Memoria 2006 Iac

Total Page:16

File Type:pdf, Size:1020Kb

Load more

MEMORIA MEMORIA IAC 2006 2006 1 INSTITUTO DE ASTROFÍSICA DE CANARIAS Imagen de la nebulosa planetaria S-188 tomada con el telescopio INT y la cámara de gran campo en la línea H-alfa del hidrogeno ionizado. Situada a 850 parsecs del Sol, tiene un tamaño de cien años-luz y es una de las mayores nebulosas planetarias conocidas. Créditos: Colaboración IPHAS en Canarias: A.Mampaso, R.L.M. Corradi, L.Sabin, K. Viironen. Investigadora Principal: J.E. Drew. Procesado de la imagen: Nick Wright. MEMORIA 2006 IAC 2 INSTITUTO DE ASTROFÍSICA DE CANARIAS GABINETE DE DIRECCIÓN INSTITUTO DE ASTROFÍSICA DE CANARIAS MAQUETACIÓN: Ana M. Quevedo PORTADA: Gotzon Cañada PREIMPRESIÓN E IMPRESIÓN: Producciones Gráficas S.L. DEPÓSITO LEGAL: TF-1905/94 MEMORIA IAC 2006 3 5 - PRESENTACIÓN Indice 6 - CONSORCIO PÚBLICO IAC 11 - LOS OBSERVATORIOS DE CANARIAS general 11 - Nuevas instalaciones 13 - Observatorio del Teide (OT) 14 - Observatorio del Roque de los Muchachos (ORM) 15 - COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 19 - ACUERDOS 21 - Gran Telescopio CANARIAS (GTC) 24 - ÁREA DE INVESTIGACIÓN 26 - Estructura del Universo y Cosmología 38 - Estructura de las galaxias y su evolución 70 - Estructura de las estrellas y su evolución 85 - Materia Interestelar 92 - El Sol 106 - El Sistema Solar 111 - Historia de la Astronomía 115 - Óptica atmosférica y Alta resolución espacial 129 - Instrumentación óptica 136 - Instrumentación infrarroja 143 - Astrofísica desde el espacio 155 - ÁREA DE INSTRUMENTACIÓN 155 - Ingeniería 162 - Producción 166 - Acciones de apoyo tecnológico 171 - Oficina de Transferencia de Resultados de Investigación (OTRI) 183 - ÁREA DE ENSEÑANZA 183 - Cursos de doctorado 184 - Seminarios cientificos 187 - Coloquios 187 - Becas 189 - XVIII Escuela de Invierno: "El Universo en lineas de emisión" 192 - ADMINISTRACIÓN DE SERVICIOS GENERALES 192 - Instituto de Astrofísica 193 - Observatorio del Teide 194 - Observatorio del Roque de los Muchachos 195 - Centro de Astrofísica de La Palma 195 - Oficina Técnica para la Protección de la Calidad del Cielo 197 - Ejecución del Presupuesto 2006 198 - GABINETE DE DIRECCIÓN 198 - Ediciones 200 - Web 201 - Comunicación y divulgación 213 - SERVICIOS INFORMÁTICOS COMUNES (SIC) 216 - BIBLIOTECA 218 - PUBLICACIONES CIENTÍFICAS 218 - Artículos en revistas internacionales con árbitros MEMORIA 227 - Artículos de revisión invitados (Invited Reviews) 2006 IAC 228 - Comunicaciones a congresos internacionales 239 - Comunicaciones a congresos nacionales 4 241 - Artículos en revistas internacionales sin árbitros y comunicaciones cortas 242 - Artículos en revistas nacionales 242 - Libros y capítulos de libros 242 - Tesis doctorales 244 - REUNIONES CIENTÍFICAS 249 - TIEMPO DE OBSERVACIÓN FUERA DE CANARIAS 250 - VISITANTES 253 - ORGANIZACIÓN Y PERSONAS 255 - PERSONAL 267 - DIRECCIONES Y TELÉFONOS PRESENTACIÓN Me parece muy importante el hecho de que durante este año se hayan culminado las últimas negociaciones para que España pase a formar parte de la organización internacional ESO (European Southern Observatory). Éramos el único país de nuestro entorno que no estábamos en ella, y la astronomía española la única colectividad científica del país que no pertenecía a la organización europea de referencia en su ámbito. Esta vieja aspiración de la comunidad astronómica española ha sido, finalmente, atendida por nuestro gobierno. Después de los merecidos parabienes y alegría del momento, nos ha llegado nuestra hora. Y somos nosotros, los astrónomos, quienes tenemos que disfrutarlo y ponernos a trabajar decididamente para sacarle jugo. Debemos ser muy conscientes de que, o nos ponemos ya mismo a sacarle todo el provecho científico, tecnológico y de integración a nuestra pertenencia a ESO, o habremos perdido la oportunidad que tanto soñamos. Y no va a ser fácil, sobre todo en los proyectos tecnológicos, pues los españoles llegamos nuevos a una cancha en la que llevan jugando muchísimo tiempo los países más avanzados de Europa. Hacerse un lugar en ella va a demandar una fuerte decisión y un gran entendimiento entre nuestras autoridades de I+D+I, nuestros centros de investigación y nuestras empresas. Además está el importante asunto del ELT europeo, este súper-telescopio que, como se dice en el acuerdo de entrada de nuestro país en ESO, se debe tratar de emplazar en Canarias. Sin olvidar que el "saber hacer" en telescopios segmentados adquirido en la construcción del Gran Telescopio CANARIAS GTC da ventajas a las industrias españolas, que deben ser aprovechadas en la construcción del ELT. Tampoco aquí lo tenemos fácil, por los grandes intereses económicos de otros y nuestra ancestral falta de visión colectiva. ¿Seremos capaces de tener una estrategia nacional y pragmática para explotar las bazas ya conseguidas, o primarán