Dokument 30.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Dokument 30.Pdf Zur Entwicklung der wissenschaftlichen Verflechtung der Chemie mit anderen Wissenschaften bei der Erforschung von Struktur, Funktion und Synthese von Proteinen im 20.Jahrhundert vorgelegt von Diplom-Chemiker Roderich Glaesmer aus Berlin Von der Fakultät I - Geisteswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Philosophie - Dr.phil – genehmigte Dissertation Promotionsausschuß: Vorsitzender: Prof. Dr. phil. Manfred Liebel Berichter: Prof. Dr. Hans-Werner Schütt Berichter: Dr. Sven Dierig Tag der wissenschaftlichen Aussprache: 09.Juni.2004 Berlin 2004 D 83 2 Vorbemerkungen In meinem Berufsleben haben immer wieder Fragen aus Grenzgebieten der Chemie zur Biologie, Pharmazie, Medizin sowie Landwirtschaft und dabei direkt oder mittelbar Probleme von Struktur und Funktion von Eiweißen eine Rolle gespielt. Mir war vergönnt, an für die Eiweißforschung historischen Orten zu studieren wie in dem unter Emil Fischer (1852-1919) gebauten Chemischen Institut der Humboldt-Universität zu Berlin und später in Räumen eines Gebäudes zu arbeiten, das als Kaiser-Wilhelm-Institut für Hirnforschung errichtet wurde und in dem von dem Genetiker Timofeew-Ressowski (1900- 1981) experimentelle Grundlagen für die Prägung des Gen-Begriffes geschaffen wurden. Ich hatte Gelegenheit, den Biochemiker Otto Warburg (1883-1970) bei einem Kolloquium der Berliner Physiologischen Gesellschaft zu erleben und seine Schüler Karl Lohmann (1898- 1978) und Erwin Negelein (1897-1979) als Laborant vor dem Studium und als Absolvent danach in der Arbeit im Forschungszentrum für Medizin und Biologie der Deutschen Akademie der Wissenschaften in Berlin-Buch ebenso kennen und schätzen zu lernen wie den Biophysiker Walter Friedrich (1883-1968), der dem Zentrum zeitweilig als Direktor vorstand. Bei ihren Besuchen in Berlin sah und hörte ich in Vorträgen den Röntgen-Kristallographen und Wissenschaftshistoriker Desmond Bernal (1901-1971) ebenso wie den Physikochemiker und Eiweißforscher Linus Pauling (1901-1994) und ich hatte den Vorzug, mit Stanford Moore (1913-1982) Fragen zur Analytik von Aminosäuren und Peptiden persönlich besprechen zu können. Ein Studienaufenthalt am Institut für Organische Chemie und Biochemie der Tschechoslowakischen Akademie der Wissenschaften in Prag machte mich mit dem Biochemiker und damaligen Akademiepräsidenten František Šorm (1913-1980) und dem Peptidchemiker Josef Rudinger (1924-1975) bekannt. Es waren nicht zuletzt die persönlichen Erinnerungen an diese Forscherpersönlichkeiten und das frühere unmittelbare Erleben von Höhepunkten der Eiweißforschung, die in Gesprächen mit Herrn Prof. Dr. Hans-Werner Schütt am Institut für Philosophie, Wissenschaftstheorie, Wissenschafts- und Technikgeschichte der TU Berlin den Gedanken reifen ließen, die facettenreiche Entwicklung der Eiweißforschung im vergangenen Jahrhundert und die damit verbundenen vielfältigen Erfolge und Probleme in der Zusammenarbeit der Chemie mit anderen Wissenschaften zum Gegenstand einer Dissertation zu machen. In der Erkenntnis, daß bisher überwiegend der Einfluss der die Eiweißforschung berührenden inneren Faktoren unter wissenschaftshistorischen Gesichtspunkten betrachtet wurde, die Auswirkungen äußerer Faktoren der