Ludwigia Peploides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ludwigia Spp
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Ludwigia spp. Waterprimroses Family: Onagraceae Range: Primarily in the coastal states, Washington, Oregon and California; creeping waterprimrose is also found in Arizona and New Mexico. Habitat: Slow-flowing rivers, lake and reservoir margins, and in the shallow waters of canals and floodplains. Origin: Most species are native to South America. L. peploides ssp. peploides is native to California, Arizona, New Mexico, Ludwigia peploides Texas, and Louisiana; ssp. glabrescens (Kuntze) Raven is native to the central and eastern U.S.; and ssp. montevidensis (Spreng.) Raven is introduced from southern South America. L. peploides is sometimes sold as an aquarium or pond ornamental. Impacts: Dense stands degrade natural communities, reduce water quality and floodwater retention, and prevent effective mosquito control. Plants can develop a tangled mat of stems that can reduce water flow in irrigation channels and drainage ditches. Western states listed as Noxious Weed: L. grandiflora, Washington California Invasive Plant Council (Cal-IPC) Inventory: L. hexapetala, High Invasiveness (Alert); L. peploides, High Invasiveness Waterprimroses are floating to emergent perennials with stems to 10 ft long. -
Report of a Pest Risk Analysis For: Ludwigia Grandiflora
EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 11-17142 Report of a Pest Risk Analysis for: Ludwigia grandiflora This summary presents the main features of a pest risk analysis which has been conducted on the pest, according to EPPO Decision support scheme for quarantine pests. Pest: Ludwigia grandiflora PRA area: The PRA area is the EPPO region (see map www.eppo.org). Assessors: A Draft PRA had been prepared by Mr Guillaume Fried, and the Expert Working Group was attended by the following experts: Mr Mustafa Selçuk Basaran, Plant Protection Central Research Institute, Turkey Mr Alain Dutartre, CEMAGREF, France Mr Guillaume Fried, LNPV Station de Montpellier, France Mr Jonathan Newman, Waterland Management Ltd, United Kingdom Mr Uwe Starfinger, Julius Kühn Institute, Germany Mr Johan van Valkenburg, Plant Protection Service, The Netherlands EPPO Secretariat: Ms Sarah Brunel Comments were received from Ms Iris Stiers, Vrije Universiteit Brussel, Belgium, and Mr Andreas Hussner, University of Duesseldorf, Germany. Peer review has been undertaken by Ms Schrader, Julius Kühn Institute, Germany. Date: Expert working group 06-2010, core member consultation 06-2011 STAGE 1: INITIATION Reason for doing PRA: L. grandiflora is widespread and invasive in the South and West of France but its distribution is still very limited in the North and East of France, as well as in Belgium, Germany, Ireland, Italy, the Netherlands, Spain and the UK where invasion is at an early stage. The species could spread to further EPPO countries and have negative impacts on agriculture and the environment. Taxonomic position of Kingdom: Plantae pest: Class: Magnoliopsida (Dicotyledons) Subclass: Rosidae Order: Myrtales Family: Onagraceae Ludwigia grandiflora ressembles and is often confused with L. -
Fort Ord Natural Reserve Plant List
UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC -
Identification of Invasive Alien Species Using DNA Barcodes
Identification of Invasive Alien Species using DNA barcodes Royal Belgian Institute of Natural Sciences Royal Museum for Central Africa Rue Vautier 29, Leuvensesteenweg 13, 1000 Brussels , Belgium 3080 Tervuren, Belgium +32 (0)2 627 41 23 +32 (0)2 769 58 54 General introduction to this factsheet The Barcoding Facility for Organisms and Tissues of Policy Concern (BopCo) aims at developing an expertise forum to facilitate the identification of biological samples of policy concern in Belgium and Europe. The project represents part of the Belgian federal contribution to the European Research Infrastructure Consortium LifeWatch. Non-native species which are being introduced into Europe, whether by accident or deliberately, can be of policy concern since some of them can reproduce and disperse rapidly in a new territory, establish viable populations and even outcompete native species. As a consequence of their presence, natural and managed ecosystems can be disrupted, crops and livestock affected, and vector-borne diseases or parasites might be introduced, impacting human health and socio-economic activities. Non-native species causing such adverse effects are called Invasive Alien Species (IAS). In order to protect native biodiversity and ecosystems, and to mitigate the potential impact on human health and socio-economic activities, the issue of IAS is tackled in Europe by EU Regulation 1143/2014 of the European Parliament and Council. The IAS Regulation provides for a set of measures to be taken across all member states. The list of Invasive Alien Species of Union Concern is regularly updated. In order to implement the proposed actions, however, methods for accurate species identification are required when suspicious biological material is encountered. -
