Human Placental Trophoblasts Regulatory T Cells by + Activation

Total Page:16

File Type:pdf, Size:1020Kb

Human Placental Trophoblasts Regulatory T Cells by + Activation Activation of CD8+ Regulatory T Cells by Human Placental Trophoblasts Ling Shao, Adam R. Jacobs, Valrie V. Johnson and Lloyd Mayer This information is current as of September 23, 2021. J Immunol 2005; 174:7539-7547; ; doi: 10.4049/jimmunol.174.12.7539 http://www.jimmunol.org/content/174/12/7539 Downloaded from References This article cites 50 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/174/12/7539.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 23, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of CD8؉ Regulatory T Cells by Human Placental Trophoblasts1 Ling Shao,2* Adam R. Jacobs,† Valrie V. Johnson,† and Lloyd Mayer* The immunological basis by which a mother tolerates her semi-allogeneic fetus remains poorly understood. Several mechanisms are likely to contribute to this phenomenon including active immune regulation by regulatory T cells. In this article, we report that human placental trophoblasts activate a clonal population of CD8؉ T cells with regulatory function. These cells are not MHC class I restricted, but require costimulation through a member of the carcinoembryonic Ag family present on early gestation tropho- blasts. These regulatory T cells express the mucosal markers CD101 and CD103 and display selective usage of the TCR gene V␤9. ␤CD8؉ T cells isolated from the peripheral blood of pregnant mothers (16–28 wk) also demonstrate expansions in the same V family (V␤9), signaling a possible role for these cells in preventing fetal rejection in vivo. We have previously characterized a ؉ subset of CD8 regulatory T cells activated by the combination of the nonclassical class I molecule CD1d and a costimulatory Downloaded from molecule of the carcinoembryonic Ag family present on the intestinal epithelium. These data support the concept that distinct regulatory T cell populations exist at different sites and may be regulated locally by unique restriction elements, costimulatory signals, and Ags. The Journal of Immunology, 2005, 174: 7539–7547. llogeneic tissue grafts are typically rejected rapidly and commensal flora at the interface between the external environment require exogenous immunosuppressive medications to and the mucosal immune system. Interestingly, patients with in- http://www.jimmunol.org/ A be tolerated. In contrast, the human fetus, which resem- flammatory bowel disease are deficient in the expression of the bles a semi-allogeneic graft, is accepted by the maternal immune CEA subfamily costimulatory molecule, which correlates with an system in the majority of cases without intervention. Potential inability of these patients to be tolerized to orally administered mechanisms underlying this phenomena are likely to be Ags (12). complex (1). Regulatory T cells (reviewed in Ref. 13) comprise a heteroge- Anatomically, placental trophoblasts occupy a unique position neous class of cells that suppress immune responses via cognate at the interface between mother and child. These epithelial cells interactions (CD4ϩCD25ϩ), soluble factors such as TGF-␤ or possess several intriguing features that suggest a role for these IL-10 (Th3 and Tr1 cells, respectively), or some combination of cells in preventing fetal rejection. Trophoblasts express little or no the two. These cells appear to play a role in controlling inflam- by guest on September 23, 2021 classical MHC class I (HLA-A, -B, and -C) (2–5), but do express matory immune responses in a number of settings including auto- a number of nonclassical MHC class I molecules. Examples in- immune and chronic inflammatory diseases. Recently, a role for clude HLA-E (6) and HLA-G (7, 8), which can modulate the in- regulatory T cells has been demonstrated in maintaining fetal tol- nate immune response and prevent NK (6) and NK T cell (9)- erance as well. CD4ϩCD25ϩ regulatory T cells play a critical role mediated cytotoxicity. Additionally, trophoblasts have been in mice during pregnancy after allogeneic matings (14). In hu- recently shown to express the nonclassical MHC class I molecule, mans, CD4ϩCD25ϩ cells expressing the regulatory transcription CD1d, on the surface of first-trimester human trophoblasts (10). factor FoxP3 (15), OX-40, and