GPS Results from the Woodlark Rift, Papua New Guinea, Geochem
PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Continental breakup and UHP rock exhumation in action: GPS 10.1002/2014GC005458 results from the Woodlark Rift, Papua New Guinea Special Section: Laura M. Wallace1, Susan Ellis2, Tim Little3, Paul Tregoning4, Neville Palmer2, Robert Rosa5, Lithospheric Evolution of Richard Stanaway6, John Oa7, Edwin Nidkombu7, and John Kwazi7 Cenozoic UHP Terranes: From Convergence to Extension 1Institute for Geophysics, University of Texas, Austin, Texas, USA, 2GNS Science, Lower Hutt, New Zealand, 3School of Geography, Environment, and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand, 4Research 5 Key Points: School for the Earth Sciences, Australian National University, Canberra, ACT, Australia, Surveying Department, University 6 7 GPS reveals crustal deformation and of Technology, Lae, Papua New Guinea, Quickclose Pty. Ltd., Carlton, Victoria, Australia, PNG National Mapping Bureau, microplate kinematics in the Port Moresby, Papua New Guinea Woodlark Basin, SE Papua New Guinea Exhumation of UHP rocks in We show results from a network of campaign Global Positioning System (GPS) sites in the Wood- southeastern PNG is associated with Abstract active crustal extension lark Rift, southeastern Papua New Guinea, in a transition from seafloor spreading to continental rifting. GPS Our results demonstrate that low- velocities indicate anticlockwise rotation (at 2–2.7/Myr, relative to Australia) of crustal blocks north of the rift, angle normal faults can slip at rates producing 10–15 mm/yr of extension in the continental rift, increasing to 20–40 mm/yr of seafloor spreading of several mm/yr or more at the Woodlark Spreading Center. Extension in the continental rift is distributed among multiple structures.
[Show full text]