Identification and Prioritization of Novel Uncharacterized Peptidases for Biochemical Characterization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THESIS Entitled Studies on Fraction 1 Protein of Beta Vulgaris Submitted for the Degree of DOCTOR of PHILOSOPHY by Kenneth Edwar
THESIS entitled Studies on Fraction 1 Protein of Beta vulgaris Submitted for the degree of DOCTOR OF PHILOSOPHY by Kenneth Edward Moon 1 970 TABLE OF CONTENTS Acknowledgements i Abbreviations i Summary ii Chapter 1 Introduction 1.1 Carbon Dioxide Fixation in the Calvin • 1 Cycle 1.2 Some Properties of RuDPcase and Similarity 2 to Fraction 1 Protein 1.3 Cellular Location of Fraction 1 Protein 3 1.4 The Mechanism of Action of RuDPcase 4 1.5 Structure of Fraction 1 Protein from 13 Higher Plants 1.6 Relationship of Structure to Enzymic 14 Activity and Role of Sulphydryl Groups 1.7 Studies on RuDPcase from Sources other 17 than the Higher Plants 1.8 Comparison of Some Kinetic and Physical 21 Constants of RuDPcase from Different Sources 1.9 Aim of This Research Project 23 Chapter 2 Methods and Materials 2.1 Plant Material 24 2.2 Preparation of Chloroplasts and Isolation 24 of Fraction 1 Protein 2.3 Concentrating Protein Solutions 26 2.4 Preparation of Reduced and Carboxy- 27 methylated Fraction 1 Protein 2.5 Preparation of Maleyl-carboxymethyl 28 Fraction 1 Protein 2.6 Removal of Maleyl Groups 29 2.7 Gel Electrophoresis 30 2.7 (i) Polyacrylamide Disk Electrophoresis 30 (ii) Polyacrylamide Electrophoresis in 31 the presence of SDS (iii) Slab Acrylamide Gel Electrophoresis 32 (iv) Isoelectric Focusing 33 2.8 Ribulose-1,5-diphosphate Carboxylase 3^ Assay 2.9 Preparation of the S-Sulphenylsulphanate 34 Derivative of Fraction 1 Protein 2.10 Edman Degradations 35 2.11 Hydrazinolysis 35 2.12 Isolation of Blocked N-Terminal Peptides 36 2.13 Tryptic -
Babela Massiliensis, a Representative of a Widespread Bacterial
Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae Isabelle Pagnier, Natalya Yutin, Olivier Croce, Kira S Makarova, Yuri I Wolf, Samia Benamar, Didier Raoult, Eugene V. Koonin, Bernard La Scola To cite this version: Isabelle Pagnier, Natalya Yutin, Olivier Croce, Kira S Makarova, Yuri I Wolf, et al.. Babela mas- siliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biology Direct, BioMed Central, 2015, 10 (13), 10.1186/s13062-015-0043-z. hal-01217089 HAL Id: hal-01217089 https://hal-amu.archives-ouvertes.fr/hal-01217089 Submitted on 19 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pagnier et al. Biology Direct (2015) 10:13 DOI 10.1186/s13062-015-0043-z RESEARCH Open Access Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae Isabelle Pagnier1, Natalya Yutin2, Olivier Croce1, Kira S Makarova2, Yuri I Wolf2, Samia Benamar1, Didier Raoult1, Eugene V Koonin2 and Bernard La Scola1* Abstract Background: Only a small fraction of bacteria and archaea that are identifiable by metagenomics can be grown on standard media. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Protein Digestibility of Cereal Products
foods Communication Protein Digestibility of Cereal Products Iris Joye Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected]; Tel.: +1-519-824-4120 (ext. 52470) Received: 5 May 2019; Accepted: 3 June 2019; Published: 8 June 2019 Abstract: Protein digestibility is currently a hot research topic and is of big interest to the food industry. Different scoring methods have been developed to describe protein quality. Cereal protein scores are typically low due to a suboptimal amino acid profile and low protein digestibility. Protein digestibility is a result of both external and internal factors. Examples of external factors are physical inaccessibility due to entrapment in e.g., intact cell structures and the presence of antinutritional factors. The main internal factors are the amino acid sequence of the proteins and protein folding and crosslinking. Processing of food is generally designed to increase the overall digestibility through affecting these external and internal factors. However, with proteins, processing may eventually also lead to a decrease in digestibility. In this review, protein digestion and digestibility are discussed with emphasis on the proteins of (pseudo)cereals. Keywords: protein digestibility; cereals; pseudocereals; processing; antinutritional factors 1. Introduction Proteins are abundantly present in all living cells, and as such are a vital part of our diet. In order to be usable to the human body after ingestion, dietary proteins have to be hydrolysed into their basic building blocks, i.e., amino acids or small peptides. Hereto, the human gastrointestinal tract possesses an assortment of protein hydrolysing enzymes or peptidases. The physiological roles of proteins are very diverse and range from functioning as pure nitrogen storage molecules over delivering structure building capacity to catalysing a myriad of reactions as metabolically active enzymes or serving as transporter vehicles for poorly soluble or physiologically unstable components [1]. -
