Review of Literature and Assessment of Factors Relevant to Performance of Grouted Systems for Radioactive Waste Disposal

Total Page:16

File Type:pdf, Size:1020Kb

Review of Literature and Assessment of Factors Relevant to Performance of Grouted Systems for Radioactive Waste Disposal CNWRA 2009-001 REVIEW OF LITERATURE AND ASSESSMENT OF FACTORS RELEVANT TO PERFORMANCE OF GROUTED SYSTEMS FOR RADIOACTIVE WASTE DISPOSAL Prepared for U.S. Nuclear Regulatory Commission Contract NRC NRC–02–07–006 Prepared by R.T. Pabalan1 F.P. Glasser2 D.A. Pickett1 G.R. Walter1 S. Biswas1 M.R. Juckett1 L.M. Sabido1 J.L. Myers1 1Center for Nuclear Waste Regulatory Analyses 6220 Culebra Road San Antonio, Texas 78228-0510 2University of Aberdeen Aberdeen, Scotland, United Kingdom Center for Nuclear Waste Regulatory Analyses San Antonio, Texas April 2009 ABSTRACT For many decades, radioactive wastes related to the reprocessing of nuclear fuel have been stored in underground storage tanks at former nuclear materials production sites at Aiken, South Carolina (Savannah River Site); Hanford, Washington; and Idaho Falls, Idaho (Idaho National Laboratory). The U.S. Department of Energy (DOE) plans to remove highly radioactive or key radionuclides from the tanks to the maximum extent practical and close the emptied tanks by filling the tanks, pipework, and concrete vaults with grout. This cement-based material is expected to provide structural support, encapsulate and stabilize the residual tank waste and tank heel, act as a physical barrier to inhibit the flow of groundwater through the waste, and serve as a barrier to plant roots or to inadvertent intrusion by burrowing animals or humans drilling or excavating at the site. DOE performance assessments demonstrating that disposal actions at the sites will meet performance objectives have included quantitatively evaluating the influence of cement-based barriers in mitigating radionuclide release to the environment. In these performance assessments, assumptions are made regarding the physical integrity (e.g., hydraulic conductivity) and chemical condition (e.g., pH and Eh affecting radionuclide solubility and sorption) of the cement-based engineered barrier and the changes to these properties that occur with time. Although much research has been done on the use of cement-based materials for immobilizing and stabilizing toxic metals and radioactive wastes, the ability of these materials to maintain the low permeability and other properties necessary to retain radionuclides for the long time periods—up to 10,000 years—required for nuclear waste disposal is uncertain. This report was prepared for the U.S. Nuclear Regulatory Commission (NRC) to provide information NRC staff can use in their consultations with DOE. This information will support independent evaluation of the DOE performance assessments related to tank closures and disposal of radioactive wastes in near-surface disposal facilities. This report briefly reviews the nature of Portland cement and the hydration and setting of cement-based materials. Degradation mechanisms, broadly classified into chemical and physical processes, and the role of the service environment in the degradation of cement-based materials are discussed. The report reviews published modeling approaches, ranging from simple diffusion or empirical equations to more complex coupled reactive–transport models, for predicting the chemical degradation of cement-based materials. Conceptual and mathematical models that can be used to evaluate the potential influence of fast pathways and bypassing pathways on radionuclide releases from grouted tanks are discussed. Further, the report summarizes and evaluates models and data available for estimating radionuclide release from cement-based waste forms. Finally, factors, as well as features, events, and processes, that are potentially important to evaluating the performance of grouted tanks and concrete vaults at DOE sites are assessed. Additional information is provided in two appendices. Data derived from published literature related to the permeability and diffusion properties of cement-based materials are presented in Appendix A. In Appendix B, available data are reviewed and new models for solubility limits are developed for selected radioelements in environments expected in cement-based disposal facilities at the Savannah River Site and Idaho National Laboratory. iii CONTENTS Section Page ABSTRACT.................................................................................................................................iii FIGURES ................................................................................................................................... ix TABLES ....................................................................................................................................xiii EXECUTIVE SUMMARY .......................................................................................................... xv ACKNOWLEDGMENTS ..........................................................................................................xvii 1 INTRODUCTION..........................................................................................................1-1 1.1 Background Information...................................................................................1-1 1.2 Objective of Report...........................................................................................1-3 2 NATURE OF PORTLAND CEMENT............................................................................2-1 2.1 Production........................................................................................................2-1 2.2 Product Variability............................................................................................2-1 2.3 Cement Products..............................................................................................2-1 2.4 Supplementary Cement Materials ....................................................................2-1 2.5 Organic Matter in Cement ................................................................................2-2 3 HYDRATION OF