Recognising Water Weeds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ludwigia Spp
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Ludwigia spp. Waterprimroses Family: Onagraceae Range: Primarily in the coastal states, Washington, Oregon and California; creeping waterprimrose is also found in Arizona and New Mexico. Habitat: Slow-flowing rivers, lake and reservoir margins, and in the shallow waters of canals and floodplains. Origin: Most species are native to South America. L. peploides ssp. peploides is native to California, Arizona, New Mexico, Ludwigia peploides Texas, and Louisiana; ssp. glabrescens (Kuntze) Raven is native to the central and eastern U.S.; and ssp. montevidensis (Spreng.) Raven is introduced from southern South America. L. peploides is sometimes sold as an aquarium or pond ornamental. Impacts: Dense stands degrade natural communities, reduce water quality and floodwater retention, and prevent effective mosquito control. Plants can develop a tangled mat of stems that can reduce water flow in irrigation channels and drainage ditches. Western states listed as Noxious Weed: L. grandiflora, Washington California Invasive Plant Council (Cal-IPC) Inventory: L. hexapetala, High Invasiveness (Alert); L. peploides, High Invasiveness Waterprimroses are floating to emergent perennials with stems to 10 ft long. -
Introduction to Common Native & Invasive Freshwater Plants in Alaska
Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting -
Report of a Pest Risk Analysis For: Ludwigia Grandiflora
EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 11-17142 Report of a Pest Risk Analysis for: Ludwigia grandiflora This summary presents the main features of a pest risk analysis which has been conducted on the pest, according to EPPO Decision support scheme for quarantine pests. Pest: Ludwigia grandiflora PRA area: The PRA area is the EPPO region (see map www.eppo.org). Assessors: A Draft PRA had been prepared by Mr Guillaume Fried, and the Expert Working Group was attended by the following experts: Mr Mustafa Selçuk Basaran, Plant Protection Central Research Institute, Turkey Mr Alain Dutartre, CEMAGREF, France Mr Guillaume Fried, LNPV Station de Montpellier, France Mr Jonathan Newman, Waterland Management Ltd, United Kingdom Mr Uwe Starfinger, Julius Kühn Institute, Germany Mr Johan van Valkenburg, Plant Protection Service, The Netherlands EPPO Secretariat: Ms Sarah Brunel Comments were received from Ms Iris Stiers, Vrije Universiteit Brussel, Belgium, and Mr Andreas Hussner, University of Duesseldorf, Germany. Peer review has been undertaken by Ms Schrader, Julius Kühn Institute, Germany. Date: Expert working group 06-2010, core member consultation 06-2011 STAGE 1: INITIATION Reason for doing PRA: L. grandiflora is widespread and invasive in the South and West of France but its distribution is still very limited in the North and East of France, as well as in Belgium, Germany, Ireland, Italy, the Netherlands, Spain and the UK where invasion is at an early stage. The species could spread to further EPPO countries and have negative impacts on agriculture and the environment. Taxonomic position of Kingdom: Plantae pest: Class: Magnoliopsida (Dicotyledons) Subclass: Rosidae Order: Myrtales Family: Onagraceae Ludwigia grandiflora ressembles and is often confused with L. -
A Study of the Germination Process of Seeds of Heteranthera Limosa. James Earl Marler Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1969 A Study of the Germination Process of Seeds of Heteranthera Limosa. James Earl Marler Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Marler, James Earl, "A Study of the Germination Process of Seeds of Heteranthera Limosa." (1969). LSU Historical Dissertations and Theses. 1607. https://digitalcommons.lsu.edu/gradschool_disstheses/1607 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 70-254 MARLER, James Earl, 1939- A STUDY OF THE GERMINATION PROCESS OF SEEDS OF HETERANTHERA LIMQSA. The Louisiana State University and Agricultural and Mechanical College, Ph*D., 1969 Botany University Microfilms, Inc., Ann Arbor, Michigan A Study of the Germination Process of Seeds of Heteranthera limosa. A Dissertation Submitted to the Graduate School of the Louisiana State University Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Botany and Plant Pathology by James Earl Marler B.S., University of Miami, 1962 M.A., University of Texas, 1965 May, 1969 ACKNOWLEDGEMENT The author wishes to express his gratitude to Dr. John B. Baker for his guidance, patience, and encouragement dur ing these investigations and also during the preparation of this dissertation. -