Ludwigia Grandiflora (Large-Flower Primrose-Willow) ERSS
Large-flower Primrose-willow (Ludwigia grandiflora) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2012 Revised, March 2018 Web Version, 2/1/2019 Photo: O. Pichard. Licensed under Creative Commons (CC-BY-SA-3.0). Available: https://commons.wikimedia.org/wiki/File:Ludwigia_grandiflora_saint-mathurin-sur- loire_49_10082007_4.JPG. (March 2018). 1 Native Range and Status in the United States Native Range From CABI (2018): “L. grandiflora is native to the Americas, ranging from the Rio La Plata in Argentina north to the south/southeastern USA. In the USA, its range is primarily along the Atlantic coast and through the Gulf Coastal Plain (southeastern New York through Florida, westward to Texas) (McGregor et al., 1996).” From NatureServe Explorer (2018): “Global range includes two disjunct areas, one in southern Brazil, Bolivia, northeastern Argentina, Uruguay, and Paraguay (also locally in Guatemala), and the second (with relevance here) in the southeastern United States coastal plains of southern South Carolina, Georgia, northern Florida, and Louisiana, west to central Texas; and once in southwest Missouri (Zardini et al., 1991; Crow and Hellquist, 2000a).” “There is some uncertainty over the native range of Ludwigia grandiflora.” The USDA Natural Resources Conservation Service (2018) website reports all occurrences in the contiguous United States are introductions. Status in the United States From NatureServe Explorer (2018): “This species has expanded rapidly in the past in the United States beyond its original early invasion into the Pacific Northwest and the American southeast. It is now found in more than 20 states with recent expansion continuing, though not as rapidly because a significant portion of its potential range has already been filled. -
Recent Distribution and Phytosociological Affiliation of Ludwigia Palustris in Slovakia
Acta Societatis Botanicorum Poloniae DOI: 10.5586/asbp.3544 ORIGINAL RESEARCH PAPER Publication history Received: 2016-02-28 Accepted: 2017-03-08 Recent distribution and phytosociological Published: 2017-03-31 affiliation of Ludwigia palustris in Slovakia Handling editor Joanna Zalewska-Gałosz, Faculty of Biology and Earth Sciences of the Jagiellonian University, Daniel Dítě1, Pavol Eliáš Jr.2*, Zuzana Dítě1, Andrea Šimková3 Poland 1 Plant Science and Biodiversity Center, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Authors’ contributions 2 Slovak University of Agriculture, A. Hlinku 2, 949 76 Nitra, Slovakia DD: idea of the study; DD, ZD: 3 Administration of Latorica Protected Landscape Area, Záborského 1760/1, 075 01 Trebišov, writing the first draft of the Slovakia manuscript; PE: revision of the manuscript, map and table * Corresponding author. Email: [email protected] creating; AŠ: comments to the manuscript; all the authors: field study, relevés sampling Abstract Funding Ludwigia palustris has always been a very rare species in Central Europe. In Slo- The research was partially vakia, its occurrence remained unconfirmed for over 60 years and it was therefore funded by the projects VEGA 1/0083/16 and VEGA 2/0040/17. considered extinct. The paper reports its rediscovery on two sites in SE Slovakia. Both localities were found in the Latorica River catchment area in 2015 when per- Competing interests sistent summer droughts enabled the development of natural mudflat vegetation No competing interests have in the dried oxbows. Confirmation of this historic site indicates the long-term been declared. survival ability of the species. -
Ludwigia ID Guide
