Contributions to Zoology, 70 (1) 23-39 (2001)

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to Zoology, 70 (1) 23-39 (2001) Contributions to Zoology, 70 (1) 23-39 (2001) SPB Academic Publishing bv, The Hague Hierarchical analysis of mtDNA variation and the use of mtDNA for isopod (Crustacea: Peracarida: Isopoda) systematics R. Wetzer Invertebrate Zoology, Crustacea, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA, [email protected] Keywords: 12S rRNA, 16S rRNA, COI, mitochondrial DNA, isopod, Crustacea, molecular Abstract Transition/transversion bias 30 Discussion 32 Nucleotide composition 32 Carefully collected molecular data and rigorous analyses are Transition/transversionbias 34 revolutionizing today’s phylogenetic studies. Althoughmolecular Sequence divergences 34 data have been used to estimate various invertebrate phylogenies Rate variation across 34 lor lineages more than a decade,this is the first ofdifferent study survey Conclusions 35 of regions mitochondrial DNA in isopod crustaceans assessing Acknowledgements 36 sequence divergence and hence the usefulness ofthese regions References 36 to infer phylogeny at different hierarchical levels. 1 evaluate three loci fromthe mitochondrial ribosomal RNAs genome (two (12S, 16S) and oneprotein-coding (COI)) for their appropriateness in inferring isopod phylogeny at the suborder level and below. Introduction The patterns are similar for all three loci with the most speciose suborders ofisopods also having the most divergent mitochondrial The crustacean order Isopoda is important and nucleotide sequences. Recommendations for designing an or- because it has a broad dis- der- or interesting geographic suborder-level molecular study in previously unstudied groups of Crustacea tribution and is diverse. There would include: (1) collecting a minimum morphologically are of two-four species or genera thoughtto be most divergent, (2) more than 10,000 described marine, freshwater, sampling the across of interest as equally as possible in group and terrestrial species, ranging in length from 0.5 terms of taxonomic representation and the distributionofspecies, mm to 440 mm. are inhabitants of (3) They common several and surveying genes, (4) carrying out preliminary nearly all environments, and most are free- alignments, checking data for nucleotide bias, transition/ groups transversion ratios, and saturation levels before committing to living. Many are scavengers or grazers, although a large-scale sequencing effort. some are temporary orobligatory parasites of fishes and other crustaceans. Many species are shallow well water inhabitants, but some taxa are adapted Contents to life in the deep sea, subterranean groundwater, and thermal springs. Isopods are members of the Introduction 23 superorder Peracarida, and a synapomorphy of the Materials and methods 24 superorder is a brooding life style (there are no Sources of specimens and DNA preservation 24 larvae; is direct with DNA extraction, free-living development young primers, PCR amplification, and with the adult and thus there sequencing 26 emerging morphology) Sequence alignment strategy 26 is purported poor dispersal ability. Determining nucleotide composition, sequence The first isopod was described in 1764 (Asellus and divergence, transition/transversion bias 26 and the and taxo- GenBank .Geoffrey), group’s systematics submission 27 Present Results nomy has been bantered about ever since. 