Effect of Different Water Temperatures on Growth of Aquatic Plants Salvinia Natans and Ceratophyllum Demersum
Journal of Coastal Life Medicine 2017; 5(1): 13-15 13 Journal of Coastal Life Medicine journal homepage: www.jclmm.com Original article https://doi.org/10.12980/jclm.5.2017J6-213 ©2017 by the Journal of Coastal Life Medicine. All rights reserved. Effect of different water temperatures on growth of aquatic plants Salvinia natans and Ceratophyllum demersum Khadija Kadhem Hreeb* Marine Biology Department, Marine Science Center, University of Basrah, Basrah, Iraq ARTICLE INFO ABSTRACT Article history: Objective: To evaluate the effect of some different water temperatures on growth of aquatic Received 8 Oct 2016 plants (Salvinia natans and Ceratophyllum demersum). Received in revised form 14 Nov 2016 Methods: The aquatic plants were brought from Shatt Al-Arab River in 2016. Equal weights of Accepted 2 Dec 2016 aquatic plants were aquacultured in aquaria, and were exposed to three different temperatures ( Available online 15 Dec 2016 12, 22 and 32 °C). Results: The results showed that the two plants did not show significant differences with respect to their effects on pH and electrical conductivity values. Time and temperature did not affect the values of pH and electrical conductivity. The values of dissolved oxygen was Keywords: significantly influenced with variation of time and temperature, while the two plants did not Temperatures have significant differences on dissolved oxygen values, nitrate ion concentration and was not Aquatic plants significantly influenced with variation of plant species or temperature or time. Plant species Shatt Al-Arab River and temperature significantly affected phosphate ion concentration, while the time did not Salvinia natans significantly influence the concentration of phosphate ion. -
A Key to Common Vermont Aquatic Plant Species
A Key to Common Vermont Aquatic Plant Species Lakes and Ponds Management and Protection Program Table of Contents Page 3 Introduction ........................................................................................................................................................................................................................ 4 How To Use This Guide ....................................................................................................................................................................................................... 5 Field Notes .......................................................................................................................................................................................................................... 6 Plant Key ............................................................................................................................................................................................................................. 7 Submersed Plants ...................................................................................................................................................................................... 8-20 Pipewort Eriocaulon aquaticum ...................................................................................................................................................................... 9 Wild Celery Vallisneria americana .................................................................................................................................................................. -
Ludwigia Grandiflora (Large-Flower Primrose-Willow) ERSS
Large-flower Primrose-willow (Ludwigia grandiflora) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2012 Revised, March 2018 Web Version, 2/1/2019 Photo: O. Pichard. Licensed under Creative Commons (CC-BY-SA-3.0). Available: https://commons.wikimedia.org/wiki/File:Ludwigia_grandiflora_saint-mathurin-sur- loire_49_10082007_4.JPG. (March 2018). 