CEMENT..........................................................................................3-1 3.1 General Considerations....................................................................................3-1 3.2 Cement Hydration Products .............................................................................3-3 4 DEGRADATION OF CEMENT-BASED ENGINEERED BARRIERS ...........................4-1 4.1 Chemical Degradation Mechanisms.................................................................4-1 4.1.1 Carbonation......................................................................................4-1 4.1.2 Sulfate Attack....................................................................................4-5 4.1.3 Leaching...........................................................................................4-7 4.1.4 Corrosion........................................................................................4-11 4.1.5 Alkali–Silica Reaction.....................................................................4-16 4.2 Physical Degradation Mechanisms ................................................................4-16 4.2.1 Shrinkage........................................................................................4-16 4.2.2 Thermal Cracking ...........................................................................4-20 4.2.3 Freezing and Thawing....................................................................4-21 4.3 Durability and the Composite Nature of Concrete..........................................4-21 4.4 Role of the Service Environment....................................................................4-22 4.5 Standards and Standard Methods for Testing Performance in Service Environments ....................................................................................4-25 4.6 Limitations of Tests on Performance of Cement-Based Materials .................4-26 4.7 Framework for Predicting the Long-Term Behavior of Cement-Based Engineered Barriers.......................................................................................4-27 5 APPROACHES TO MODELING THE DEGRADATION OF CEMENT-BASED MATERIALS ...................................................................................5-1 5.1 Carbonation......................................................................................................5-2 5.2 Sulfate Attack...................................................................................................5-9 5.2.1 Empirical Correlation........................................................................5-9 5.2.2 Reactive–Transport Models............................................................5-10 v CONTENTS (continued) Section Page 5.3 Leaching.........................................................................................................5-22 5.3.1 Chemical Models of Leaching.........................................................5-22 5.3.2 Reactive–Transport Leaching Models............................................5-30 5.4 Summary ........................................................................................................5-45 6 CONCEPTUAL AND MATHEMATICAL MODELS OF POTENTIAL FAST AND BYPASSING PATHWAYS ASSOCIATED WITH IN-SITU TANK CLOSURES............6-1 6.1 Identification and Classification of Potential Fast and Bypassing Pathways....6-1 6.1.1 Cracks in Grout and Concrete Structures.........................................6-6 6.1.2 Conduits............................................................................................6-9 6.2 Movement of Fluids Through Potential Fast and Bypassing Pathways..........6-11 6.2.1 Fluid Flow in Cracks .......................................................................6-13
Recommended publications
  • An Upper Boundary in the Mass-Metallicity Plane of Exo-Neptunes
    MNRAS 000, 1{8 (2016) Preprint 8 November 2018 Compiled using MNRAS LATEX style file v3.0 An upper boundary in the mass-metallicity plane of exo-Neptunes Bastien Courcol,1? Fran¸cois Bouchy,1 and Magali Deleuil1 1Aix Marseille University, CNRS, Laboratoire d'Astrophysique de Marseille UMR 7326, 13388 Marseille cedex 13, France Accepted XXX. Received YYY; in original form ZZZ ABSTRACT With the progress of detection techniques, the number of low-mass and small-size exo- planets is increasing rapidly. However their characteristics and formation mechanisms are not yet fully understood. The metallicity of the host star is a critical parameter in such processes and can impact the occurence rate or physical properties of these plan- ets. While a frequency-metallicity correlation has been found for giant planets, this is still an ongoing debate for their smaller counterparts. Using the published parameters of a sample of 157 exoplanets lighter than 40 M⊕, we explore the mass-metallicity space of Neptunes and Super-Earths. We show the existence of a maximal mass that increases with metallicity, that also depends on the period of these planets. This seems to favor in situ formation or alternatively a metallicity-driven migration mechanism. It also suggests that the frequency of Neptunes (between 10 and 40 M⊕) is, like giant planets, correlated with the host star metallicity, whereas no correlation is found for Super-Earths (<10 M⊕). Key words: Planetary Systems, planets and satellites: terrestrial planets { Plan- etary Systems, methods: statistical { Astronomical instrumentation, methods, and techniques 1 INTRODUCTION lation was not observed (.e.g.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • The Spitzer Search for the Transits of HARPS Low-Mass Planets II
    A&A 601, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201629270 & c ESO 2017 Astrophysics The Spitzer search for the transits of HARPS low-mass planets II. Null results for 19 planets? M. Gillon1, B.-O. Demory2; 3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3; 4, S. Seager7, D. Ségransan4, and S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85478 Garching bei München, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received 8 July 2016 / Accepted 15 December 2016 ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits.