glucocorticoid-induced TNFR fam- We have previously described a subset of CD8ϩ regulatory T ily-related gene are expanded in the peripheral blood as well as at cells in humans that is restricted by CD1d and a costimulatory the maternal-fetal interface (16), implying an important role for molecule of the carcinoembryonic Ag (CEA)3 family expressed on these cells in fetal tolerance. intestinal epithelial cells (IEC). These cells use a restricted TCR In this report, we show that trophoblasts can activate a subset of repertoire (V␤5.1/V␣18), are CD28Ϫ, and can suppress immune CD8ϩ T cells that are independent of classical MHC class I but are responses in vitro (11). In the intestine, these cells may play an dependent upon a CEA subfamily member. These T cells have a important role in controlling inflammatory responses to normal restricted TCR repertoire, coexpress the mucosal markers CD101 and CD103, and demonstrate in vitro regulatory properties. Fi- nally, we provide evidence that these CD8ϩ T cell subsets are *Immunobiology Center and †Department of Obstetrics and Gynecology, Mount Si- expanded in the peripheral blood of pregnant mothers, suggesting nai School of Medicine, New York, NY 10029 a potential role for these cells in vivo. Received for publication October 18, 2004. Accepted for publication April 8, 2005. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Materials and Methods Trophoblast isolation 1 This work was supported by Public Health Service Grants AI23504, AI24671, AI44236, and AI07605 (to L.M.). Placentae from 7- to 18-wk elective abortions performed at the Mount 2 Address correspondence and reprint requests to Dr. Ling Shao, Mount Sinai School Sinai Medical Center or full-term (38–40 wk) pregnancies were collected of Medicine, 1 Gustave L. Levy Place, Department of Immunobiology, Box 1089, in accordance with the Mount Sinai Institutional Review Board guidelines. New York, NY 10029. E-mail address: [email protected] Trophoblasts were isolated as described previously (17, 18), with modifi- 3 Abbreviations used in this paper: CEA, carcinoembryonic Ag; IEC, intestinal epi- cations. Briefly, placental specimens were washed twice in PBS, and mem- thelial cell; FasL, Fas ligand; BGP, biliary glycoprotein; NCA, nonspecific cross- branes were manually removed. The placenta was then digested in PBS reacting Ag. containing 1.5 mg/ml Dispase (Roche Applied Science) and 300 ␮g/ml Copyright © 2005 by The American Association of Immunologists, Inc. 0022-1767/05/$02.00 7540 TROPHOBLASTS ACTIVATE CD8ϩ REGULATORY T CELLS DNase I (Calbiochem) for 15 min at 37°C with gentle agitation. Superna- perature. After extensive washing, blots were developed with SuperSignal tants were harvested and layered on FCS (Omega Scientific) and centri- (Pierce). fuged for 15 min at 1200 ϫ g. Pellets were resuspended in PBS and layered on a discontinuous Percoll density gradient (25/45/60%) and centrifuged Immunohistochemistry for 20 min at 1200 ϫ g. Trophoblasts were isolated from the 25/45% Percoll interface and washed twice in AIM-V serum-free medium (Invitro- Placentae were washed twice in sterile PBS. Specimens were then snap gen Life Technologies). In some cases, cells were preincubated with Abs frozen in OCT compound (Miles) in liquid nitrogen. Eight-micrometer against CD1d (mAb D5, MsIgG2b; a kind gift from Drs. R. Blumberg frozen sections were cut and immediately fixed in 4% PBS-buffered for- (Brigham and Women’s Hospital, Boston, MA) and S. Balk (Beth Israel malin overnight. Sections were rinsed briefly in PBS, and the tissue was Deaconess Medical Center, Boston, MA)), gp180 (mAb B9, MsIgG1; see outlined by an ImmEdge hydrophobic pen (Vector Laboratories). Nonspe- Ref. 19), pan-MHC-I (W6/32, MsIgG2a), or isotype controls (BD Pharm- cific-Ab activity was blocked with normal horse serum for 30 min at room ingen) for 60 min at 4°C. Excess Ab was removed by extensive washing in temperature. Slides were incubated with 10 ␮g of either the B9 mAb or PBS before coculture. isotype control (IgG1; BD Pharmingen) for2hatroom temperature. Bi- otinylated secondary Abs and streptavidin-HRP from the Vectastain ABC T cell isolation and T trophoblast coculture (avidin-biotin complex) kit was added (Vector Laboratories) for 45 min at Blood from pregnant and nonpregnant donors was obtained with informed room temperature.