27 Nucleotide workers ten and the composition 27 recognize suborders, over past Sequence divergence 30 twenty years isopods have received considerable Downloaded from Brill.com10/08/2021 09:52:04AM via free access 24 R. Wetzer - mtDNA variation in isopods morphological systematic attention, with ordinal conserved than others (Cummings et al. 1995). Un- summaries provided by Bowman and Abele 1982, derstanding basic parameters such as patterns of Schram nucleotide substitution and variation Brusca and Iverson 1985, 1986, Wiigele rate among and Wilson sites is for of 1989, Brusca and 1991. Morphological important proper application DNA character-based, cladistic analyses have been carried sequence datato molecular systematic studies (Yang out for several isopod taxa (e.g., idoteid and arcturid 1994, Yang and Kumar 1996, Blouin et al. 1998, valviferans, Brusca 1984, Poore 1995; corallanid Whitfield and Cameron 1998). flabellifcrans, Delaney 1989; phreatoicids, Wiigele Mitochondrial 12S rRNA, 16S rRNA, and COI attractive 1989; janirid asellotans, Wilson 1994; serolids, genes are to crustacean evolutionary bio- Brandt 1988, 1992). logists because universal and crustacean-specific for Molecular techniques have invigorated crustacean primers are readily available polymerase chain the last dozen with reaction Saiki et al. and systematics over years primary (PCR; 1988) amplification, contributions stemming from higher-level system- amplified gene fragment sizes are amenable to atics. A comprehensive list of molecular phyloge- manual and automated sequencing techniques. Com- netic studies carried date for the known for these out to Crustacea parative arthropod sequences are the level and in Table and sufficient and at species higher appears 1. genes extracting adequate qual- No published studies exist within the Isopoda, ity DNA from ethanol-preserved specimens of although several mitochondrial (mt) DNA studies highly variable preservation are attainable goals considerable based on the I6S ribosomal RNA (rRNA) gene for organisms with a range in body in of Ph.D. size. of are progress (suborders Isopoda, Dreyer, By describing patterns sequence divergence dissertation, Ruhr-Universitat Bochum; species of within and among populations, species, genera, Thermosphaeroma, Davis et al., in review; and families, and suborders of isopods, the appropriate- Universite mitochondrial genera and families of Oniscidea, Michel, ness of three genes for evolutionary de levels be Poitiers). questions at various taxonomic can deter- As researchers turn to molecular methods, mined. mtDNA is being used to address both higher-level systematics and population-level questions. How- there when ever, are pitfalls using inappropriate Material and methods sequence data for phylogenetic inference. Selecting a genefor phylogenetic analysis requires matching Sources of specimens and DNA preservation the level of sequence variation to the desired taxo- nomic level Several have of study. recent papers The taxa used at each taxonomic (hierarchical) level focused the identificationof that useful shown on genes are of comparison are in Table 2. The suborder for at different taxonomic Flabellifera be phylogenetic analysis may not a monophyletic taxon levels (Brower and DeSallc 1994, Friedlander et (Kussakin 1979, Bruce 1981, Wagele 1989, Brusca al. Simon al. Sullivan 1994, Graybeal 1994, et 1994, and Wilson 1991), and relationships of the families 12S- and 16S rRNA et al. 1995). Mitochondrial included within the Flabellifera have also been genes and the protein-coding cytochrome oxidase controversial. In this study flabelliferan families c subunit I have been studied (COI) gene extensively are considered separate taxonomic entities and in within recently of (<5 diverged lineages arthropods figures are referred to by the family name followed million Sea urchins and butterflies years ago, mya). by “(Flabellifera).” Most specimens were collected exhibit similar rates for divergence a given gene, by the author; additional specimens were donated with the linear rate with time and 1.8-2.3% diver- by colleagues (see Acknowledgements). Most speci- million gence per years (Bermingham and Lessios mens were fixed and preserved in 95% ethanol, 1993, Brower 1994). However, when more ancient and in some instances DNA was extracted from (>75 of lineages mya) vertebrates are compared, specimens fixed in 70-75% ethanol. The latter