    [Show full text]
  • AMD-Stability and the Classification of Planetary Systems
    A&A 605, A72 (2017) DOI: 10.1051/0004-6361/201630022 Astronomy c ESO 2017 Astrophysics& AMD-stability and the classification of planetary systems? J. Laskar and A. C. Petit ASD/IMCCE, CNRS-UMR 8028, Observatoire de Paris, PSL, UPMC, 77 Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 7 November 2016 / Accepted 23 January 2017 ABSTRACT We present here in full detail the evolution of the angular momentum deficit (AMD) during collisions as it was described in Laskar (2000, Phys. Rev. Lett., 84, 3240). Since then, the AMD has been revealed to be a key parameter for the understanding of the outcome of planetary formation models. We define here the AMD-stability criterion that can be easily verified on a newly discovered planetary system. We show how AMD-stability can be used to establish a classification of the multiplanet systems in order to exhibit the planetary systems that are long-term stable because they are AMD-stable, and those that are AMD-unstable which then require some additional dynamical studies to conclude on their stability. The AMD-stability classification is applied to the 131 multiplanet systems from The Extrasolar Planet Encyclopaedia database for which the orbital elements are sufficiently well known. Key words. chaos – celestial mechanics – planets and satellites: dynamical evolution and stability – planets and satellites: formation – planets and satellites: general 1. Introduction motion resonances (MMR, Wisdom 1980; Deck et al. 2013; Ramos et al. 2015) could justify the Hill-type criteria, but the The increasing number of planetary systems has made it nec- results on the overlap of the MMR island are valid only for close essary to search for a possible classification of these planetary orbits and for short-term stability.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • The Spitzer Search for the Transits of HARPS Low-Mass Planets-II. Null
    Astronomy & Astrophysics manuscript no. aa29270 c ESO 2018 August 10, 2018 The Spitzer search for the transits of HARPS low-mass planets - II. Null results for 19 planets⋆ M. Gillon1, B.-O. Demory2,3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3,4, S. Seager7, D. S´egransan4, S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Universit´ede Li`ege, All´ee du 6 Aoˆut 17, Bat. B5C, 4000 Li`ege, Belgium 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Gen`eve, Universit´ede Gen`eve, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85478 Garching bei M¨unchen, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received date / accepted date ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits.
    [Show full text]
  • Chromospheric Activity Catalogue of 4454 Cool Stars Questioning the Active Branch of Stellar Activity Cycles? S
    A&A 616, A108 (2018) Astronomy https://doi.org/10.1051/0004-6361/201629518 & © ESO 2018 Astrophysics Chromospheric activity catalogue of 4454 cool stars Questioning the active branch of stellar activity cycles? S. Boro Saikia1,2, C. J. Marvin1, S. V. Jeffers1, A. Reiners1, R. Cameron3, S. C. Marsden4, P. Petit5,6, J. Warnecke3, and A. P. Yadav1 1 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany e-mail: [email protected] 2 Institut für Astrophysik, Universität Wien, Türkenschanzstrasse 17, 1180 Vienna, Austria 3 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 4 University of Southern Queensland, Computational Engineering and Science Research Centre, Toowoomba 4350, Australia 5 CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 Avenue Edouard Belin, 31400 Toulouse, France 6 Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, Toulouse, France Received 11 August 2016 / Accepted 8 February 2018 ABSTRACT Context. Chromospheric activity monitoring of a wide range of cool stars can provide valuable information on stellar magnetic activ- ity and its dependence on fundamental stellar parameters such as effective temperature and rotation. Aims. We compile a chromospheric activity catalogue of 4454 cool stars from a combination of archival HARPS spectra and multiple other surveys, including the Mount Wilson data that have recently been released by the NSO. We explore the variation in chromo- spheric activity of cool stars along the main sequence for stars with different effective temperatures. Additionally, we also perform an activity-cycle period search and investigate its relation with rotation.