los intereses y recelos personales y burocráticos? Estamos contentos de que la cuota de entrada en ESO se haya minorado mediante el importante pago en especies con tiempo del Gran Telescopio CANARIAS. Es una muestra del carácter nacional que el IAC imprimió desde un principio al Proyecto y del espíritu abierto y solidario con que está participando en él la Comunidad Autónoma de Canarias. Termino recordando con orgullo que el IAC ha tenido mucho que ver en las negociaciones para la entrada en ESO, tanto en estas últimas, como en las primeras que tuvieron lugar a mediados de los noventa. En aquellas se estuvo a punto de lograrlo de manera ventajosa para ambas partes: España entraba en ESO sin cuota de entrada, MEMORIA y la organización europea para el Hemisferio Sur se extendía al Norte participando IAC 2006 en la construcción del GTC. La comisión negociadora española, encabezada por el Director del IAC, estaba formada, además, por el Director General de Relaciones 5 Culturales y Científicas del Ministerio de Asuntos Exteriores, Delfín Colomé, el Director General de INTA, Álvaro Giménez y el Vice-Secretario de la CICYT, Santiago Lago. Decisiones políticas abortaron esta primera etapa de las negociaciones. Ojala que se tenga mejor visión ahora, que ya estamos dentro, para hacer valer en ESO los compromisos firmados y nuestros activos, tanto científicos como tecnológicos. Prof. Francisco Sánchez CONSORCIO PÚBLICO "INSTITUTO DE ASTROFÍSICA DE CANARIAS" El Consorcio Público "Instituto de Astrofísica de parte, no sólo contribuye con el mayor porcentaje Canarias" está integrado por la Administración al presupuesto del Instituto, sino que, además, del Estado (a través del Ministerio de Ciencia y lo engloba dentro de sus organismos públicos Tecnología), la Comunidad Autónoma de Canarias, de investigación y lo proyecta en la comunidad la Universidad de La Laguna y el Consejo Superior científica nacional e internacional. de Investigaciones Científicas. Especialmente importante es la participación Esta fórmula jurídica de consorcio fue una avanzada internacional. Téngase en cuenta que la solución administrativa, consecuencia de un pacto mayoría de las instalaciones telescópicas de por el que las entidades implicadas, concentrando los Observatorios del IAC pertenecen a otros sus esfuerzos y evitando duplicidades innecesarias, organismos e instituciones de investigación se comprometieron a unificar objetivos y medios europeos. en un único ente, al que dotaron de personalidad jurídica propia. Se trataba de que el IAC fuese un La participación de las instituciones de los diversos centro de referencia, no sólo capaz de cumplir países en los Observatorios se realiza a través del las responsabilidades derivadas de los Acuerdos Comité Científico Internacional (CCI). Se produce Internacionales de Cooperación en materia de un "Informe Anual" en el cual se recoge la actividad Astrofísica, en los cuales representa a España, científica desarrollada en los Observatorios y las sino además de ser palanca para el desarrollo de mejoras en sus instalaciones. Este informe tiene la Astrofísica en el país. una amplia difusión internacional. Cada uno de estos entes consorciados aporta La contrapartida principal que se recibe por el "cielo algo esencial. La Comunidad Autónoma de de Canarias" es del 20% del tiempo de observación Canarias: el suelo y, sobre todo, el cielo de (más un 5% para programas cooperativos) en Canarias; la Universidad de La Laguna: el Instituto cada uno de los telescopios instalados en los Universitario de Astrofísica, germen del propio Observatorios del lAC. Un porcentaje realmente IAC; y el Consejo Superior de Investigaciones significativo que una Comisión para Asignación Científicas: su experiencia en relaciones científicas de Tiempo (CAT) reparte cuidadosamente entre internacionales. La Administración del Estado a las numerosas peticiones formuladas por los través del Ministerio de Ciencia y Tecnología, por su astrofísicos españoles. El IAC lo integran: EL INSTITUTO DE ASTROFÍSICA (La Laguna - Tenerife) EL OBSERVATORIO DEL TEIDE (Izaña - Tenerife) EL OBSERVATORIO DEL ROQUE DE LOS MUCHACHOS (Garafía - La Palma) EL CENTRO DE ASTROFISICA DE LA PALMA (Breña Baja - La Palma) MEMORIA 2006 IAC Se estructura en áreas: 6 Investigación Instrumentación Enseñanza El Real Decreto 557/2000, de 27 de abril, creó el Ministerio de Ciencia y Tecnología como Departamento responsable de la política científica y tecnológica, de las telecomunicaciones y del impulso de la sociedad de la información. En virtud del Real Decreto 696/2000, de 12 de mayo, por el que se establece la estructura orgánica básica del Ministerio, el Instituto de Astrofísica de Canarias se relacionará administrativamente con el Departamento a través de la Secretaría de Estado
Recommended publications
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name