different mtDNA with genes vary considerably specimens had body sizes >10 mm. respect to divergence rate, i.e., some genes are more Downloaded from Brill.com10/08/2021 09:52:04AM via free access Contributions to Zoology, 70 (1) - 2001 25 Table I. Molecular phylogenetic studies within Crustacea at the species level and higher with studies groupedby taxa. Genes studied include nuclear 18S rRNA, mitochondrial and 12S- 16S rRNAs, and protein-coding mitochondrial cytochrome oxidase c subunit I (COl) gene fragments. Taxon Hierarchical Reference Description Gene Level Crustacea class class Abele et al. 1989 Pentastomidia are Crustacea 18S18S rRNA Crustacea class Spears and Abele 1997 phylogeny of Crustacea 18S rRNA Crustacea class Spears and Abele 19991999 foliaceous limbs: Branchiopoda, Cephalocarida, and Phyllocarida I8S18S rRNA Branchiopoda class MannerBanner and Fugate 1997 phylogeny ofbranchiopods 12S rRNA Branchiopoda class SpearsSpears and Abele 2000 phylogeny ofbranchiopodsbranchiopods 18S rRNA Branchiopoda: Cladocera order Lehman etct al. 1995 phylogeny ofDaphnia 12S rRNA Branchiopoda: Cladocera subgenus/speciessubgenus/species Colbourne andand Hebert 1996 Daphnia 12S12S rRNA Branchiopoda: Cladocera speciesspecies Taylor et al.al, 1998 cryptic endemism of Daphnia 16S16S rRNA Maxillopoda class Abele et al. 1992 class relationships ISSrRNA18S rRNA Maxillopoda: Maxillopoda: Cirripedia suborder Spears et al. 1994 thecostracan relationships I8S rRNA Maxillopoda: Cirripedia speciesspecies vanSyocvanSyoc 1995 Pollicipes diversitydiversity COI Mizrahi of Maxillopoda:Maxillopoda; Cirripedia genus Mizrahi et al. 1998 phylogenetic position ofIbla 18S18S rRNA select thoracican Maxillopoda: Cirripedia family/genus Harris et al. 2000 barnacles 18S rRNA Maxillopoda: Perl-Treves
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Downloaded from Brill.Com10/02/2021 05:23:45PM Via Free Access 24 R
    Contributions to Zoology, 70 (1) 23-39 (2001) SPB Academic Publishing bv, The Hague Hierarchical analysis of mtDNA variation and the use of mtDNA for isopod (Crustacea: Peracarida: Isopoda) systematics R. Wetzer Invertebrate Zoology, Crustacea, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA, [email protected] Keywords: 12S rRNA, 16S rRNA, COI, mitochondrial DNA, isopod, Crustacea, molecular Abstract Transition/transversion bias 30 Discussion 32 Nucleotide composition 32 Carefully collected molecular data and rigorous analyses are Transition/transversionbias 34 revolutionizing today’s phylogenetic studies. Althoughmolecular Sequence divergences 34 data have been used to estimate various invertebrate phylogenies Rate variation across 34 lor lineages more than a decade,this is the first ofdifferent study survey Conclusions 35 of regions mitochondrial DNA in isopod crustaceans assessing Acknowledgements 36 sequence divergence and hence the usefulness ofthese regions References 36 to infer phylogeny at different hierarchical levels. 1 evaluate three loci fromthe mitochondrial ribosomal RNAs genome (two (12S, 16S) and oneprotein-coding (COI)) for their appropriateness in inferring isopod phylogeny at the suborder level and below. Introduction The patterns are similar for all three loci with the most speciose suborders ofisopods also having the most divergent mitochondrial The crustacean order Isopoda is important and nucleotide sequences. Recommendations for designing an or- because it has a broad dis- der- or interesting geographic suborder-level molecular study in previously unstudied groups of Crustacea tribution and is diverse. There would include: (1) collecting a minimum morphologically are of two-four species or genera thoughtto be most divergent, (2) more than 10,000 described marine, freshwater, sampling the across of interest as equally as possible in group and terrestrial species, ranging in length from 0.5 terms of taxonomic representation and the distributionofspecies, mm to 440 mm.