gesellschaftlichen und wissenschaftlichen Entwicklung 3 jedoch weitgehend unberücksichtigt blieben, wurde deren Untersuchung in die Zielstellung dieser Arbeit einbezogen. Herr Prof. Schütt hat die Anfertigung dieser Arbeit von der Themenerarbeitung an mit wertvollem Rat und fördernden Hinweisen begleitet, wofür ich ihm herzlich danken möchte. Mit wohlwollendem Verständnis hat er mir geholfen, einen akademischen Abschluss nach einem Arbeitsleben zu erreichen, der normalerweise an dessen Anfang hätte stehen sollen. Wichtige Anregungen erfuhr ich durch die Nestorin der biologischen Wissenschaft, Frau Prof. Dr. Ilse Jahn persönlich in orientierenden und bestärkenden Gesprächen und indirekt durch Beiträge aus ihren Werken, besonders ihrer „Geschichte der Biologie“. Bei dem gewählten zeitlichen Rahmen der Arbeit war der Hauptteil der Literaturarbeit mit Periodika und Monographien seit den 1930er Jahren zu leisten, der Anteil archivalischer Materialien entfiel hauptsächlich auf Emil Fischer betreffende Dokumente. Bei deren Beschaffung aus dem Emil-Fischer-Nachlass in der Bancroft Library der University of California in Berkeley/Calif. hatte ich in Mr. David Kessler einen stets hilfsbereiten Partner. Das Archiv zur Geschichte der Max-Planck-Gesellschaft unterstützte mich mit Unterlagen zum Wirken Emil Fischers für diese und in dieser Gesellschaft sowie mit seltenen Dokumenten zur Eiweißforschung. Beiden Einrichtungen gebührt mein besonderer Dank. Danken möchte ebenfalls Herrn Dr. Sven Dierig vom Max-Planck-Institut für Wissenschaftsgeschichte, der mich auf wenig bekannte Quellen zum Thema und technische Möglichkeiten zu deren Erschließung aufmerksam machte und mich mit Hinweisen und Anmerkungen unterstützte sowie Frau Dr. Astrid Schürmann für hilfreiche Gespräche und fachlichen Rat. Diese Arbeit hätte ich nicht schreiben können ohne die technische Hilfe meines Schwiegersohnes Wilhelm Schwarte besonders und meines jüngsten Sohnes Andreas, die mir und meinem PC immer wieder geduldig „in die Spur“ halfen. Es sind drei Frauen, denen ich den größten Dank schulde und diese Arbeit widme: Meiner Mutter Alice, deren stillen Wunsch ich zu ihren Lebzeiten nicht erfüllen konnte; meiner Tochter Barbara, die Zuneigung und Glauben an ihren Vater nie verloren hat und vor allen meiner Christel, die mir in einer schwierigen persönlichen Lage mit ihrer Kraft und Liebe wieder Halt gegeben und den Mut und die Zuversicht vermittelt hat, die vorliegende Arbeit in Angriff nehmen und vollenden zu können. Berlin, im März 2004 Roderich Glaesmer. 4 Inhaltsverzeichnis Seite 1. Einleitung 7 2. Die Eiweißforschung am Beginn des 20.Jahrhundert und deren Entwicklung bis zum I. Weltkrieg 12 2.1 Die allgemeine Situation der Forschung 13 2.1.1 Institutionalisierung der Biochemie 15 2.1.2 Staatliche und außerstaatliche Förderung der Forschung 19 2.2 Kenntnisstand auf dem Eiweißgebiet um 1900 und Entwicklungen bis zum I.Weltkrieg 22 2.2.1 Die Eiweißforschung und die Chemie 23 2.2.1.1 Emil Fischer, Albrecht Kossel und die Eiweißforschung 28 2.2.1.2 Die Begriffe „Reinheit“ und „Molekül“ in der Eiweißforschung 40 2.2.1.3 Die Farbstoffchemie und die Eiweißforschung 43 2.2.2. Die Eiweißforschung und die Biologie 44 2.2.3 Die Eiweißforschung und die Physik 46 2.2.4 Die Eiweißforschung und die