Recommended publications
  • Mucosal Immunity
    Mucosal Immunity Lloyd Mayer, MD ABSTRACT. Food allergy is the manifestation of an antibody, secretory immunoglobulin A (sIgA), which abnormal immune response to antigen delivered by the is highly suited for the hostile environment of the gut oral route. Normal mucosal immune responses are gen- (Fig 1). All of these in concert eventuate in the im- erally associated with suppression of immunity. A nor- munosuppressed tone of the gastrointestinal (GI) mal mucosal immune response relies heavily on a num- tract. Defects in any individual component may pre- ber of factors: strong physical barriers, luminal digestion dispose to intestinal inflammation or food allergy. of potential antigens, selective antigen sampling sites, and unique T-cell subpopulations that effect suppres- sion. In the newborn, several of these pathways are not MUCOSAL BARRIER matured, allowing for sensitization rather than suppres- The mucosal barrier is a complex structure com- sion. With age, the mucosa associated lymphoid tissue posed of both cellular and noncellular components.5 matures, and in most individuals this allows for genera- Probably the most significant barrier to antigen entry tion of the normal suppressed tone of the mucosa asso- into the mucosa-associated lymphoid tissue (MALT) ciated lymphoid tissue. As a consequence, food allergies are largely outgrown. This article deals with the normal is the presence of enzymes starting in the mouth and facets of mucosal immune responses and postulates how extending down to the stomach, small bowel, and the different processes may be defective in food-allergic colon. Proteolytic enzymes in the stomach (pepsin, patients. Pediatrics 2003;111:1595–1600; gastrointestinal papain) and small bowel (trypsin, chymotrypsin, allergy, food allergy, food hypersensitivity, oral tolerance, pancreatic proteases) perform a function that they mucosal immunology.
    [Show full text]
  • Mucosal Immunity
    Mucosal Immunity Lloyd Mayer, MD ABSTRACT. Food allergy is the manifestation of an antibody, secretory immunoglobulin A (sIgA), which abnormal immune response to antigen delivered by the is highly suited for the hostile environment of the gut oral route. Normal mucosal immune responses are gen- (Fig 1). All of these in concert eventuate in the im- erally associated with suppression of immunity. A nor- munosuppressed tone of the gastrointestinal (GI) mal mucosal immune response relies heavily on a num- tract. Defects in any individual component may pre- ber of factors: strong physical barriers, luminal digestion dispose to intestinal inflammation or food allergy. of potential antigens, selective antigen sampling sites, and unique T-cell subpopulations that effect suppres- sion. In the newborn, several of these pathways are not MUCOSAL BARRIER matured, allowing for sensitization rather than suppres- The mucosal barrier is a complex structure com- sion. With age, the mucosa associated lymphoid tissue posed of both cellular and noncellular components.5 matures, and in most individuals this allows for genera- Probably the most significant barrier to antigen entry tion of the normal suppressed tone of the mucosa asso- into the mucosa-associated lymphoid tissue (MALT) ciated lymphoid tissue. As a consequence, food allergies are largely outgrown. This article deals with the normal is the presence of enzymes starting in the mouth and facets of mucosal immune responses and postulates how extending down to the stomach, small bowel, and the different processes may be defective in food-allergic colon. Proteolytic enzymes in the stomach (pepsin, patients. Pediatrics 2003;111:1595–1600; gastrointestinal papain) and small bowel (trypsin, chymotrypsin, allergy, food allergy, food hypersensitivity, oral tolerance, pancreatic proteases) perform a function that they mucosal immunology.