    [Show full text]
  • Download Full Article 6.1MB .Pdf File
    Memoirs of the Museum of Victoria 59(2): 457–529 (2002) NEW PHREATOICIDEA (CRUSTACEA: ISOPODA) FROM GRAMPIANS NATIONAL PARK, WITH REVISIONS OF SYNAMPHISOPUS AND PHREATOICOPSIS GEORGE D.F. WILSON AND STEPHEN J. KEABLE Australian Museum, Sydney, NSW 2010, Australia ([email protected]; [email protected]) Abstract Wilson, G.D.F. and Keable S.J. 2002. New Phreatoicidea (Crustacea: Isopoda) from Grampians National Park, with revisions of Synamphisopus and Phreatoicopsis. Memoirs of Museum Victoria 59(2): 457–529. The Grampians National Park, Victoria, has substantial environmental significance owing to the diversity of endemic species restricted to this reserve. We reinforce this observation by reporting six new species and two new genera of isopod crustaceans endemic to the Grampians, and redescribe two previously known Victorian species representing formerly monotypic genera. These isopods are members of the ancient suborder Phreatoicidea, and show diverse morphologies. To demonstrate the basis for the classification of these species, we present a phylogenetic analysis of exemplar species of most extant genera of Phreatoicidea. Our analysis supports the sister group relationship of Phreatoicopsis and Synamphisopus. We observe a rudimentary accessory flagellum on the antennulae of both genera, but this isopod plesiomorphy optimises on the cladograms as a reversal. Two new genera, Naiopegia gen. nov. and Gariwerdeus gen. nov., are members of the Phreatoicidae, but are distinct from any described taxa in this family. Various metazoan and protist epibionts are commonly encoun- tered on these isopods. These species are described using detailed scanning electron microscopy and inked drawings: family Amphisopodidae, Phreatoicopsis raffae sp. nov., Phreatoicopsis terricola Spencer and Hall, 1897, Synamphisopus doegi sp.
    [Show full text]
  • Correcting Misconceptions About the Names Applied to Tasmania’S Giant Freshwater Crayfish Astacopsis Gouldi (Decapoda: Parastacidae)
    Papers and Proceedings of the Royal Society of Tasmania, Volume 152, 2018 21 CORRECTING MISCONCEPTIONS ABOUT THE NAMES APPLIED TO TASMANIA’S GIANT FRESHWATER CRAYFISH ASTACOPSIS GOULDI (DECAPODA: PARASTACIDAE) by Terrence D. Mulhern (with three plates) Mulhern, T.D. 2018 (14:xii) Correcting misconceptions about the names applied to Tasmania’s Giant Freshwater Crayfsh Astacopsis gouldi (Decapoda:Parastacidae). Papers and Proceedings of the Royal Society of Tasmania 152: 21–26. https://doi.org/10.26749/rstpp.152.21 ISSN 0080–4703. Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, The University of Melbourne, Vic 3010, Australia. Email: [email protected] Tasmania is home to around 35 species of freshwater crayfsh, all but three of which are endemic. Among the endemic freshwater crayfsh, there are three large stream-dwelling species: the Giant Freshwater Crayfsh, Astacopsis gouldi – the world’s largest freshwater invertebrate, the medium-sized A. tricornis and smaller A. franklinii. Errors and confusion surrounding the appropriate Aboriginal names for these species, and the origin and history of the scientifc name of Astacopsis gouldi are outlined. Key Words: Tasmanian freshwater crayfsh, giant freshwater lobster, Giant Freshwater Crayfsh, Astacopsis gouldi Aboriginal words, lutaralipina, tayatitja, scientifc names, William Buelow Gould, Charles Gould. INTRODUCTION tribe in the far south. Plomley also lists a further two variants from Joseph Milligan’s later vocabulary: ‘tayatea’ (Oyster Bay) Tasmania is home to three species of large stream-dwelling and ‘tay-a-teh’ (Bruny Island/South) (Milligan 1859). It is freshwater crayfsh assigned to the endemic genus Astacopsis. important to note that these were English transliterations of Of these three species, Astacopsis gouldi Clark, 1936, known Aboriginal words, as heard by the recorders, none of whom commonly as the Giant Freshwater Crayfsh, or ‘lobster’, is were trained linguists, and interpretation of the signifcance the world’s largest freshwater invertebrate.