Philosophie 47 2.3 Zwischenbilanz 49 3. Die Eiweißforschung zwischen den beiden Weltkriegen 51 3.1. Die allgemeine Situation der Forschung 52 3.1.1 Staatliche und außerstaatliche Förderung der Forschung. Die Rolle Warren Weavers in den USA, Walter M.Fletchers in GB 54 3.2 Kenntnisstand und Entwicklung auf dem Eiweißgebiet 58 5 Seite 3.2.1. Die Eiweißforschung und die Chemie 60 3.2.1.1 Enzyme 60 3.2.1.2 Neue Wege der Peptidsynthese 62 3.2.1.3 Molekulargewichte – Makromoleküle 64 3.2.1.4 Die Ultrazentrifuge – Molekulargewichtsbestimmungen 66 3.2.1.5 Neue Trenn- und Bestimmungsmethoden 67 3.2.1.6 Eiweiß für Futter- und Ernährungszwecke 70 3.2.1.7 Nukleinsäuren – Zusammensetzung und Aufbau 71 3.2.2 Die Eiweißforschung und die Biologie 73 3.2.3. Die Eiweißforschung und die Physik 78 3.2.3.1 Atombau und Chemische Bindungen 80 3.2.3.2. Einblicke in Molekülstrukturen 80 3.2.3.3. Einsatz stabiler Isotope 82 3.3 Einflüsse politischer Entwicklungen 83 3.4 Eine Zwischenbilanz 85 4. Die Eiweißforschung bis zum Ende des 20.Jahrhunderts 87 4.1. Die allgemeine Situation der Eiweißforschung 88 4.1.1 Methodische und apparative Entwicklungen 90 4.2 Entwicklungen auf dem Eiweißgebiet 98 4.2.1 Insulin - Leitsubstanz für die Strukturaufklärung von Proteinen 99 4.2.2 Hämoglobin – Blutfarbstoff und „Enzym ehrenhalber“ 102 Leitsubstanz für das Verständnis der Funktion von 6 Proteinen 4.2.2.1 Primärstrukturen von Hämoglobinen 104 4.2.2.2 Sekundärstrukturen von Hämoglobinen 106 4.2.2.3 Tertiärstrukturen und ihre biologische Bedeutung 111 4.2.3 Synthesen auf dem Eiweißgebiet 113 4.2.3.1 Eiweißsynthesen in der Zelle 115 4.2.3.2 Peptidsynthesen 115 4.2.3.3 Einzeller-Protein-Synthesen 117 4.3 Entwicklungen auf dem Nukleinsäuregebiet 118 4.3.1 Die Analytik von Nukleinsäuren 119 4.3.2 Röntgen-Kristallstrukturanalytik der DNS. Die Doppelhelix 121 4.4 Nukleinsäure / Protein – Beziehungen Der genetische Code 125 5. Zusammenfassung 129 6. Glossar 133 7. Verzeichnis der Abkürzungen 135 8. Quellen- und Literaturverzeichnis 137 9. Personenregister 172 10. Abbildungsverzeichnis 180 7 1. Einleitung Das Wissen um die stofflichen Grundlagen von Lebensprozessen war zu Beginn des 20.Jahrhunderts noch sehr gering. Unklare Vorstellungen und Annahmen, die später nicht bestätigt werden konnten, verstellten den beteiligten Forschern oft den Blick. Die vorher aus überwiegend biologischer Sicht geprägte Betrachtungsweise von Eiweißen führte mit der Zunahme naturwissenschaftlicher Ergebnisse aus experimentellen Untersuchungen ihrer Bausteine, ihrer Zusammensetzung sowie ihrer Struktur mit Hilfe neuer und verbesserter methodisch-apparativer Möglichkeiten zu grundlegend neuen Erkenntnissen, aber auch zu Wandlungen in den weltanschaulichen Sichten auf Lebensprozesse. Durch neue Erkenntnisse und experimentelle Ergebnisse vermochten im 20.Jahrhundert einzelne Wissenschaftler auf Teilgebieten neue Wege für vertiefende und weiterführende Arbeiten aufzuzeigen. Die Beziehungen zwischen Biologie, Chemie und Physik vom 18. bis zum 20.Jahrhundert
Recommended publications
  • February 2015