    [Show full text]
  • Defective Expression of Gp180, a Novel CD8 Ligand on Intestinal Epithelial Cells, in Inflammatory Bowel Disease
    Defective Expression of gp180, a Novel CD8 Ligand on Intestinal Epithelial Cells, in Inflammatory Bowel Disease Lisa S. Toy,*‡ Xian Yang Yio,* Annica Lin,* Shaun Honig,* and Lloyd Mayer* *Division of Clinical Immunology and the ‡Dr. Henry D. Janowitz Division of Gastroenterology, Mount Sinai Medical Center, New York 10029 Abstract active inflammation in an organ where controlled inflamma- tion is the norm. Work from several laboratories has sup- Previous studies support a role for intestinal epithelial cells ported the concept that this active inflammatory process is the (IEC) as antigen-presenting cells in mucosal immune re- result of a dysregulated immune response. More specifically, sponses. T cells activated by IEC are CD8ϩ, suppressor in there is evidence of constitutively activated CD4ϩ T cells function, and dependent upon CD8-associated p56lck acti- within the lamina propria that can leak into the systemic circu- vation. A 180-kD glycoprotein (gp180) recognized by mAbs lation (1, 2). These activated CD4ϩ T cells secrete a panel of B9 and L12 has been identified and shown to be important cytokines that may promote localized cell-mediated granulo- in CD8ϩ T cell activation by IEC. Since IEC derived from matous inflammation (CD) (3–6) or a more diffuse antibody- patients with inflammatory bowel disease (IBD) are incapa- and complement-mediated Arthus-type reaction (UC) (7, 8). ble of activating CD8ϩ T cells, we asked whether this corre- While many pathogenetic mechanisms have been proposed to lated with gp180 expression. While frozen sections of nor- explain these observations, to date no consistent infectious, mal bowel revealed bright gp180 staining on all IEC, both neurohormonal, or immunologic mechanism has been eluci- inflamed and uninflamed ulcerative colitis (UC) specimens dated.
    [Show full text]
  • Lack of Induction of Suppressor T Cells by Intestinal Epithelial Cells from Patients with Inflammatory Bowel Disease
    Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. L Mayer, D Eisenhardt J Clin Invest. 1990;86(4):1255-1260. https://doi.org/10.1172/JCI114832. Research Article The mechanisms underlying the chronic unrelenting inflammatory response seen in inflammatory bowel disease (IBD) are poorly understood. We have recently proposed a novel role for the normal intestinal enterocyte, that of antigen presenting cell. However, in contrast to conventional antigen presenting cells, normal enterocytes appear to selectively activate CD8+ antigen nonspecific suppressor T cells. To determine whether failure of this process may be occurring in inflammatory bowel disease, freshly isolated enterocytes from small and large bowel from normal patients, patients with Crohn's disease, ulcerative colitis, and inflammatory (diverticulitis, ischemic colitis, and gold induced colitis) controls were co-cultured with allogeneic T cells in a modified mixed lymphocyte reaction. In contrast to normal enterocytes, 42/42 Crohn's and 35/38 ulcerative colitis-derived epithelial cells stimulated CD4+ T cells, whereas 65/66 and 9/9 normal and inflammatory control enterocytes, respectively, stimulated CD8+ T cells (as previously described), suggesting that the results seen were not just a reflection of underlying inflammation. Furthermore, IBD enterocytes from both histologically involved and uninvolved tissue were similar in their ability to selectively activate CD4+ T cells, speaking for a more global defect in
    [Show full text]
  • The Henry Kunkel Society Annual Meeting: Infectious Disease Susceptibility and the Expanding Universe of Primary Immunodeficiency