    [Show full text]
  • The Diversity of Terrestrial Isopods in the Natural Reserve “Saline Di Trapani E Paceco” (Crustacea, Isopoda, Oniscidea) in Northwestern Sicily
    A peer-reviewed open-access journal ZooKeys 176:The 215–230 diversity (2012) of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco”... 215 doi: 10.3897/zookeys.176.2367 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The diversity of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco” (Crustacea, Isopoda, Oniscidea) in northwestern Sicily Giuseppina Messina1, Elisa Pezzino1, Giuseppe Montesanto1, Domenico Caruso1, Bianca Maria Lombardo1 1 University of Catania, Department of Biological, Geological and Environmental Sciences, I-95124 Catania, Italy Corresponding author: Bianca Maria Lombardo ([email protected]) Academic editor: S. Sfenthourakis | Received 15 November 2011 | Accepted 17 February 2012 | Published 20 March 2012 Citation: Messina G, Pezzino E, Montesanto G, Caruso D, Lombardo BM (2012) The diversity of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco” (Crustacea, Isopoda, Oniscidea) in northwestern Sicily. In: Štrus J, Taiti S, Sfenthourakis S (Eds) Advances in Terrestrial Isopod Biology. ZooKeys 176: 215–230. doi: 10.3897/zookeys.176.2367 Abstract Ecosystems comprising coastal lakes and ponds are important areas for preserving biodiversity. The natural reserve “Saline di Trapani e Paceco” is an interesting natural area in Sicily, formed by the remaining strips of land among salt pans near the coastline. From January 2008 to January 2010, pitfall trapping was conducted in five sampling sites inside the study area. The community of terrestrial isopods was assessed using the main diversity indices. Twenty-four species were collected, only one of them endemic to west- ern Sicily: Porcellio siculoccidentalis Viglianisi, Lombardo & Caruso, 1992. Two species are new to Sicily: Armadilloniscus candidus Budde-Lund, 1885 and Armadilloniscus ellipticus (Harger, 1878).
    [Show full text]
  • Journal of the Helminthological Society of Washington 63(2) 1996
    July 1996 Number 2 Of of Washington A semiannual journal of research devoted to Helminthology and all branches of Parasitology Supported in part by the Brayton H. Ransom Memorial Trust Fund D. C. KRITSKY, W. A. :B6EC3ER, AND M, JEGU. NedtropicaliMonogehoidea/lS. An- — cyrocephalinae (Dactylogyridae) of Piranha and Their Relatives (Teleostei, JSer- rasalmidae) from Brazil and French Guiana: Species of Notozothecium Boeger and Kritsky, 1988, and Mymarotheciumgem. n. ..__ _______ __, ________ ..x,- ______ .s.... A. KOHN, C. P. SANTOS, AND-B. LEBEDEV. Metacdmpiella euzeti gen. n., sp, n., and I -Hargicola oligoplites~(Hargis, 1951) (Monogenea: Allodiscpcotylidae) from Bra- " zilian Fishes . ___________ ,:...L".. _______ j __ L'. _______l _; ________ 1 ________ _ __________ ______ _ .' _____ . __.. 176 C. P. SANTO?, T. SOUTO-PADRGN, AND R. M. LANFREDI. Atriasterheterodus (Levedev and Paruchin, 1969) and Polylabris tubicimts (Papema and Kohn, 1964) (Mono- ' genea) from Diplodus argenteus (Val., 1830) (Teleostei: Sparidae) from Brazil 181 . I...N- CAIRA AND T. BARDOS. Further Information on :.Gymnorhynchus isuri (Trypa- i/:norhyncha: Gymnorhynchidae) from the Shortfin Make Shark ...,.'. ..^_.-"_~ ____. ; 188 O. M. AMIN AND W. L.'MmcKLEY. Parasites of Some Fisji Introduced into an Arizona Reservoir, with Notes on Introductions — . ____ : ______ . ___.i;__ L____ _ . ______ :___ _ .193 O. M. AMIN AND O. SEY. Acanthocephala from Arabian Gulf Fishes off Kuwait, with 'Descriptions of Neoechinorhynchus dimorphospinus sp. n. XNeoechinorhyrichi- dae), Tegorhyrichus holospinosus sp. n. (l\lio&&ntid&e),:Micracanthorynchina-ku- waitensis sp. n. (Rhadinorhynchidae), and Sleriidrorhynchus breviclavipraboscis gen. n., sp. p. (Diplosentidae); and Key to Species of the Genus Micracanthor- .