WO 2013/185113 Al 12 December 2013 (12.12.2013) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/185113 Al 12 December 2013 (12.12.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/02 (2006.01) A61P 7/02 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 38/36 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 13/044841 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 7 June 2013 (07.06.2013) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/657,688 8 June 2012 (08.06.2012) kind of regional protection available): ARIPO (BW, GH, 61/800,626 15 March 2013 (15.03.2013) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: BIOGEN IDEC MA INC. -
Partial Characterisation of Dipeptidyl Peptidase 4 (DP 4
Partial Characterisation of Dipeptidyl Peptidase 4 (DP 4) for the Treatment of Type 2 Diabetes and its Identification as a novel Pharmaceutical Target for Stress-related Indications Beiträge zur Charakterisierung der Dipeptidylpeptidase 4 (DP 4) für die Behandlung von Typ-2-Diabetes und deren Identifizierung als ein neuartiges pharmazeutisches Ziel für stressvermittelte Indikationen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von M. Sc. (Biochemie) Leona Wagner aus Rheinfelden (Baden) Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 23.10.2012 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatter: Prof. Dr. med. Stephan von Hörsten Zweitberichterstatter: Prof. Dr. Johann Helmut Brandstätter Publications, Presentations and Posters Part of the present study have been published or submitted in the following journals or presented on the following conferences: Publications: 1. Hinke, S.A., McIntosh, C.H., Hoffmann, T., Kuhn-Wache, K., Wagner, L., Bar, J., Manhart, S., Wermann, M., Pederson, R.A., and Demuth, H.U. (2002) On combination therapy of diabetes with metformin and dipeptidyl peptidase IV inhibitors. Diabetes Care 25, 1490- 1491. 2. Bär, J., Weber, A., Hoffmann, T., Stork, J., Wermann, M., Wagner, L., Aust, S., Gerhartz, B., and Demuth, H.U. (2003) Characterisation of human dipeptidyl peptidase IV expressed in Pichia pastoris. A structural and mechanistic comparison between the recombinant human and the purified porcine enzyme. Biol. Chem. 384, 1553-1563. 3. Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H.U., and Brandstetter, H. -
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia Sericata Medical Maggots
Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 8285428, 27 pages http://dx.doi.org/10.1155/2016/8285428 Research Article Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots Zdenjk Franta,1 Heiko Vogel,2 Rüdiger Lehmann,1 Oliver Rupp,3 Alexander Goesmann,3 and Andreas Vilcinskas1,4 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany 2Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany 3Justus-Liebig-University of Giessen, Bioinformatics and System Biology, Heinrich-Buff-Ring 58, 35392 Giessen, Germany 4Justus-Liebig-University of Giessen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany Correspondence should be addressed to Andreas Vilcinskas; [email protected] Received 29 January 2016; Accepted 7 March 2016 Academic Editor: Yudong Cai Copyright © 2016 Zdenekˇ Franta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore -
SUMO Protease 1 (GST-Tagged) from Yeast, Recombinant Cat