1 Native Range and Status in the United States Native Range From CABI (2018): “L. grandiflora is native to the Americas, ranging from the Rio La Plata in Argentina north to the south/southeastern USA. In the USA, its range is primarily along the Atlantic coast and through the Gulf Coastal Plain (southeastern New York through Florida, westward to Texas) (McGregor et al., 1996).” From NatureServe Explorer (2018): “Global range includes two disjunct areas, one in southern Brazil, Bolivia, northeastern Argentina, Uruguay, and Paraguay (also locally in Guatemala), and the second (with relevance here) in the southeastern United States coastal plains of southern South Carolina, Georgia, northern Florida, and Louisiana, west to central Texas; and once in southwest Missouri (Zardini et al., 1991; Crow and Hellquist, 2000a).” “There is some uncertainty over the native range of Ludwigia grandiflora.” The USDA Natural Resources Conservation Service (2018) website reports all occurrences in the contiguous United States are introductions. Status in the United States From NatureServe Explorer (2018): “This species has expanded rapidly in the past in the United States beyond its original early invasion into the Pacific Northwest and the American southeast. It is now found in more than 20 states with recent expansion continuing, though not as rapidly because a significant portion of its potential range has already been filled. -
Heteranthera Limosa (Sw.) Willd., Neófito Para La Flora Valenciana
Flora Montiberica 25: 52-55 (XII-2003) HETERANTHERA LIMOSA (SW.) WILLD., NEÓFITO PARA LA FLORA VALENCIANA Miguel GUARA REQUENA*, Pablo Pedro FERRER GALLEGO* & Amparo OLIVARES TORMO** *Universitat de València. Departament de Botànica. Facultat de C.C. Biològiques. Avda. Dr. Moliner, 50, E-46100, Burjassot, València. [email protected] . **Dirección Territorial de la Conselleria de Territori i Habitatge. C/ Gregorio Gea, 27. E-46009, València. [email protected] RESUMEN: Se cita por primera vez para la provincia de Valencia la presencia de Heteranthera limosa (Sw.) Willd. en áreas próximas a cultivos de arroz, donde se han realizado actuaciones para la reintroducción de Valencia hispanica (Valenciennes, 1846) –samaruc–. Se comentan algunas de sus características y se incluyen claves para la determinación de los géneros y de las especies de las Pontederiaceae naturalizadas en el oriente ibérico. SUMMARY: Heteranthera limosa (Sw.) Willd. is reported for the first time in the Valencia province close to rice fields in places where Valencia hispanica (Valen- ciennes, 1846) –samaruc– has been re-introduced. Some characteristics are commented, and keys for determining the genera and species of the naturalized Pontederiaceae in the Iberian eastern are also included. INTRODUCCIÓN Pav., Monochoria C. Presl., Hydrotrix Hook f., Pontederia L., Reussia Endl., La familia Pontederiaceae está cons- Scholleropsis H. Perrier y Zosterella tituida por unas 30-36 especies de distri- Small). Algunas de sus especies se em- bución pantropical, subtropical y zonas plean como ornamentales acuáticas, mien- templado cálidas, reunidas en seis a nueve tras otras se comportan como malas hier- géneros según autores (CROW, inéd.; bas en arrozales. -
Recent Distribution and Phytosociological Affiliation of Ludwigia Palustris in Slovakia
Acta Societatis Botanicorum Poloniae DOI: 10.5586/asbp.3544 ORIGINAL RESEARCH PAPER Publication history Received: 2016-02-28 Accepted: 2017-03-08 Recent distribution and phytosociological Published: 2017-03-31 affiliation of Ludwigia palustris in Slovakia Handling editor Joanna Zalewska-Gałosz, Faculty of Biology and Earth Sciences of the Jagiellonian University, Daniel Dítě1, Pavol Eliáš Jr.2*, Zuzana Dítě1, Andrea Šimková3 Poland 1 Plant Science and Biodiversity Center, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Authors’ contributions 2 Slovak University of Agriculture, A. Hlinku 2, 949 76 Nitra, Slovakia DD: idea of the study; DD, ZD: 3 Administration of Latorica Protected Landscape Area, Záborského 1760/1, 075 01 Trebišov, writing the first draft of the Slovakia manuscript; PE: revision of the manuscript, map and table * Corresponding author. Email: [email protected] creating; AŠ: comments to the manuscript; all the authors: field study, relevés sampling Abstract Funding Ludwigia palustris has always been a very rare species in Central Europe. In Slo- The research was partially vakia, its occurrence remained unconfirmed for over 60 years and it was therefore funded by the projects VEGA 1/0083/16 and VEGA 2/0040/17. considered extinct. The paper reports its rediscovery on two sites in SE Slovakia. Both localities were found in the Latorica River catchment area in 2015 when per- Competing interests sistent summer droughts enabled the development of natural mudflat vegetation No competing interests have in the dried oxbows. Confirmation of this historic site indicates the long-term been declared. survival ability of the species. -
Türkiye Florası Için Yeni Bir Kayıt; Heteranthera Limosa Sw. Willd