    Exoplanet.Eu Catalog Page 1 # Name Mass Star Name

    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?

    A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?

    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
  • Search for X-Ray Emission from Bona-Fide and Candidate Brown

    Search for X-Ray Emission from Bona-Fide and Candidate Brown

    A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS 06(08.12.1; 08.12.2; 13.25.5) 11.9.2018 Search for X-ray emission from bona-fide and candidate brown dwarfs R. Neuh¨auser1, C. Brice˜no2, F. Comer´on3, T. Hearty1, E.L. Mart´ın4, J.H.M.M. Schmitt5, B. Stelzer1, R. Supper1, W. Voges1, and H. Zinnecker6 1 MPI f¨ur extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching, Germany 2 Yale University, Department of Physics, New Haven, CT 06520-8121, USA 3 European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany 4 Astronomy Department, University of California at Berkeley, Berkeley, CA 94720, USA 5 Universit¨at Hamburg, Sternwarte, Gojensbergweg 112, D-21029 Hamburg, Germany 6 Astrophysikalisches Institut, An der Sternwarte 16, D-14482 Potsdam, Germany Received 24 Sep 1998; accepted 10 Dec 1998 Abstract. Following the recent classification of the X- for a recent review. They continue to contract until elec- ray detected object V410 x-ray 3 with a young brown tron degeneracy halts further contraction. Depending on dwarf candidate (Brice˜no et al. 1998) and the identifica- metallicity and model assumptions made in for calculating tion of an X-ray source in Chamaeleon as young bona- theoretical evolutionary tracks, the limiting mass between fide brown dwarf (Neuh¨auser & Comer´on 1998), we inves- normal stars and brown dwarfs is ∼ 0.075 to 0.08 M⊙ tigate all ROSAT All-Sky Survey and archived ROSAT (Burrows et al. 1995, 1997, D’Antona & Mazzitelli 1994, PSPC and HRI pointed observations with bona-fide or 1997, Allard et al.
  • THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds

    THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds

    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 44 — 15 May 1996 Editor: Bo Reipurth ([email protected]) Abstracts of recently accepted papers Lifetimes of Ultracompact HII Regions: High Resolution Methyl Cyanide Observations R.L. Akeson & J.E. Carlstrom Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA We observed the dense molecular cores associated with two ultracompact HII regions, G5.89 + 0.4 and G34.3 + 0.2, in the J=6–5 transitions of CH3CN to probe the temperature and density of the gas. Simultaneously, each region was observed in the J=1–0 transition of a CO isotope to probe the molecular column density. The molecular cores are found to have densities ∼ 106 cm−3 and kinetic temperatures of 90 K and 250 K, respectively. We also find possible evidence for infall of molecular gas toward the HII regions. The lifetime of the HII region ultracompact phase is critically dependent on the properties of the surrounding molecular gas. Based on the number of ultracompact HII regions versus the total number of O stars, it has been suggested that the lifetime of the ultracompact phase is inconsistent with spherical expansion confined only by the ambient medium. We show that for the molecular cloud parameters given above and including the effect of the shell of neutral material formed by the expansion, pressure confinement by the ambient medium may significantly increase the lifetime of the ultracompact phase of the HII regions. Accepted by Ap. J. Probing the initial conditions of star formation: The structure of the prestellar core L1689B P.
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass

    Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass

    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
  • CURRICULUM VITAE Name: Matthew A. Wood Address

    CURRICULUM VITAE Name: Matthew A. Wood Address

    CURRICULUM VITAE Name: Matthew A. Wood Address: Department of Physics and Astronomy Texas A&M University{Commerce Tel: 903-886-5488 Email: [email protected] Education: Ph.D., Astronomy: The University of Texas at Austin, May 1990 M.A., Astronomy: The University of Texas at Austin, Dec. 1985 B.Sci., Physics: Iowa State University, May 1983 Work Experience: 8/12 { Present Deptartment Head & Professor Department of Physics and Astronomy Texas A&M University{Commerce 8/04 { 7/12 Professor Department of Physics & Space Sciences Florida Institute of Technology 8/96 { 7/04 Associate Professor Florida Institute of Technology 6/91 { 7/96 Assistant Professor Florida Institute of Technology 6/90 { 5/91 NSF{NATO Postdoctoral Fellow D´epartement de Physique Universit´ede Montr´eal Societies: American Astronomical Society International Astronomical Union Royal Astronomical Society Sigma Pi Sigma Florida Academy of Sciences Visiting Scientist: International Ultraviolet Explorer Satellite (NASA/Goddard) Kitt Peak National Observatory Mauna Kea Observatory Keck Observatory Hubble Space Telescope McDonald Observatory Proposal Reviewer: NSF / NASA / NOAO / NOVA (Dutch NSF) Referee: The Astrophysical Journal (Main Journal and Letters) Monthly Notices of the Royal Astronomical Society Astronomy and Astrophysics SCIENCE Publications of the Astronomical Society of the Pacific Astrophysics and Space Science Matthew A. Wood Curriculum Vitae Page 2 Major Grants: PI on grants totaling USD $1.9 million. Selected recent: NASA Kepler Mission (PI) \Cataclysmic Variables
  • Arxiv:1912.05202V2 [Gr-Qc]

    Arxiv:1912.05202V2 [Gr-Qc]

    Stellar structure models in modified theories of gravity: lessons and challenges Gonzalo J. Olmo Depto. de F´ısica Te´orica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Burjassot-46100, Valencia, Spain. Departamento de F´ısica, Universidade Federal da Para´ıba, 58051-900 Jo˜ao Pessoa, Para´ıba, Brazil. Diego Rubiera-Garcia Departamento de F´ısica Te´orica and IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain Aneta Wojnar N´ucleo Cosmo-ufes & PPGCosmo, Universidade Federal do Esp´ırito Santo, 29075-910, Vit´oria, ES, Brasil Laboratory of Theoretical Physics, Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia Abstract The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravita- tional interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar’s hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia.
  • A Mini Stellar Glossary