A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf arrangement and number of petals. Pairing morphological features with growth habit in the field quickly narrows down the thirty-odd species of water primrose in Florida to the handful most commonly found in the lakes, ponds, rivers and canals typically frequented by aquatic managers. 1 This genus of plants was named after a German botanist may not have been happy over the Latinization of his name. Florida has about 30 species. Habitat serves as general indicator of species. 2 Ludwigia peruviana is our most commonly seen species. Demonstrating little preference for an aquatic habitat, it forms tall thickets along roadside ditch banks and upper shorelines. It recurs perennially from thick, woody stem bases. Its tough stems and rough, hairy leaves afford a level of upland tolerance to this non-native, invasive species. 3 Most pertinent to aquatic managers in Florida are the emergent aquatics. 4 Stems are what gives these emergent species of aquatic habitats a special punch. They are reservoirs of energy used in maintaining, expanding, and recurring populations. With our emergent Ludwigia, stems are the most important plant feature in management. Fibrous roots acquire nutrients and help bind the submersed and floating stems into dense mats that provide support for emergent stems. 5 Special aquatic adaptations for oxygenation in an anaerobic environment. It is common for aquatic Ludwigia species to display multiple shades of green and red. 6 Apply these three initial steps to eliminate species and to arrive at the emergent aquatic Ludwigia in Florida. -
Common Name: Anglestem Primrose-Willow Scientific Name: Ludwigia Leptocarpa Family: Myrtales Order: Onagraceae Wetland Plant
Common Name: Anglestem Primrose-willow Scientific Name: Ludwigia leptocarpa Family: Myrtales Order: Onagraceae Wetland Plant Status: Obligatory Ecology & Description Anglestem primrose-willow is an upright, branched perennial plant that can grow up to 1 meter tall. Its stem is a stout, 4-angled stem that can be green, brown, or tan. The leaves are alternate, lanceolate, and up to 14 cm long and 2.5 cm wide. Yellow flowers that are 6-12 mm long and 4-6 mm wide are produced from May to October. The flowers have 4-7 petals and have to bracts. Fruit and seeds develop November through March. Fruits are a 4- sided, tubular capsule that is 2 cm long and 2-4.5 cm wide. The seeds are spread when the plant is shaken by the wind. Habitat Anglestem primrose-willow inhabits wet soils in new forests, right-of-ways, and older forest openings. Distribution It grows naturally as far north as Pennsylvania, as far east as Texas, and as far south as Puerto Rico. Native/Invasive Status This species is native to the Gulf Coastal Plain and Southeastern United States, as well as Puerto Rico Wildlife Uses Anglestem primrose-willow a forage used by white-tailed deer (Odocoileus virginianus). Wood ducks (Aix sponsa) have also used this plant as a minor food source in the fall. The nutritional value of anglestem primrose-willow ranges from moderate to poor. Management & Control Techniques In many places anglestem primrose-willow is thought of as a weed. If you want to remove it from a pond, remove the seed heads and burn them. -
Growth Strategy, Phylogeny and Stoichiometry Determine The
Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants Bart Grutters, Benedetta Saccomanno, Elisabeth Maria Gross, Dedmer van de Waal, Ellen van Donk, Elisabeth Bakker To cite this version: Bart Grutters, Benedetta Saccomanno, Elisabeth Maria Gross, Dedmer van de Waal, Ellen van Donk, et al.. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. Oikos, Nordic Ecological Society, 2017, 126 (12), pp.1770-1779. 10.1111/oik.03956. hal-03189435 HAL Id: hal-03189435 https://hal.archives-ouvertes.fr/hal-03189435 Submitted on 4 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Oikos 126: 1770–1779, 2017 doi: 10.1111/oik.03956 © 2017 The Authors. This is an Online Open article Subject Editor: Richard Michalet. Editor-in-Chief: Dries Bonte. Accepted 15 May 2017 Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants Bart M. C. Grutters, Benedetta Saccomanno, Elisabeth M. Gross, Dedmer B. Van de Waal, Ellen van Donk and Elisabeth S. Bakker B. -
Biological and Host Range Characteristics of Lysathia Flavipes
insects Article Biological and Host Range Characteristics of Lysathia flavipes (Coleoptera: Chrysomelidae), a Candidate Biological Control Agent of Invasive Ludwigia spp. (Onagraceae) in the USA Angelica M. Reddy 1,* , Paul D. Pratt 1, Brenda J. Grewell 2 , Nathan E. Harms 3, Ximena Cibils-Stewart 4, Guillermo Cabrera Walsh 5 and Ana Faltlhauser 5,6 1 USDA-ARS, Invasive Species and Pollinator Health Research Unit, Western Regional Research Center, 800 Buchanan St., Albany, CA 94710, USA; [email protected] 2 USDA-ARS, Invasive Species and Pollinator Health Research Unit, University of California Davis, Department of Plant Sciences Mail Stop 4, One Shields Ave, Davis, CA 95616, USA; [email protected] 3 US Army Engineer Research and Development