    Issue 115 February 2015 A NEWSLETTER OF THE ROCKEFELLER UNIVERSITY COMMUNITY 2015: Chinese New Year of the Sheep Q i o n g Wa n g If I have to name one day of an en- sight of a piece of bright red paper on the poems on a background of red paper. Ex- tire year that I wish dearly to be with my door. Suddenly, firecrackers began to ex- pressing sentiments about life’s renewal, family-on-the-other-side-of-the-planet, plode. Terrified, Nian ran away from the the arrival of spring, and wishes for a it’s the Chinese New Year. Also called village. prosperous year ahead, they’re pasted on Spring Festival, it is the most cherished When the villagers returned the fol- both sides of the main door. These Spring and celebrated holiday in China, as fami- lowing day, they were surprised to find Festival couplets originate from ancient lies reunite to ring out the old year and that everything was safe and sound. The “peach wood charms,” which are carved celebrate the coming new year. According old woman told the story of the beggar. or painted charms depicting protective to the Chinese Animal Zodiac, every year Noticing the red paper on the door and door gods. During the Five Dynasty Pe- is associated with one of twelve animals: the remnants of candles, lanterns, and riod (897-979 AD), Emperor Meng Chang Rat, Ox, Tiger, Rabbit, Dragon, Snake, firecrackers, the villagers suddenly real- ordered his counselor to engrave an in- Horse, Sheep, Monkey, Rooster, Dog, and ized that Nian feared the color red, bright spirational couplet on a pair of peach Pig.
    [Show full text]
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • *Revelle, Roger Baltimore 18, Maryland
    NATIONAL ACADEMY OF SCIENCES July 1, 1962 OFFICERS Term expires President-Frederick Seitz June 30, 1966 Vice President-J. A. Stratton June 30, 1965 Home Secretary-Hugh L. Dryden June 30, 1963 Foreign Secretary-Harrison Brown June 30, 1966 Treasurer-L. V. Berkner June 30, 1964 Executive Officer Business Manager S. D. Cornell G. D. Meid COUNCIL *Berkner L. V. (1964) *Revelle, Roger (1965) *Brown, Harrison (1966) *Seitz, Frederick (1966) *Dryden, Hugh L. (1963) *Stratton, J. A. (1965) Hutchinson, G. Evelyn (1963) Williams, Robley C. (1963) *Kistiakowsky, G. B. (1964) Wood, W. Barry, Jr. (1965) Raper, Kenneth B. (1964) MEMBERS The number in parentheses, following year of election, indicates the Section to which the member belongs, as follows: (1) Mathematics (8) Zoology and Anatomy (2) Astronomy (9) Physiology (3) Physics (10) Pathology and Microbiology (4) Engineering (11) Anthropology (5) Chemistry (12) Psychology (6) Geology (13) Geophysics (7) Botany (14) Biochemistry Abbot, Charles Greeley, 1915 (2), Smithsonian Institution, Washington 25, D. C. Abelson, Philip Hauge, 1959 (6), Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton Street, N. W., Washington 8, D. C. Adams, Leason Heberling, 1943 (13), Institute of Geophysics, University of Cali- fornia, Los Angeles 24, California Adams, Roger, 1929 (5), Department of Chemistry and Chemical Engineering, University of Illinois, Urbana, Illinois Ahlfors, Lars Valerian, 1953 (1), Department of Mathematics, Harvard University, 2 Divinity Avenue, Cambridge 38, Massachusetts Albert, Abraham Adrian, 1943 (1), 111 Eckhart Hall, University of Chicago, 1118 East 58th Street, Chicago 37, Illinois Albright, William Foxwell, 1955 (11), Oriental Seminary, Johns Hopkins University, Baltimore 18, Maryland * Members of the Executive Committee of the Council of the Academy.