SUMO Protease 1 (GST-tagged) from Yeast, Recombinant Cat. No. NATE-1708 Lot. No. (See product label) Introduction Description SUMO (Small Ubiquitin-like MOdifiers) Protease 1 (Ulp1, Ubl-specific protease 1 from Saccharomyces cerevisiae) is a highly active cysteine protease. It is highly specific as it recognizes the tertiary structure of the ubiquitin-like (UBL) protein, SUMO (Smt3), rather than its amino acid sequence. SUMO fusion tag, as an N-terminal fusion partner, has been shown to enhance functional protein production in prokaryotic and eukaryotic expression systems with significantly improved protein stability and solubility. The SUMO protease 1 can be used to cleave SUMO protein tag from recombinant SUMO-fusion proteins. The optimal temperature for cleavage is 30°C; however, the enzyme is active over wide ranges of temperature and pH. After the completion of the cleavage reaction, the protease can be easily removed from the reaction by affinity chromatography using the Glutathione resin. Synonyms Ulp1 peptidase; SUMO Protease; SUMO Protease Product Information Species Yeast Source E. coli Form Liquid EC Number EC 3.4.22.68 Molecular Weight 52.6 kDa (403-621 aa + N-terminal GST). Purity > 90% by SDS-PAGE Activity >10,000 units/mg Concentration 1 mg/ml Unit Definition One unit is defined as the amount of SUMO Protease 1 required to cleave >90% of 5 µg a control protein substrate (SUMO-GFP) in 1 h at 37°C. Creative Enzymes. All rights reserved. 45-1 Ramsey Road, Shirley, NY 11967, USA Tel:1-631-562-8517 1-516-512-3133 Fax:1-631-938-8127 E-mail: [email protected] http://www.creative-enzymes.com Notes INTENDED FOR RESEARCH USE ONLY, NOT FOR USE IN HUMAN, THERAPEUTIC OR DIAGNOSTIC APPLICATIONS. -
Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48 -
Proteolytic Cleavage—Mechanisms, Function
Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms -
Substrate Specificity and Structural Modeling of Human
International Journal of Molecular Sciences Article Substrate Specificity and Structural Modeling of Human Carboxypeptidase Z: A Unique Protease with a Frizzled-Like Domain Javier Garcia-Pardo 1 , Sebastian Tanco 1,2 , Maria C. Garcia-Guerrero 1, Sayani Dasgupta 3, Francesc Xavier Avilés 1 , Julia Lorenzo 1,* and Lloyd D. Fricker 3,* 1 Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; [email protected] (J.G.-P.); [email protected] (S.T.); [email protected] (M.C.G.-G.); [email protected] (F.X.A.) 2 BiosenSource BV, B-1800 Vilvoorde, Belgium 3 Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (L.D.F.); Tel.: +34-93-5868936 (J.L.); +1-718-430-4225 (L.D.F.) Received: 24 October 2020; Accepted: 14 November 2020; Published: 18 November 2020 Abstract: Metallocarboxypeptidase Z (CPZ) is a secreted enzyme that is distinguished from all other members of the M14 metallocarboxypeptidase family by the presence of an N-terminal cysteine-rich Frizzled-like (Fz) domain that binds Wnt proteins. Here, we present a comprehensive analysis of the enzymatic properties and substrate specificity of human CPZ. To investigate the enzymatic properties, we employed dansylated peptide substrates. For substrate specificity profiling, we generated two different large peptide libraries and employed isotopic labeling and quantitative mass spectrometry to study the substrate preference of this enzyme. Our findings revealed that CPZ has a strict requirement for substrates with C-terminal Arg or Lys at the P10 position. -
Biochemical Investigation of the Ubiquitin Carboxyl-Terminal Hydrolase Family" (2015)
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Biochemical investigation of the ubiquitin carboxyl- terminal hydrolase family Joseph Rashon Chaney Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Biochemistry Commons, Biophysics Commons, and the Molecular Biology Commons Recommended Citation Chaney, Joseph Rashon, "Biochemical investigation of the ubiquitin carboxyl-terminal hydrolase family" (2015). Open Access Dissertations. 430. https://docs.lib.purdue.edu/open_access_dissertations/430 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO)RUP 8SGDWHG PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Joseph Rashon Chaney (QWLWOHG BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Doctor of Philosophy )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Chittaranjan Das Angeline Lyon Christine A. Hrycyna George M. Bodner To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Chittaranjan Das $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\R. E. Wild 04/24/2015 +HDGRIWKH'HSDUWPHQW*UDGXDWH3URJUDP 'DWH BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Dissertation Submitted to the Faculty of Purdue University by Joseph Rashon Chaney In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 Purdue University West Lafayette, Indiana ii All of this I dedicate wife, Millicent, to my faithful and beautiful children, Josh and Caleb.