    The Henry Kunkel Society Annual Meeting: Infectious Disease Susceptibility and the Expanding Universe of Primary Immunodeficiency The Rockefeller University New York, NY April 17–20, 2013 Henry George Kunkel 1916–1983 enry Kunkel received his B.S. degree from Princeton and his M.D. degree from Johns Hopkins University. He arrived at The Rockefeller Institute (now University) in 1945 where he spent his entire scientific career H until his death in 1983. His contributions to the field of basic and clinical immunology are legendary. He made numerous seminal observations in liver disease, rheumatic diseases and other allied disorders. He was perhaps best known for his pioneering and extensive studies on the immunoglobulins. His recognition that myeloma proteins were a model for the study of the structure of normal immunoglobulins had a global impact on investigations of the structure, function and inheritance of these molecules. The elucidation of the chain structure of gamma globulin and the recognition that immunoglobulins possessed individual antigenic specificity (idiotypes) were internationally recognized discoveries. Dr. Kunkel was the recipient of many awards and honors, including membership in the National Academy of Sciences, honorary degrees from Universities of Uppsala and Harvard, and recipient of the Lasker and Gairdner Awards and the Kovalenko Medal of the National Academy of Sciences. Henry Kunkel Society Officers Henry Kunkel Society Lecturers President ................Westley Reeves 1992. Louis Kunkel 2003. .Fred Rosen Vice President ...............Keith Elkon 1993. .David Ho 2004. .Diane Mathis Secretary ........... Michel Nussenzweig 1994. Benvenuto Pernis 2005. Charles Weissman Treasurer ...............Anne Marshak- 1996. Jeffrey Ravetch 2006. Ralph M. Steinman Rothstein 1997. Anthony Fauci 2007.
    [Show full text]
  • Cdld Is Involved in T Cell-Intestinal Epithelial Cell Interactions by Asit Panja,* Richard S
    Btqef Detlnitlre Report CDld Is Involved in T Cell-Intestinal Epithelial Cell Interactions By Asit Panja,* Richard S. Blumberg, Steven P. Balk,$ and Lloyd Mayer* From the *Division of Clinical Immunology, Mount Sinai Medical Center, New York, 10029; the *Division of Gastroenterology, Brigham and Womens Hospital, Boston, Massachusetts 02115; and the SDivision of Hematology-Ontology, Beth Israel Hospital, Boston, Massachusetts 02114 Summary We assessed the role of the nonclassical class I molecule, CDld, in the interaction between intestinal epithelial cells and T cells. In a mixed lymphocyte reaction (MLR.) system where the stimulator cells were irradiated normal intestinal cells, the anti-CDld monoclonal antibody (mAb) 3Cll inhibited T cell proliferation. In contrast, no inhibition was seen when mAb 3Cll was added to conventional MLR cultures (non T cell stimulators). Furthermore, no inhibition was seen when either airway epithelial cells were used as stimulator cells or lamina propria lymphocytes were used as responder cells. These latter two conditions along with a conventional MLR favor CD4 + T cell proliferation. However, we have previously shown that normal intestinal epithelial cells stimulate CD8 + T cells under similar culture conditions. Thus, CDld expressed on intestinal epithelial cells may be an important ligand in CD8 + T cell-epithelial cell interactions. mmune responses at mucosal sites are, by nature of the ligand for CD8, class I, has no effect in this system. There- I environment, subject to unique rules relating to recogni- fore, additional molecules were sought that would potentially tion and effector functions. Over the past several years, it has interact with CD8. One such candidate is CDld, a class I- become clear that many of the dogmas set for peripheral im- like molecule recently reported to be expressed on murine mune responses have not held for mucosal immunity (1-3).