    [Show full text]
  • Reflections on the Historiography of Molecular Biology
    Reflections on the Historiography of Molecular Biology HORACE FREELAND JUDSON SURELY the time has come to stop applying the word revolution to the rise of new scientific research programmes. Our century has seen many upheavals in scientific ideas--so many and so varied that the notion of scientific revolution has been stretched out of shape and can no longer be made to cover the processes of change characteristic of most sciences these past hundred years. By general consent, two great research pro- grammes arising in this century stand om from the others. The first, of course, was the one in physics that began at the turn of the century with quantum theory and relativity and ran through the working out, by about 1930, of quantum mechanics in its relativistic form. The trans- formation in physics appears to be thoroughly documented. Memoirs and biographies of the physicists have been written. Interviewswith survivors have been recorded and transcribed. The history has been told at every level of detail and difficulty. The second great programme is the one in biology that had its origins in the mid-1930s and that by 1970 had reached, if not a conclusion, a kind of cadence--a pause to regroup. This is the transformation that created molecular biology and latter-day biochemistry. The writing of its history has only recently started and is beset with problems. Accounting for the rise of molecular biology began with brief, partial, fugitive essays by participants. Biographies have been written of two, of the less understood figures in the science, who died even as the field was ripening, Oswald Avery and Rosalind Franklin; other scientists have wri:tten their memoirs.
    [Show full text]
  • Winter for the Membership of the American Crystallographic Association, P.O
    AMERICAN CRYSTALLOGRAPHIC ASSOCIATION NEWSLETTER Number 4 Winter 2004 ACA 2005 Transactions Symposium New Horizons in Structure Based Drug Discovery Table of Contents / President's Column Winter 2004 Table of Contents President's Column Presidentʼs Column ........................................................... 1-2 The fall ACA Council Guest Editoral: .................................................................2-3 meeting took place in early 2004 ACA Election Results ................................................ 4 November. At this time, News from Canada / Position Available .............................. 6 Council made a few deci- sions, based upon input ACA Committee Report / Web Watch ................................ 8 from the membership. First ACA 2004 Chicago .............................................9-29, 38-40 and foremost, many will Workshop Reports ...................................................... 9-12 be pleased to know that a Travel Award Winners / Commercial Exhibitors ...... 14-23 satisfactory venue for the McPherson Fankuchen Address ................................38-40 2006 summer meeting was News of Crystallographers ...........................................30-37 found. The meeting will be Awards: Janssen/Aminoff/Perutz ..............................30-33 held at the Sheraton Waikiki Obituaries: Blow/Alexander/McMurdie .................... 33-37 Hotel in Honolulu, July 22-27, 2005. Council is ACA Summer Schools / 2005 Etter Award ..................42-44 particularly appreciative of Database Update:
    [Show full text]
  • A Tale of Two Hormones
    LASKER BASIC MEDICA L COMMENTARY RESEARCH AWARD A tale of two hormones Jeffrey M Friedman “Der Mensch denkt, Gott lenkt.” (“Man equivalent to a death sentence1. The only avail- Kleiner’s story had great personal resonance proposes, God disposes.”) able treatment was a starvation diet advocated for me. Here was another Jewish scientist, the —German proverb by Frederick Madison Allen, a physician work- grandson of immigrants, working a century ing at the Rockefeller Institute for Medical earlier at the same institution as me. But on A little more than a century ago, an arc of Research (now Rockefeller University) and the cusp of isolating the most important hor- research began that culminated in the identi- a leading authority on diabetes1–5. Allen was mone ever discovered, he walked away from it. fication of insulin by four scientists working the first to realize that diabetes was a general How did Kleiner come to study diabetes? Why in Toronto. With astonishing speed, this land- disorder of metabolism and that acidosis and did his studies cease so abruptly? Did Kleiner mark discovery became a life-saving treatment death could be forestalled if caloric intake was and his colleagues fully understand the impli- for thousands of people with diabetes around restricted. When acidosis developed, calories cations of his research? What was the personal the world. In time, insulin was established as were further reduced, and, for many, diabetes impact of his having missed the opportunity of the most important anabolic hormone and was a race between starvation and acidosis, the a lifetime? Kleiner’s work and career also raise found its place in the pantheon of medicine’s ultimate result of either condition often being a general question: what are the elements of a greatest discoveries.