    A Mini Stellar Glossary

    A Mini Stellar Glossary This short glossary of elementary astronomical terms associated with stars is not intended to be complete or very detailed. It is meant mostly for those of you who have no earlier experience in the subject. For the most part, we only list terms not specifically treated in the main text. An excellent overall reference to this material is Mihalas, D., & Binney, J. 1981, Galactic Astronomy, 3d ed. (San Fran- cisco: Freeman & Co.) and, on a more elementary level, B¨ohm–Vitense,E. 1989, Introduction to Stellar Astrophysics,Vol.2(Stel- lar Atmospheres) (Cambridge: Cambridge University Press). 1. Stellar populations: These are useful shorthand designations for stars sharing common properties of kinematics, location in a galaxy, and com- position. a) Population I stars have a small scale height (confined to the disk of a spiral galaxy, if that’s where you’re looking), rotate with the disk, generally have a surface composition not too different from the sun’s, and have a large range of masses since the young ones are still on the main sequence. Also look for them in any galaxy having active star-forming regions. b) Population II stars usually have a very large scale height (mostly found in the halo of a spiral galaxy), high space velocities, are poor in metals, and are of low mass since the more massive stars have already evolved. Hence Pop II stars are old stars. c) Population III: These are stars that must have been around at the time when the first stars were forming. They should have contained no metals because none were produced in the Big Bang.
  • Arxiv:1007.2659V1 [Astro-Ph.SR] 15 Jul 2010 Aeteesasecletcrnmtr N Edsrb Why Describe Stars

    Arxiv:1007.2659V1 [Astro-Ph.SR] 15 Jul 2010 Aeteesasecletcrnmtr N Edsrb Why Describe Stars

    The Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Evolutionary and pulsational properties of white dwarf stars Leandro G. Althaus Alejandro H. Corsico´ Jordi Isern Enrique Garc´ıa–Berro· · · Received: October 22, 2018/ Accepted: October 22, 2018 Abstract White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. Since the coolest white dwarfs are very old objects, the present popula- tion of white dwarfs contains a wealth of information on the evolution of stars from birth to death, and on the star formation rate throughout the history of our Galaxy. Thus, the study of white dwarfs has potential applications to different fields of astrophysics. In partic- ular, white dwarfs can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar popu- lations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. Last but not least, since many white dwarf stars undergo pulsational instabili- ties, the study of their properties constitutes a powerful tool for applications beyond stellar astrophysics. In particular, white dwarfs can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. These potential applications of white dwarfs have led to a renewed interest in the cal- culation of very detailed evolutionary and pulsational models for these stars.
  • Examination Paper for FY2450 Astrophysics

    Examination Paper for FY2450 Astrophysics

    1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 31-05-2014 Examination time: 09:00 – 13:00 Permitted examination support material: Calculator, translation dictionary, printed or hand-written notes covering a maximum of one side of A5 paper. Other information: The exam is in three parts and part 1 is multiple choice. Answer all questions in all three parts. The percentage of marks awarded for each question is shown. An Appendix of useful information is provided at the end of the question sheet. Language: English Number of pages: 7 (including cover) Number of pages enclosed: 0 Checked by: ____________________________ Date Signature 2 Part 1. (total 30%) Part 1 is multiple choice. 3 marks will be awarded for each correct answer. No marks will be awarded for an incorrect or missing answer. On your answer sheet draw a table that looks something like, Question 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 Answer and insert your answer in the boxes. Only the answers will be marked. A B C D E The diagram above shows a colour (B-V) versus absolute visual magnitude (MV) plot for solar neighbourhood stars compiled from observations from the Hipparcos satellite. Five regions labelled A, B, C, D and E are highlighted. Which region on the HR diagram contains: (1.1) the stars with the smallest diameter (3%) (1.2) the stars that emit the greatest energy per second per unit surface area (3%) 3 (1.3) the stars with the largest diameter (3%) (1.4) the stars with the lowest mass (3%) (1.5) the main sequence stars with the smallest mass to luminosity ratio (3%) observations Star Spectral apparent observed parallax visual type magnitude colour distance half angle extinction mV (B-V)obs d p Av (mag) (mag) (pc) (arcsecs) (mag) A B0V +0.50 300 B A0V +7.6 +0.32 C F0V +10.8 0.0 D G0V +1.27 0.0250 E K0V 50 0.3 The table above lists some observed properties of five different main sequence stars labelled A, B, C, D and E.
  • Open Mroute-Dissertation.Pdf