    [Show full text]
  • Ancient Endemism Among Freshwater Isopods (Crustacea^ Phreatoicidea)
    Ancient endemism among freshwater isopods (Crustacea^ Phreatoicidea) George D. F. Wilson1 and Richard T. Johnson1 Centre for Evolutionary Research, The Australian Museum, 6 College Street, Sydney, New South Wales 2000 Ancient clades with restricted geographic distributions have been found in the isopod crustacean suborder Phreatoicidea. These isopods colonized fresh water in Gondwana by the Triassic Era and today are restricted to permanent groundwaters. A phylogenetic analysis of 21 exemplar species showed that major cladogenic events took place prior to the fragmentation of Gondwana. Nichollsia, a genus restricted to India, was deeply nested within a Western Australian and Victorian clade. The Phreatoicidae branched off early in all cladograms, with Australian and New Zealand sister clades. Some clades may be closely associated with Gondwanan landmasses that were subdivided by shallow Cretaceous seas. INTRODUCTION distinct genetic forms known from the South Australian artesian springs of the Lake Eyre The Phreatoicidea are the earliest derived supergroup (M. Adams, Environmental Report, isopod Crustacea (Brusca and Wilson 1991), Kinhill Engineers Pty Ltd); Hypsimetopus sp. appearing in the marine fossil record during from near Zeehan, Tasmania, possibly the Carboniferous (~325 mybp: Hessler conspecific with H. intrusor Sayce 1902 but 1969; Schram 1970, 1974). Phreatoicideans variation has not been fully evaluated; cf. invaded fresh waters of the Gondwanan Hyperoedesipus sp. from the Pilbara region supercontinent by the Triassic (Protamphisopus of Western Australia, a new genus with wianamattensis (Chilton 1918), see Nicholls presumed affinities to H. plumosus Nicholls 1943) and subsequently became extinct in the and Milner 1923. The Tasmanian genera oceans. Today, phreatoicideans are restricted are poorly defined but are labelled in Figure to permanent fresh waters and occur in 1 to indicate the possible phreatoicidean Australia as well as on a few other continental diversity of this area.
    [Show full text]
  • The Development and Improvement of Instructions
    PHYLOGEOGRAPHIC PATTERNS OF TYLOS (ISOPODA: ONISCIDEA) IN THE PACIFIC REGION BETWEEN SOUTHERN CALIFORNIA AND CENTRAL MEXICO, AND MITOCHONDRIAL PHYLOGENY OF THE GENUS A Thesis by EUN JUNG LEE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Luis A. Hurtado Mariana Mateos Committee Member, James B. Woolley Head of Department, Michael P. Masser December 2012 Major Subject: Wildlife and Fisheries Science Copyright 2012 Eun Jung Lee ABSTRACT Isopods in the genus Tylos are distributed in tropical and subtropical sandy intertidal beaches throughout the world. These isopods have biological characteristics that are expected to severely restrict their long-distance dispersal potential: (1) they are direct developers (i.e., as all peracarids, they lack a planktonic stage); (2) they cannot survive in the sea for long periods of immersion (i.e., only a few hours); (3) they actively avoid entering the water; and (4) they are restricted to the sandy intertidal portion that is wet, but not covered by water. Because of these traits, high levels of genetic differentiation are anticipated among allopatric populations of Tylos. We studied the phylogeographic patterns of Tylos in the northern East Pacific region between southern California and central Mexico, including the Gulf of California. We discovered high levels of cryptic biodiversity for this isopod, consistent with expectations from its biology. We interpreted the phylogeographic patterns of Tylos in relation to past geological events in the region, and compared them with those of Ligia, a co-distributed non-vagile coastal isopod.