    [Show full text]
  • Biological Chemistry Department
    MINISTRY OF HEALTH OF UKRAINE ZAPORIZHZHIA STATE MEDICAL UNIVERSITY Biological Chemistry Department Biological chemistry A manual for independent work at home and in class preparation for licensing examination “KROK 1” on semantic modules 6, 7 of module 2 for students of International Faculty (the second year of study) Zaporizhzhia 2017 UDC 577.1(075) BBC 28.902я73 B60 Ratified on meeting of the Central methodical committee of Zaporozhye State Medical University (protocol N 3 from 02_03_17) and it is recommended for the use in educational process for foreign students. Reviewers: Prihodko O. B., Head of Department of Medical Biology, Parasitology and Genetics. Dr. Hab, assoc. professor; Belenichev I. F., Head of Department of Pharmacology and Medicinal Preparations, Dr. Hab., professor Authors: Aleksandrova K. V., Romanenko M. I., Krisanova N. V., Ivanchenko D. G., Rudko N. P., Levich S. V. Biological chemistry : a manual for independent work at home and in class preparation for licensing examination "KROK 1" on semantic modules 6, 7 of module 2 for students of International Faculty (the second year of study) / K. V. Aleksandrova, М. І. Romanenko, N. V. Krisanova, D. G. Ivanchenko, N. P. Rudko, S. V. Levich. – Zaporizhzhia : ZSMU, 2017. – 213 p. This manual is recommended for II year students of International Faculty of specialty "General medicine" studying biological chemistry, as additional material to prepare for practical training semantic modules 6, 7 of module 2 and licensing exam "KROK 1: General medical training". Біологічна хімія : навч.-метод. посіб. для самостійної роботи при підготовці до ліцензійного іспиту "КРОК 1" змістових модулів 6, 7 модулю 2 для студентів 2 курсу міжнар.
    [Show full text]
  • MOSES KUNITZ December 19, 1887-April 20, 1978
    NATIONAL ACADEMY OF SCIENCES M O S E S K UNITZ 1887—1978 A Biographical Memoir by ROGER M. HERRIOTT Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1989 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. MOSES KUNITZ December 19, 1887-April 20, 1978 BY ROGER M. HERRIOTT OSES KUNITZ is best remembered for his isolation and M crystallization of a half-dozen enzymes and precursors. This work had two important effects. First, the variety of the enzymes he isolated and the clarity of his evidence that the enzymes were proteins convinced those who had reserved judgment on the earlier reports of Sumner, Northrop, Cald- well, et al. Second, his reports of the crystallization of ribo- nuclease and desoxyribonuclease, which appeared just as the functions of nucleic acids were beginning to be explored, provided information on the high specificity of these en- zymes. This information made them valuable tools for other researchers in their purification or the assignment of a bio- logical function to either RNA or DNA, the two types of nucleic acid. Moses Kunitz was born on December 19, 1887, in Slonim, Russia, where he was educated before emigrating to the United States. In 1909, he took up residence in New York City. Entering the Cooper Union School of Chemistry in 1910, he graduated with a bachelor of science degree in 1916. In the fall of that year, he entered the Electrical Engi- neering School of Cooper Union, where he studied until 1919 when he transferred to the Columbia University School of Mines Engineering and Chemistry.