    [Show full text]
  • Volume 4 Exhibitors the Air & Space Education Pavilion
    Exhibitors LUME VO 4 #NSTA17 Authentic, Practical Resources for Teachers Grades 3–8 • 2017 Grades K–5 • 2017 Grades K–5 • 2016 Grades K–5 • 2014 Visit Heinemann at Booth 2324 for special discounts. @HeinemannPub Heinemann.com | P 800.225.5800 | F 877.231.6980 NSTA_ProgAd_2017_4Science3.indd 1 1/25/17 3:26 PM Where big ideas become the next big thing.® By hosting Invention Playground, Camp Invention, Club Invention or Invention Project, you are partnering with the only nationally recognized programs backed by the National Inventors Hall of Fame. The National Inventors Hall of Fame provides educators the strategies, materials and tools necessary to nurture curiosity into big ideas through STEM- based curricula in an out-of-school time setting. Come visit us at Booth #818! Programs for preschool through 9th grade students. 800.968.4332 | invent.org/inspire To host a program in your community, send inquiries to [email protected] In partnership with the United States Patent and Trademark Office Travel Light with FREE Visit NSTA’s Shipping for Online SCIENCE Orders! STORE South Lobby STORE HOURS Wednesday, March 29 4:00 PM–7:00 PM Offering the latest resources Thursday, March 30 7:30 AM–5:00 PM Friday, March 31 7:30 AM–5:30 PM for science teachers, including Saturday, April 1 7:30 AM–4:00 PM new releases and bestsellers! Saturday, April 2 8:00 AM–12:30 PM • Fun NSTA-branded gear—unique hats, shirts, mugs, and more • Everyone enjoys member pricing: 20% off bestseller NSTA Press® titles • Traveling light? Ask about our NSTA gift cards – great gift ideas! Download the conference app or follow #NSTA17 for special giveaways, contests, and more throughout the conference! Visit www.nsta.org/store to make a purchase today, or call 800-277-5300.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • On the Mass Estimation for FGK Stars: Comparison of Several Methods
    Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 29 August 2014 (MN LATEX style file v2.2) On the mass estimation for FGK stars: comparison of several methods F. J. G. Pinheiro1,2⋆, J. M. Fernandes1,2,3, M. S. Cunha4,5, M. J. P. F. G. Monteiro4,5,6, N. C. Santos4,5,6, S. G. Sousa4,5,6, J. P. Marques7, J.-J. Fang8, A. Mortier9 and J. Sousa4,5 1Centro de Geofísica da Universidade de Coimbra 2Observatório Geofísico e Astronómico da Universidade de Coimbra 3Departamento de Matemática da Universidade de Coimbra, Largo D. Dinis, P-3001-454 Coimbra, Portugal 4Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal 5Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal 7The Institut d’Astrophysique Spatiale, Orsay, France 8Centro de Física Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal 9SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK Accepted . Received ABSTRACT Stellar evolutionary models simulate well binary stars when individual stellar mass and system metallicity are known. The mass can be derived directly from observations only in the case of multiple stellar systems, mainly binaries. Yet the number of such stars for which ls accurate stellar masses are available is rather small. The main goal of this project is to provide realistic mass estimates for an homogeneous sample of about a thousand FGK single stars, using four different methods and techniques.
    [Show full text]
  • Download This Article in PDF Format
    A&A 622, A37 (2019) Astronomy https://doi.org/10.1051/0004-6361/201731173 & © ESO 2019 Astrophysics The HARPS search for southern extra-solar planets XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions?,??,??? S. Udry1, X. Dumusque1, C. Lovis1, D. Ségransan1, R. F. Diaz1, W. Benz2, F. Bouchy1,3, A. Coffinet1, G. Lo Curto4, M. Mayor1, C. Mordasini2, F. Motalebi1, F. Pepe1, D. Queloz1, N. C. Santos5,6, A. Wyttenbach1, R. Alonso7, A. Collier Cameron8, M. Deleuil3, P. Figueira5, M. Gillon9, C. Moutou3,10, D. Pollacco11, and E. Pompei4 1 Observatoire astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut, Universitat Bern, Silderstrasse 5, 3012 Bern, Switzerland 3 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 5 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Cièncias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 7 Instituto de Astrofísica de Canarias, 38025, La Laguna, Tenerife, Spain 8 School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK 9 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium 10 Canada France Hawaii Telescope Corporation, Kamuela, HI 96743, USA 11 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK Received 15 May 2017 / Accepted 16 October 2018 ABSTRACT Context.
    [Show full text]
  • E Ects of Stellar Activity on the Measurement of Precise Radial
    Joao˜ Gomes da Silva E↵ects of stellar activity on the measurement of precise radial velocity Departamento de F´ısica e Astronomia Faculdade de Cienciasˆ da Universidade do Porto Maio de 2014 Joao˜ Gomes da Silva E↵ects of stellar activity on the measurement of precise radial velocity Tese submetida `aFaculdade de Ciˆenciasda Universidade do Porto para obten¸c˜aodo grau de Doutor em Astronomia Departamento de F´ısica e Astronomia Faculdade de Cienciasˆ da Universidade do Porto Maio de 2014 Acknowledgments I would like to thank my supervisor, Nuno, the motivation, patience, guidance, and scientific expertise he shared with me, and for all the work he had to make this thesis a reality. I would also like to thank all my co-workers and staff at CAUP for helping me with the scientific and bureaucratic aspects of the PhD, but also for the fun we had in innumerable occasions during these last four years. And of course to all my friends and family. This research was funded by Fundac¸ao˜ para a Cienciaˆ e Tecnologia, Portugal (grant ref- erence SFRH/BD/64722/2009) as well as by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. 3 Abstract The radial velocity (RV) method is one of the most prolific techniques in detecting and confirming extrasolar planets. However, due to its indirect nature, it is also sensitive to other sources of RV signals. One of the most important limiting factors of using the RV method to discover low-mass or long-period extrasolar planets is stellar activity.
    [Show full text]