Neither Star Nor Planet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Ground-Based High Sensitivity Radio Astronomy at Decameter Wavelengths
"Planetary Radio Emissions IV" (Graz, 9/1996), H.O. Rucker et al. Eds., Austrian Acad. Sci. press, Vienna, p. 101-127, 1997 GROUND-BASED HIGH SENSITIVITY RADIO ASTRONOMY AT DECAMETER WAVELENGTHS Philippe Zarka1, Julien Queinnec1, Boris P. Ryabov2, Vladimir B. Ryabov2, Vyacheslav A. Shevchenko2, Alexei V. Arkhipov2, Helmut O. Rucker3 Laurent Denis4, Alain Gerbault4, Patrick Dierich5 and Carlo Rosolen5 1DESPA, CNRS/Observatoire de Paris, F-92195 Meudon, France 2Institute of RadioAstronomy, Krasnoznamennaya 4, Kharkov 310002, Ukraine 3Space Research Institute, Halbaerthgasse 1, Graz A-8010, Austria 4Station de RadioAstronomie de Nancay, USR B704, Observatoire de Paris, 18 Nançay, France 5ARPEGES, CNRS/Observatoire de Paris, F-92195 Meudon, France Abstract The decameter wave radio spectrum (~10-50 MHz) suffers a very high pollution by man- made interference. However, it is a range well-suited to the search for exoplanets and the study of planetary (especially Saturnian) lightning, provided that very high sensitivity (~1 Jansky) is available at high time resolution (0.1-1 second). Such conditions require a very large decameter radiotelescope and a broad, clean frequency band of observation. The latter can be achieved only through the use of a broadband multichannel-type receiving system, efficient data processing techniques for eliminating interference, and selection and integration of non-polluted frequency channels. This processing is then followed by an algorithm performing bursts detection and measuring their significance. These requirements have been met with the installation of an Acousto-Optical Spectrograph at the giant Ukrainian radiotelescope UTR-2, and four observations campaigns of Jupiter, Saturn, and the environment of nearby stars (including 51 Peg and 47 UMa) have been performed in 1995-96. -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3]. -
Search for X-Ray Emission from Bona-Fide and Candidate Brown
A&A manuscript no. (will be inserted by hand later) ASTRONOMY AND Your thesaurus codes are: ASTROPHYSICS 06(08.12.1; 08.12.2; 13.25.5) 11.9.2018 Search for X-ray emission from bona-fide and candidate brown dwarfs R. Neuh¨auser1, C. Brice˜no2, F. Comer´on3, T. Hearty1, E.L. Mart´ın4, J.H.M.M. Schmitt5, B. Stelzer1, R. Supper1, W. Voges1, and H. Zinnecker6 1 MPI f¨ur extraterrestrische Physik, Giessenbachstraße 1, D-85740 Garching, Germany 2 Yale University, Department of Physics, New Haven, CT 06520-8121, USA 3 European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany 4 Astronomy Department, University of California at Berkeley, Berkeley, CA 94720, USA 5 Universit¨at Hamburg, Sternwarte, Gojensbergweg 112, D-21029 Hamburg, Germany 6 Astrophysikalisches Institut, An der Sternwarte 16, D-14482 Potsdam, Germany Received 24 Sep 1998; accepted 10 Dec 1998 Abstract. Following the recent classification of the X- for a recent review. They continue to contract until elec- ray detected object V410 x-ray 3 with a young brown tron degeneracy halts further contraction. Depending on dwarf candidate (Brice˜no et al. 1998) and the identifica- metallicity and model assumptions made in for calculating tion of an X-ray source in Chamaeleon as young bona- theoretical evolutionary tracks, the limiting mass between fide brown dwarf (Neuh¨auser & Comer´on 1998), we inves- normal stars and brown dwarfs is ∼ 0.075 to 0.08 M⊙ tigate all ROSAT All-Sky Survey and archived ROSAT (Burrows et al. 1995, 1997, D’Antona & Mazzitelli 1994, PSPC and HRI pointed observations with bona-fide or 1997, Allard et al. -
THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 44 — 15 May 1996 Editor: Bo Reipurth ([email protected]) Abstracts of recently accepted papers Lifetimes of Ultracompact HII Regions: High Resolution Methyl Cyanide Observations R.L. Akeson & J.E. Carlstrom Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA We observed the dense molecular cores associated with two ultracompact HII regions, G5.89 + 0.4 and G34.3 + 0.2, in the J=6–5 transitions of CH3CN to probe the temperature and density of the gas. Simultaneously, each region was observed in the J=1–0 transition of a CO isotope to probe the molecular column density. The molecular cores are found to have densities ∼ 106 cm−3 and kinetic temperatures of 90 K and 250 K, respectively. We also find possible evidence for infall of molecular gas toward the HII regions. The lifetime of the HII region ultracompact phase is critically dependent on the properties of the surrounding molecular gas. Based on the number of ultracompact HII regions versus the total number of O stars, it has been suggested that the lifetime of the ultracompact phase is inconsistent with spherical expansion confined only by the ambient medium. We show that for the molecular cloud parameters given above and including the effect of the shell of neutral material formed by the expansion, pressure confinement by the ambient medium may significantly increase the lifetime of the ultracompact phase of the HII regions. Accepted by Ap. J. Probing the initial conditions of star formation: The structure of the prestellar core L1689B P. -
Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD -
Arxiv:1912.05202V2 [Gr-Qc]
Stellar structure models in modified theories of gravity: lessons and challenges Gonzalo J. Olmo Depto. de F´ısica Te´orica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Burjassot-46100, Valencia, Spain. Departamento de F´ısica, Universidade Federal da Para´ıba, 58051-900 Jo˜ao Pessoa, Para´ıba, Brazil. Diego Rubiera-Garcia Departamento de F´ısica Te´orica and IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain Aneta Wojnar N´ucleo Cosmo-ufes & PPGCosmo, Universidade Federal do Esp´ırito Santo, 29075-910, Vit´oria, ES, Brasil Laboratory of Theoretical Physics, Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia Abstract The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravita- tional interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar’s hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. -
Extra-Solar Planets 2
REVIEW ARTICLE Extra-solar planets M A C Perryman Astrophysics Division, European Space Agency, ESTEC, Noordwijk 2200AG, The Netherlands; and Leiden Observatory, University of Leiden, The Netherlands Abstract. The discovery of the first extra-solar planet surrounding a main-sequence star was announced in 1995, based on very precise radial velocity (Doppler) measurements. A total of 34 such planets were known by the end of March 2000, and their numbers are growing steadily. The newly-discovered systems confirm some of the features predicted by standard theories of star and planet formation, but systems with massive planets having very small orbital radii and large eccentricities are common and were generally unexpected. Other techniques being used to search for planetary signatures include accurate measurement of positional (astrometric) displacements, gravitational microlensing, and pulsar timing, the latter resulting in the detection of the first planetary mass bodies beyond our Solar System in 1992. The transit of a planet across the face of the host star provides significant physical diagnostics, and the first such detection was announced in 1999. Protoplanetary disks, which represent an important evolutionary stage for understanding planet formation, are being imaged from space. In contrast, direct imaging of extra-solar planets represents an enormous challenge. Long-term efforts are directed towards infrared space interferometry, the detection of Earth-mass planets, and measurement of their spectral characteristics. Theoretical atmospheric models provide predictions of planetary temperatures, radii, albedos, chemical condensates, and spectral features as a function of mass, composition and distance from the host star. Efforts to characterise planets occupying the ‘habitable zone’, in which liquid water may be present, and indicators of the arXiv:astro-ph/0005602v1 31 May 2000 presence of life, are advancing quantitatively. -
Bibliography from ADS File: Doyle.Bib June 27, 2021 1
Bibliography from ADS file: doyle.bib Nelson, C. J., Doyle, J. G., & Erdélyi, R., “On the relationship between magnetic August 16, 2021 cancellation and UV burst formation”, 2016MNRAS.463.2190N ADS Hill, A., Byrnes, P., Fitzsimmons, J., et al., “A prototype of the NFIRAOS to instrument thermo-mechanical interface”, 2016SPIE.9912E..02H ADS Murphy, T., Kaplan, D. L., Stewart, A. J., et al., “The ASKAP Variables and Reid, A., Mathioudakis, M., Doyle, J. G., et al., “Magnetic Flux Cancellation in Slow Transients (VAST) Pilot Survey”, 2021arXiv210806039M ADS Ellerman Bombs”, 2016ApJ...823..110R ADS Vilangot Nhalil, N., Nelson, C. J., Mathioudakis, M., Doyle, J. G., & Ramsay, Shetye, J., Doyle, J. G., Scullion, E., et al., “High-cadence observations of G., “Power-law energy distributions of small-scale impulsive events on the spicular-type events on the Sun”, 2016A&A...589A...3S ADS active Sun: results from IRIS”, 2020MNRAS.499.1385V ADS Wedemeyer, S., Bastian, T., Brajša, R., et al., “Solar Science with the At- Ramsay, G., Doyle, J. G., & Doyle, L., “TESS observations of southern ultrafast acama Large Millimeter/Submillimeter Array-A New View of Our Sun”, rotating low-mass stars”, 2020MNRAS.497.2320R ADS 2016SSRv..200....1W ADS Doyle, L., Ramsay, G., & Doyle, J. G., “Superflares and variability in solar- Shetye, J., Doyle, J. G., Scullion, E., Nelson, C. J., & Kuridze, D., “High Ca- type stars with TESS in the Southern hemisphere”, 2020MNRAS.494.3596D dence Observations and Analysis of Spicular-type Events Using CRISP On- ADS board SST”, 2016ASPC..504..115S ADS Srivastava, A. K., Rao, Y. K., Konkol, P., et al., “Velocity Response of the Ob- Park, S. -
Brown Dwarfs 3
