell receptor transgenic mice before (2D) and after in vitro differentiation towards Th1 (2DTh1) or Th17 (2DTh17); MonoSpn, splenic monocytes; CD11b_sc, spinal cord infiltrating CD11b‐ positive cells; sc_microglia, Ccr2neg,Cx3cr1pos microglia from spinal cord at peak disease; sc_macrophages, CCr2pos;Cx3cr1lo/neg macrophages from spinal cord at peak disease; BMDM_M1/BMDM_M2, bone marrow‐derived macrophages differentiated towards M1 or M2; ECscN and ECscEAE, spinal cord endothelial cells from naïve mice (N) and at peak EAE disease (EAE); SMC, smooth muscle cells from various vessel types (included as positive control to ascertain primer functionality).
    [Show full text]
  • Unveiling Role of Sphingosine-1-Phosphate Receptor 2 As a Brake of Epithelial Stem Cell Proliferation and a Tumor Suppressor In
    Petti et al. Journal of Experimental & Clinical Cancer Research (2020) 39:253 https://doi.org/10.1186/s13046-020-01740-6 RESEARCH Open Access Unveiling role of sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer Luciana Petti1, Giulia Rizzo2, Federica Rubbino2, Sudharshan Elangovan2, Piergiuseppe Colombo3, Silvia Restelli1, Andrea Piontini2, Vincenzo Arena4, Michele Carvello5, Barbara Romano6, Tommaso Cavalleri7, Achille Anselmo8, Federica Ungaro2, Silvia D’Alessio2, Antonino Spinelli2,5, Sanja Stifter9, Fabio Grizzi10, Alessandro Sgambato4,11, Silvio Danese1,2, Luigi Laghi7,12, Alberto Malesci2,7 and Stefania Vetrano1,2* Abstract Background: Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap. Methods: We screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2−/−) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2−/−Lgr5-EGFP- mice. Results: S1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2−/− mice compared to S1PR2+/+ controls.
    [Show full text]
  • S1PR4 Signaling Attenuates ILT 7 Internalization to Limit IFN- Α Production by Human Plasmacytoid Dendritic Cells
    S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN- α Production by Human Plasmacytoid Dendritic Cells This information is current as Christina Dillmann, Christian Ringel, Julia Ringleb, Javier of September 24, 2021. Mora, Catherine Olesch, Annika F. Fink, Edward Roberts, Bernhard Brüne and Andreas Weigert J Immunol published online 18 January 2016 http://www.jimmunol.org/content/early/2016/01/15/jimmun ol.1403168 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/01/15/jimmunol.140316 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 18, 2016, doi:10.4049/jimmunol.1403168 The Journal of Immunology S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-a Production by Human Plasmacytoid Dendritic Cells Christina Dillmann,* Christian Ringel,* Julia Ringleb,* Javier Mora,* Catherine Olesch,* Annika F. Fink,* Edward Roberts,† Bernhard Brune,*€ and Andreas Weigert* Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands.
    [Show full text]
  • G Protein-Coupled Receptors at the Crossroad Between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts
    International Journal of Molecular Sciences Review G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts Ernestina M. De Francesco 1,2, Federica Sotgia 3, Robert B. Clarke 2, Michael P. Lisanti 3 and Marcello Maggiolini 1,* ID 1 Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy; [email protected] 2 Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK; [email protected] 3 Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK; [email protected] (F.S.); [email protected] (M.P.L.) * Correspondence: [email protected]; Tel.: +39-0984-493076 Received: 30 October 2017; Accepted: 11 December 2017; Published: 14 December 2017 Abstract: G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy.
    [Show full text]
  • The G Protein-Coupled Receptor Heterodimer Network (GPCR-Hetnet) and Its Hub Components
    Int. J. Mol. Sci. 2014, 15, 8570-8590; doi:10.3390/ijms15058570 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The G Protein-Coupled Receptor Heterodimer Network (GPCR-HetNet) and Its Hub Components Dasiel O. Borroto-Escuela 1,†,*, Ismel Brito 1,2,†, Wilber Romero-Fernandez 1, Michael Di Palma 1,3, Julia Oflijan 4, Kamila Skieterska 5, Jolien Duchou 5, Kathleen Van Craenenbroeck 5, Diana Suárez-Boomgaard 6, Alicia Rivera 6, Diego Guidolin 7, Luigi F. Agnati 1 and Kjell Fuxe 1,* 1 Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden; E-Mails: [email protected] (I.B.); [email protected] (W.R.-F.); [email protected] (M.D.P.); [email protected] (L.F.A.) 2 IIIA-CSIC, Artificial Intelligence Research Institute, Spanish National Research Council, 08193 Barcelona, Spain 3 Department of Earth, Life and Environmental Sciences, Section of Physiology, Campus Scientifico Enrico Mattei, Urbino 61029, Italy 4 Department of Physiology, Faculty of Medicine, University of Tartu, Tartu 50411, Estonia; E-Mail: [email protected] 5 Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, 9000 Ghent, Belgium; E-Mails: [email protected] (K.S.); [email protected] (J.D.); [email protected] (K.V.C.) 6 Department of Cell Biology, School of Science, University of Málaga, 29071 Málaga, Spain; E-Mails: [email protected] (D.S.-B.); [email protected] (A.R.) 7 Department of Molecular Medicine, University of Padova, Padova 35121, Italy; E-Mail: [email protected] † These authors contributed equally to this work.
    [Show full text]