    [Show full text]
  • CURRICULUM VITAE Stephen M
    CURRICULUM VITAE Stephen M. Shuster Updated: 25 September 2012 Present Address: Department of Biological Sciences, Northern Arizona University; Box 5640, Flagstaff, AZ 86011-5640 Telephone: office: (928) 523-9302, 523-2381; laboratory: (928) 523-4641; FAX: (928) 523-7500; Email: [email protected]; Webpage: http://www4.nau.edu/isopod/ Education: Ph.D. Department of Zoology, University of California, Berkeley, 1987. M.S. Department of Biology, University of New Mexico, Albuquerque, 1979. B.S. Department of Zoology, University of Michigan, Ann Arbor, 1976. Academic Positions 2001-Present Professor of Invertebrate Zoology; Curator of Marine Invertebrates and Molluscs, Department of Biological Sciences, Northern Arizona University. 1995-2001 Associate Professor, Department of Biological Sciences, Northern Arizona University. 1990-95 Assistant Professor, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ. 1987-88 Visiting Assistant Professor, Department of Biology, University of California, Riverside, CA. 1979-81 Academic Instructor, Department of Biology, University of Albuquerque, Albuquerque, NM. 1979 Program Specialist and Instructor, Human Anatomy and Physiology, Presbyterian Hospital School of Nursing, Albuquerque, NM. Postdoctoral Research Experience 1988-90 NIH grant GM 22523-14, Post-doctoral Research Associate with Dr. Michael J. Wade, "Evolution in structured populations." University of Chicago. 1987-88 NSF grant BSR 87-00112, Post-doctoral Research Associate with Dr. Clay A. Sassaman, "A genetic analysis of male alternative reproductive behaviors in a marine isopod crustacean," University of California, Riverside. Fellowships and Grants ($7.1M since 1990): 2012 NAU Interns to Scholars Program, One student supported. 2012 Global Course Development Support, “A Field Course in Saipan,” Northern Arizona University, $4.5K. 2011 Global Learning Initiative Grant, “Research Internships at the University of Bordeaux, France,” Northern Arizona University, Co-PIs Patricia Frederick.
    [Show full text]
  • Phylogeny and Biogeography of the Freshwater Crayfish Euastacus
    Molecular Phylogenetics and Evolution 37 (2005) 249–263 www.elsevier.com/locate/ympev Phylogeny and biogeography of the freshwater crayWsh Euastacus (Decapoda: Parastacidae) based on nuclear and mitochondrial DNA Heather C. Shull a, Marcos Pérez-Losada a, David Blair b, Kim Sewell b,c, Elizabeth A. Sinclair a, Susan Lawler d, Mark Ponniah e, Keith A. Crandall a,¤ a Department of Integrative Biology, Brigham Young University, Provo, UT 84602-5181, USA b School of Tropical Biology, James Cook University, Townsville, Qld, Australia c Centre for Microscopy and Microanalysis, University of Queensland, Qld 4072, Australia d Department of Environmental Management and Ecology, La Trobe University, Wodonga, Vic. 3689, Australia e Australian School of Environmental Studies, GriYth University, Nathan, Qld 4111, Australia Received 17 November 2004; revised 7 April 2005; accepted 29 April 2005 Available online 18 July 2005 Abstract Euastacus crayWsh are endemic to freshwater ecosystems of the eastern coast of Australia. While recent evolutionary studies have focused on a few of these species, here we provide a comprehensive phylogenetic estimate of relationships among the species within the genus. We sequenced three mitochondrial gene regions (COI, 16S, and 12S) and one nuclear region (28S) from 40 species of the genus Euastacus, as well as one undescribed species. Using these data, we estimated the phylogenetic relationships within the genus using maximum-likelihood, parsimony, and Bayesian Markov Chain Monte Carlo analyses. Using Bayes factors to test diVerent model hypotheses, we found that the best phylogeny supports monophyletic groupings of all but two recognized species and suggests a widespread ancestor that diverged by vicariance.