BROWN DWARFS B. R. OPPENHEIMER, S. R. KULKARNI Palomar Observatory, California Institute of Technology and J. R. STAUFFER Harvard–Smithsonian Center for Astrophysics After a discussion of the physical processes in brown dwarfs, we present a complete, precise definition of brown dwarfs and of planets inspired by the internal physics of objects between 0.1 and 0.001 M⊙. We discuss observa- tional techniques for characterizing low-luminosity objects as brown dwarfs, including the use of the lithium test and cooling curves. A brief history of the search for brown dwarfs leads to a detailed review of known isolated brown dwarfs with emphasis on those in the Pleiades star cluster. We also discuss brown dwarf companions to nearby stars, paying particular attention to Gliese 229B, the only known cool brown dwarf. I. WHAT IS A BROWN DWARF? A main sequence star is to a candle as a brown dwarf is to a hot poker recently removed from the fire. Stars and brown dwarfs, although they form in the same manner, out of the fragmentation and gravita- tional collapse of an interstellar gas cloud, are fundamentally different because a star has a long-lived internal source of energy: the fusion of hydrogen into helium. Thus, like a candle, a star will burn constantly until its fuel source is exhausted. A brown dwarf’s core temperature is insufficient to sustain the fusion reactions common to all main sequence stars. Thus brown dwarfs cool as they age. Cooling is perhaps the single most important salient feature of brown dwarfs, but an understanding of their definition and their observational properties requires a review of basic stellar physics. -
Chapter 9: the Life of a Star
Chapter 9: The Life of a Star Introduction Massive stars explode when they die, releasing as much light as an entire galaxy of stars. Such an explosion is called a supernova. It can catapult a star from obscurity to spectacular prominence in the night sky. A supernova that occurred in the year 1006 (SN 1006) shone so brightly that objects could be seen by its light for weeks. A Muslim astrologer, Ali ibn Ridwan of Cairo, recorded the event. So did a monk named Hepidannus, of St. Gall, Switzerland. The records of these two men locate SN 1006 in the direction of the constellation Lupus in the Southern Hemisphere. Japanese and Chinese sources more precisely locate the supernova near kappa Lupi and one degree west of beta Lupi. It was the The Crab Nebula and Pulsar Composite Image (Chandra, Hubble, Spitzer) brightest star observed in all of recorded history. It was probably visible for three months during daylight, and only after three years did it fade below naked-eye visibility at night. The remnant left behind from the explosion has a low luminosity and large size, and is the faintest remnant of the five well-established historical supernovae seen during the last one thousand years. The remnant emits in the radio and X-ray bands and is thought to be 2300 light-years away. On July 4, 1054, Chinese and Japanese astronomers recorded a bright star in the constellation Taurus which had not been visible before. At maximum brightness it was comparable to Jupiter, and remained visible to the unaided eye for 653 days in the night sky. -
Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model
Scan to know paper details and author's profile Cosmic Ray Origins: Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model Satyavarapu Naga Parameswara Gupta (snp Gupta) ABSTRACT The high Energy Cosmic Rays can have multiple origins. In this paper we will consider their origins due to Frequency Upshifting of distant electro- magnetic radiation coming from distant galaxies or the radiation coming from stars inside the Milkyway, by using the Dynamic universe Model. We will see a simulation using a Subbarao path or Multiple bending of light rays, where a ray started at some star will go on bend and its frequency gets upshifted and gains energy at every star in its path. We also will present a table of types of stars that are existing in Milkyway which will be used in next subsequent papers. Keywords: cosmic rays, origins of cosmic rays, dynamic universe model, sita calculations, multiple bending of light, frequency upshifting of electromagnetic radiation, subbarao paths. Classification: FOR Code: 240102 Language: English LJP Copyright ID: 925624 Print ISSN: 2631-8490 Online ISSN: 2631-8504 London Journal of Research in Science: Natural and Formal 465U Volume 20 | Issue 3 | Compilation 1.0 © 2020. Satyavarapu Naga Parameswara Gupta (snp Gupta). This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Cosmic Ray Origins: Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model Satyavarapu Naga Parameswara Gupta (snp Gupta) ____________________________________________ ABSTRACT 2018.[4][5] ); Dynamic Universe Model proposes three additional sources like frequency upshifting The high Energy Cosmic Rays can have multiple of light rays, astronomical jets from Galaxy origins.