    [Show full text]
  • Expression of Blimp-1 in Dendritic Cells Modulates the Innate Inflammatory Response in Dextran Sodium Sulfate-Induced Colitis S
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis S. J. Kim Hofstra Northwell School of Medicine J. Goldstein Northwell Health K. Dorso Northwell Health M. Merad Northwell Health L. Mayer Northwell Health See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Pathology Commons Recommended Citation Kim S, Goldstein J, Dorso K, Merad M, Mayer L, Crawford J, Gregersen P, Diamond B. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis. 2014 Jan 01; 20():Article 682 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/682. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact [email protected]. Authors S. J. Kim, J. Goldstein, K. Dorso, M. Merad, L. Mayer, J. M. Crawford, P. K. Gregersen, and B. Diamond This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/682 Expression of Blimp-1 in Dendritic Cells Modulates the Innate Inflammatory Response in
    [Show full text]
  • Human Placental Trophoblasts Regulatory T Cells by + Activation
    Activation of CD8+ Regulatory T Cells by Human Placental Trophoblasts Ling Shao, Adam R. Jacobs, Valrie V. Johnson and Lloyd Mayer This information is current as of October 1, 2021. J Immunol 2005; 174:7539-7547; ; doi: 10.4049/jimmunol.174.12.7539 http://www.jimmunol.org/content/174/12/7539 Downloaded from References This article cites 50 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/174/12/7539.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Activation of CD8؉ Regulatory T Cells by Human Placental Trophoblasts1 Ling Shao,2* Adam R. Jacobs,† Valrie V. Johnson,† and Lloyd Mayer* The immunological basis by which a mother tolerates her semi-allogeneic fetus remains poorly understood. Several mechanisms are likely to contribute to this phenomenon including active immune regulation by regulatory T cells.
    [Show full text]
  • EVIDENCE for FUNCTION of La MOLECULES on GUT EPITHELIAL CELLS in MAN
    EVIDENCE FOR FUNCTION OF la MOLECULES ON GUT EPITHELIAL CELLS IN MAN BY LLOYD MAYER AND ROBERT SHLIEN From the Divisions of Clinical Immunology and Gastroenterology, Mount Sinai Medical Center, New York 10029 The induction of an immune response at the mucosal level requires a series of complex interactions between lymphocyte subpopulations in Peyer's patches and mesenteric lymph nodes (1) once antigen has been introduced. It has been proposed that the major pathway of antigen entry and presentation to these local lymphoid populations is through specialized epithelium overlying Peyer's patches, the so-called M cells (2). The actual numbers of these M cells are limited, however, and although it has been suggested that certain specific antigens can be "attracted" to these areas (3), the vast numbers of luminal antigens make this a potentially inefficient process. Recently, several groups have described the presence of la molecules on the surface of gut epithelial cells in rat (4, 5), and more recently in man (6). These Ia+ epithelial cells were initially described only in inflamed bowel (7), but these observations have been extended to include normal bowel as well, using more sensitive immunohistochemical techniques (Mayer, L., P. Solomen, and R. Plous, manuscript in preparation). The presence of these immunoregulatory molecules raises the issue as to whether they can function and contribute to immune responses in the GI tract. Although the presence of la molecules alone does not ensure that cells can function adequately as accessory or antigen-presenting cells (8), there has been recent evidence that IFN-1'-induced Ia+ endothelial cells can replace macrophages or dendritic cells as stimulators in MLRs (8).