    [Show full text]
  • The Clinical-Chemical Interface of Medical Science: Its Development in This Century*
    A n n a l s o f C linical and L a b o r a t o r y Science, Vol. 4, No. 4 Copyright © 1974, Institute for Clinical Science The Clinical-Chemical Interface of Medical Science: Its Development in this Century* A. BAIRD HASTINGS, P h .D ., D .S c . Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92073 When I seriously sat down to prepare high state of the medical sciences. But each my remarks to you this evening, I was became involved in applying chemistry to aghast to see the title that I had given clinical problems through a fortuitous state Dr. Sunderman. Who am I to presume to of circumstances. speak on the “Development of the Clinical- Let me briefly introduce them to you. Chemical Interface of Medical-Science in First is Donald Van Slyke, born in 1883 this Century?” It’s a damn good title, but of Dutch descent, who left us in 1971. He I’m certainly not qualified to live up to it. worked hard in the lab and played tennis What I’d like to hear is a panel of friends throughout his life. He was unbeatable at such as Donald Van Slyke, Otto Folin, Wil­ either. liam Mansfield Clark and John P. Peters Second is Otto Folin, born in Sweden in gathered here to discuss the subject. So I 1867, who was head of biochemistry at invited them—and they accepted—or at Harvard from 1907 until his death in 1934. least let’s imagine that they have.
    [Show full text]
  • DISCOVERING the DOUBLE HELIX a Look Back in Time to the History of the Discovery of DNA and Its Structure – Work Which Would Change Medicine and Science Forever
    THE BIOMEDICAL SCIENCE SCIENCE THE BIOMEDICAL 30 SCIENTIST The big story The big story SCIENTIST 31 Left. Photo 51 – an X-ray diffraction image of DNA. Right. Rosalind Franklin. DISCOVERING THE DOUBLE HELIX A look back in time to the history of the discovery of DNA and its structure – work which would change medicine and science forever. NA is as old as history itself, theories, its suggestion that life hadn’t characteristics that passed from one but human understanding magically appeared but had copied itself, generation to the next but also the ratios of the genetic code that adapted and evolved over time – vast of those inherited characteristics. The determines the shape, size, time – changed the focus of scientific paper that came out of this intensive colour and behaviour of all imagination and enquiry. observation, Experiments on Plant living things only began its Gregor Mendel, a monk and teacher Hybridisation, published in 1866, was so far embryonic formation in 1859 with a sideline in science and research, ahead of its time that it wasn’t until 1900 with the publication of living in what would be the modern-day that other scientists had caught up with Charles Darwin’s trailblazing work On The Czech Republic, took the next step. him and rediscovered his work. Only then DOrigins of Species by Means of Natural Selection. Between 1856 and 1863 he conducted could they appreciate the thoroughness Though the book offered nothing in the thousands of cross-breeding experiments of his methodology and understand the IMAGES: KINGS COLLEGE LONDON/ALAMY way of a biochemical explanation for its on pea plants.
    [Show full text]
  • Original Filepdf
    CHEMICAL HERITAGE FOUNDATION ARTHUR L. BABSON Transcript of an Interview Conducted by David J. Caruso and Sarah L. Hunter-Lascoskie at Siemens Healthcare Diagnostics Flanders, New Jersey on 6 and 8 December 2011 (With Subsequent Corrections and Additions) Arthur L. Babson Upon Arthur Babson’s death in 2016, this oral history was designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: Arthur Babson, interview by David Caruso and Sarah Hunter-Lascoskie at Siemens Healthcare Diagnostics, 6 and 8 December 2011 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript #0681). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. ARTHUR L. BABSON 1927 Born in Orange, New Jersey, on 3 March Education 1950 B.S., Zoology, Cornell University
    [Show full text]