    Open Mroute-Dissertation.Pdf

    The Pennsylvania State University The Graduate School Department of Astronomy and Astrophysics RADIO OBSERVATIONS OF THE BROWN DWARF- EXOPLANET BOUNDARY A Dissertation in Astronomy and Astrophysics by Matthew Philip Route 2013 Matthew Philip Route Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Matthew Philip Route was reviewed and approved* by the following: Alexander Wolszczan Evan Pugh Professor of Astronomy and Astrophysics Dissertation Advisor Chair of Committee Lyle Long Distinguished Professor of Aerospace Engineering, and Mathematics Director of the Computational Science Graduate Minor Program Kevin Luhman Associate Professor of Astronomy and Astrophysics John Mathews Professor of Electrical Engineering Steinn Sigurdsson Professor of Astronomy and Astrophysics Chair of the Graduate Program for the Department of Astronomy and Astrophysics Special Signatory Richard Wade Associate Professor of Astronomy and Astrophysics Donald Schneider Distinguished Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics *Signatures are on file in the Graduate School iii ABSTRACT Although exoplanets and brown dwarfs have been hypothesized to exist for many years, it was only in the last two decades that their existence has been directly verified. Since then, a large number of both types of substellar objects have been discovered; they have been studied, characterized, and classified. Yet knowledge of their magnetic properties remains difficult to obtain. Only radio emission provides a plausible means to study the magnetism of these cool objects. At the initiation of this research project, not a single exoplanet had been detected in the radio, and only a handful of radio emitting brown dwarfs were known.
  • Pleiades Low-Mass Brown Dwarfs: the Cluster L Dwarf Sequence

    Pleiades Low-Mass Brown Dwarfs: the Cluster L Dwarf Sequence

    A&A 458, 805–816 (2006) Astronomy DOI: 10.1051/0004-6361:20065124 & c ESO 2006 Astrophysics Pleiades low-mass brown dwarfs: the cluster L dwarf sequence G. Bihain1,2, R. Rebolo1,2,V.J.S.Béjar1,3, J. A. Caballero1,C.A.L.Bailer-Jones4, R. Mundt4, J. A. Acosta-Pulido1, and A. Manchado Torres1,2 1 Instituto de Astrofísica de Canarias, c/ Vía Láctea, s/n, 38205 La Laguna, Tenerife, Spain e-mail: [gbihain;rrl;zvezda;jap;amt]@ll.iac.es;[email protected] 2 Consejo Superior de Investigaciones Científicas, Spain 3 GTC Project, Instituto de Astrofísica de Canarias 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [calj;mundt]@mpia-hd.mpg.de Received 1 March 2006 / Accepted 3 August 2006 ABSTRACT Aims. We present a search for low-mass brown dwarfs in the Pleiades open cluster. The identification of Pleiades members fainter and cooler than those currently known allows us to constrain evolutionary models for L dwarfs and to extend the study of the cluster mass function to lower masses. 2 Methods. We conducted a 1.8 deg near-infrared J-band survey at the 3.5 m Calar Alto Telescope, with completeness Jcpl ∼ 19.0. The detected sources were correlated with those of previously available optical I-band images (Icpl ∼ 22). Using a J versus I − J colour–magnitude diagram, we identified 18 faint red L-type candidates, with magnitudes 17.4 < J < 19.7 and colours I − J > 3.2. If Pleiades members, their masses would span ∼0.040−0.020 M.