    [Show full text]
  • FINAL PROGRAM Henry Kunkel Society Annual Meeting Rockefeller University, New York April 22-25, 2009 Wednesday, April 22 Thursda
    FINAL PROGRAM Henry Kunkel Society Annual Meeting Rockefeller University, New York April 22-25, 2009 Wednesday, April 22 6:00 pm - 7:00 pm Henry Kunkel Lecture “Experimental approaches to resolve complex posttranscriptional regulatory networks” (Caspary Auditorium) Thomas Tuschl, PhD Associate Professor and Head, Laboratory for RNA Molecular Biology, Rockefeller University Investigator, Howard Hughes Medical Institute 7:00 pm – 10:00 pm Cocktails & Dinner at Griffis Club Entrance at 1300 York Ave. (69th St. & York Ave) Thursday, April 23 8:00 am - 8:45 am Continental breakfast (Abby Lounge) 8:45 am - 12:40 pm Henry Kunkel Society Sessions (Caspary Auditorium) Immunoregulation – Moderator: Joe Craft 8:45 am -9:10 am A genetic dissection of immunity to infection "in natura" Jean-Laurent Casanova, Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York 9:10 am - 9:35 am Regulation of Cytokine Production and Function by ITGAM and Beta2 Integrins Lionel Ivashkiv, Hospital for Special Surgery, New York 9:35 am - 10:00 am Novel roles for IgG glycans Jeffrey Ravetch, Laboratory of Molecular Genetics & Immunology, Rockefeller University, New York 10:00 am - 10:25 am Autoantibodies to multiple components of the microRNA pathway and aberrant microRNA expression in autoimmune diseases Ed Chan, University of Florida, Gainesville Page 1 of 7 (Thursday, April 23 cont’d) 10:25 am - 11:00 am Coffee Break Autoimmunity I – Moderator: Antony Rosen 11:00 am - 11:25 am Innate Immune Mechanisms in Experimental Lupus Westley Reeves,
    [Show full text]
  • Human Intestinal Epithelial Cells of Proinflammatory Cytokine
    The Regulation and Functional Consequence of Proinflammatory Cytokine Binding on Human Intestinal Epithelial Cells This information is current as Asit Panja, Stan Goldberg, Lars Eckmann, Priya Krishen and of September 27, 2021. Lloyd Mayer J Immunol 1998; 161:3675-3684; ; http://www.jimmunol.org/content/161/7/3675 Downloaded from References This article cites 63 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/161/7/3675.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Regulation and Functional Consequence of Proinflammatory Cytokine Binding on Human Intestinal Epithelial Cells1 Asit Panja,2* Stan Goldberg,* Lars Eckmann,† Priya Krishen,* and Lloyd Mayer* Products of an activated immune system may affect cells within the immune system as well as nonlymphoid cells in the local environment. Given the immunologically activated state of the intestinal tract, it is conceivable that locally produced cytokines could regulate epithelial cell function.
    [Show full text]
  • (BMS-936557) for Ulcerative Colitis
    Inflammatory bowel disease ORIGINAL ARTICLE Gut: first published as 10.1136/gutjnl-2012-303424 on 5 March 2013. Downloaded from Anti-IP-10 antibody (BMS-936557) for ulcerative colitis: a phase II randomised study Lloyd Mayer,1 William J Sandborn,2 Yuriy Stepanov,3 Karel Geboes,4 Robert Hardi,5 Michael Yellin,6 Xiaolu Tao,7 Li An Xu,7 Luisa Salter-Cid,7 Sheila Gujrathi,7 Richard Aranda,7 Allison Y Luo7 ▸ Additional material is ABSTRACT published online only. To view Objective Interferon-γ-inducible protein-10 (IP-10 or Significance of this study please visit the journal online fl (http://dx.doi.org/10.1136/ CXCL10) plays a role in in ammatory cell migration and gutjnl-2012-303424). epithelial cell survival and migration. It is expressed in higher levels in the colonic tissue and plasma of patients 1Immunology Institute, Mount What is already known on this subject? Sinai School of Medicine, with ulcerative colitis (UC). This phase II study assessed ▸ Ulcerative colitis (UC) is a chronic, New York, New York, USA the efficacy and safety of BMS-936557, a fully human, inflammatory disease of the colonic mucosa 2 Division of Gastroenterology, monoclonal antibody to IP-10, in the treatment of caused, in part, by an aberrant immune system. University of California San moderately-to-severely active UC. ▸ Current treatments achieve remission in a Diego, La Jolla, California, USA 3Dnipropetrovsk State Medical Design In this 8-week, phase II, double-blind, relatively small proportion of patients and can Academy, Dnipropetrovsk, multicentre, randomised study, patients with active UC be associated with toxicities, such as infections Ukraine received placebo or BMS-936557 (10 mg/kg) and malignancies.
    [Show full text]