    [Show full text]
  • The Effects of Controlled Propagation on An
    Conservation Genetics (2005) 6:355–368 Ó Springer 2005 DOI 10.1007/s10592-005-5003-1 The effects of controlled propagation on an endangered species: genetic differentiation and divergence in body size among native and captive populations of the Socorro Isopod (Crustacea: Flabellifera) Stephen M. Shuster1,*, Mark P. Miller2,3, Brian K. Lang4, Nathan Zorich5, Lynn Huynh1 & Paul Keim1 1Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011-5640, USA; 2Department of Biology, Utah State University, Box 5305, Logan, UT, 84322, USA; 3Department of Forest Range and Wildlife, Utah State University, Box 5230, Logan, UT, 84322, USA; 4New Mexico Department of Game and Fish, Santa Fe, NM, 87504 ; 5School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195-5020, (*Corresponding author: E-mail: [email protected]) Received 05 January 2004; accepted 10 August 2004 Key words: AFLP, bottleneck, cannibalism, Crustacea, selection, thermal springs Abstract The endangered Socorro Isopod, Thermosphaeroma thermophilum, is endemic to a single thermal spring in Socorro, NM. This species is cannibalistic, with males more cannibalistic than females, and with females and juveniles more vulnerable than males as prey. In 1990, the New Mexico Department of Game and Fish, created the Socorro Isopod Propagation Facility (SIPF) near the natural habitat, Sedillo Spring (SS), to increase total population size and to examine the effects of habitat heterogeneity on population growth. We report the genetic and morphological effects of this experiment, using the natural population as a control. Captive subpopulations experienced bottlenecks of known intensity and duration, as well as different intensities of cannibalism. Using 57 AFLP markers, we show that in 6 years (1990–1996), captive sub- populations diverged significantly from the natural population.
    [Show full text]
  • Grooming Structure and Function Crustacea M Some Terrestrial
    Groomingstructure and function m someterrestrial Crustacea JE,FFG.HOLMQUIST* N atio nal Audubon Soc iety Researc h Department, Tavernier,F lorida, USA * Presentaddress: Department o.f Biological Sciences,Florida StateUniversity, U.S.A. ABSTRACT The terrestrialenvironment, with a unique set of fouling parameters,has been invaded by certainamphipod, isopod, and decapod species. In an effort to characterizegrooming in these crustaceans,behavior of representativeorganisms was recorded,and grooming appendages were examinedwith light and scanningelectron microscopy. The mouthpartsand gnatho- pods, particularly the scale-bearingsecond pair, were the primary amphipod grooming appendages.Isopods most frequentlyused the mouthpartsand first pereiopodsfor grooming, but all pereiopodsperformed some acts. The mouthpartswere armed with both scalesand setae,whereas the first pereiopodsmade use of a seta-linedcarpal groove and the seto-ce proximal propodus.Hermit crabsused specialized setae on the third maxillipedesand fifth pereiopodsfor most groomingbut usedthe unmodifiedfirst, second,and third pereiopodsas well. Most brachyurangrooming was performedwith modified setaeon the third maxilli- pedalpalps and epipods,with a row of simple setaeon eachchelipede merus, and with the 'semiterres- chelipedefingers. The unspecializedwalking legsrubbed each other. Terrestrial, trial', and aquaticamphipods of the superfamilyTalitroidea have basically similar grooming behaviorbut differ in morphology.Although thereis a paucityof literatureon aquaticisopod, hermit crab,
    [Show full text]