Center (ERDC), Aquatic Ecology and Invasive Species Branch, 3909 Halls Ferry Rd, Vicksburg, MS 39180, USA; [email protected] 4 Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Ruta 50 Km 11, Colonia del Sacramento, Colonia, Uruguay; [email protected] 5 Fundación para el Estudio de Especies Invasivas (FuEDEI), Simón Bolívar 1559, Hurlingham (CP1686), Buenos Aires B1686EFA, Argentina; [email protected] (G.C.W.); [email protected] (A.F.) 6 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires C1425FQB, Argentina * Correspondence: [email protected] Citation: Reddy, A.M.; Pratt, P.D.; Grewell, B.J.; Harms, N.E.; Simple Summary: Exotic water primroses (Ludwigia spp.) are aggressive plant invaders in aquatic Cibils-Stewart, X.; Cabrera Walsh, G.; Faltlhauser, A. Biological and Host ecosystems worldwide. Management of exotic Ludwigia spp. -
Recognising Water Weeds
Recognising Water Weeds PLANT IDENTIFICATION GUIDE Recognising Water Weeds or information whether expressed or implied in the document, and disclaim all liability for any loss, Plant Identification Guide damage, cost or expense incurred or arising by reason Aquatic Weeds Early Detection Project of any person using or relying on the information contained in the document or by reason of any error, Compiled by Jessica Grantley, Fiona McPherson and omission, defect or misstatement (whether such error, Andrew Petroeschevsky, omission, defect or misstatement is caused by or arises from negligence, lack of care or otherwise). While the Edited by Matthew Stevens and Elissa van Oosterhout information is considered true and correct at the date of publication, changes in circumstances after the time of Enquiries: Industry & Investment NSW, Grafton Primary publication may alter the accuracy of the information. The information may change without notice and the Industries Institute, State of New South Wales, the author and the publisher, PMB 2, Grafton, NSW 2460. and their respective servants and agents are not in any way liable for the accuracy of any information Weeds Hotline 1800 680 244 or contained in this document. The product trade names [email protected] in this publication are supplied on the understanding that no preference between equivalent products is © The State of New South Wales Industry & Investment intended and that the inclusion of a product name does NSW 2009 not imply endorsement by Industry & Investment NSW Information contained in this publication may be over any equivalent product from another manufacturer. copied or reproduced for study, research, information Recognising that some of the information is provided by or education purposes, subject to inclusion of an third parties, the State of New South Wales, the author acknowledgement of the source. -
Original Research Article
1 Original Research Article 2 3 Floristic Inventory and distribution of invasive alien aquatic plants 4 in Kinshasa (Pool Malebo, Kinkole, Kingabwa and the N’sele, FUNA 5 and Lukaya rivers) 6 7 8 Abstract 9 10 To make the botanical inventory of invasive alien plants and their distribution in the Kinshasa 11 hydrographic network, to evaluate their impacts in the environment, to know their socio-economic 12 importance and to propose sustainable and effective management measures. Surveys on the use of 13 aquatic exotic invasive plants have been conducted among rural populations in Kinshasa. The 14 identification of the plants was performed by our team in collaboration with the herbarium of the 15 University of Kinshasa to be identified by comparison through the INERA services competition, The 16 physical and physicochemical parameters of water were measured between 8:00 and 11:00 am. The 17 measurements were carried out with the appropriate electronic probe for each parameter. For each 18 parameter, the comparison between the sites was carried out using the ANOVA test, using the 19 XLSTAT 2013 software, and the graphics were obtained using the Origin Lab version 6.1 software. 20 Nineteen alien species were identified and four proved to be the most invasive: Eichhornia crassipes, 21 Echinochloa pyramidalis, Ludwigia peploides, Pistia stratiotes. Three species are multi-purpose, the 22 observation of hydrological parameters has shown that there are no significant differences for the 23 temperature in the different sites, for the PH the analysis indicates that the sites are differentiated in a 24 highly significant way, the analysis does not indicate a significant difference between the sites for 25 turbidity, as for the conductivity, indicates that the sites differ in a very highly significant way.