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 9/2 (2016) 119-121 Research article/Araştırma makalesi A new record for the flora of Turkey: Heteranthera limosa (Sw.) Willd. (Pontederiaceae) Ramazan Süleyman GÖKTÜRK *1 1 Department of Biology, Faculty of Science, Akdeniz University, 07058 Antalya, Turkey Abstract Heteranthera limosa (Sw.) Willd. (Pontederiaceae) is reported as a new record from province Balıkesir of northwest Anatolia for Turkey. This species grows on the borders of rice fields and shallow water. In this study, the species is described, illustrated and distribution map is given. Key words: Pontederiaceae, Heteranthera, alien species, new rocord, Turkey ---------- ---------- Türkiye florası için yeni bir kayıt; Heteranthera limosa (Sw.) Willd. (Pontederiaceae) Özet Heteranthera limosa (Sw.) Willd. (Pontederiaceae) Anadolu’nun kuzeybatısından, Balıkesir ilinden Türkiye için yeni bir kayıt olarak rapor edilmektedir. Bu tür, prinç tarlaları kenarlarında ve sığ sularda yetişmektedir. Bu çalışmada, türün betimi, resimi ve dağılış haritası verilmiştir. Anahtar kelimeler: Pontederiaceae, Heteranthera, yabancı tür, yeni kayıt, Türkiye 1. Introduction The family Pontederiaceae is represented with nine genera (Eichhornia Kunth, Eurystemon Alexander, Heteranthera Ruiz & Pavon, Monochoria C. Presl., Hydrotrix Hook f., Pontederia L., Reussia Endl., Scholleropsis H. Perrier and Zosterella Small) in the World (Cook et al., 1974). The distrubution of Heteranthera species are in Western Hemisphere, Africa, Iberia Peninsula and Italy (Requena et al., 2003). Heteranthera represented with 12 species in the World (Horn, 1988). Heteranthera limosa know as “Blue Mudplantain” or “ducksalad” (in USA). H. limosa is best adapted for growth in water less than 5 cm deep. The another species of family, Eichhornia crassipes (Mart.) Solms (water hyacinth) was given as a new records for Turkey from Hatay (Asi River) (Uremis et al., 2014). -
Ludwigia ID Guide
A handful of primary features are useful for distinguishing water primrose (Ludwigia) from other plants. Understand what to look for, such as leaf arrangement and number of petals. Pairing morphological features with growth habit in the field quickly narrows down the thirty-odd species of water primrose in Florida to the handful most commonly found in the lakes, ponds, rivers and canals typically frequented by aquatic managers. 1 This genus of plants was named after a German botanist may not have been happy over the Latinization of his name. Florida has about 30 species. Habitat serves as general indicator of species. 2 Ludwigia peruviana is our most commonly seen species. Demonstrating little preference for an aquatic habitat, it forms tall thickets along roadside ditch banks and upper shorelines. It recurs perennially from thick, woody stem bases. Its tough stems and rough, hairy leaves afford a level of upland tolerance to this non-native, invasive species. 3 Most pertinent to aquatic managers in Florida are the emergent aquatics. 4 Stems are what gives these emergent species of aquatic habitats a special punch. They are reservoirs of energy used in maintaining, expanding, and recurring populations. With our emergent Ludwigia, stems are the most important plant feature in management. Fibrous roots acquire nutrients and help bind the submersed and floating stems into dense mats that provide support for emergent stems. 5 Special aquatic adaptations for oxygenation in an anaerobic environment. It is common for aquatic Ludwigia species to display multiple shades of green and red. 6 Apply these three initial steps to eliminate species and to arrive at the emergent aquatic Ludwigia in Florida. -
Common Name: Anglestem Primrose-Willow Scientific Name: Ludwigia Leptocarpa Family: Myrtales Order: Onagraceae Wetland Plant
Common Name: Anglestem Primrose-willow Scientific Name: Ludwigia leptocarpa Family: Myrtales Order: Onagraceae Wetland Plant Status: Obligatory Ecology & Description Anglestem primrose-willow is an upright, branched perennial plant that can grow up to 1 meter tall. Its stem is a stout, 4-angled stem that can be green, brown, or tan. The leaves are alternate, lanceolate, and up to 14 cm long and 2.5 cm wide. Yellow flowers that are 6-12 mm long and 4-6 mm wide are produced from May to October. The flowers have 4-7 petals and have to bracts. Fruit and seeds develop November through March. Fruits are a 4- sided, tubular capsule that is 2 cm long and 2-4.5 cm wide. The seeds are spread when the plant is shaken by the wind. Habitat Anglestem primrose-willow inhabits wet soils in new forests, right-of-ways, and older forest openings. Distribution It grows naturally as far north as Pennsylvania, as far east as Texas, and as far south as Puerto Rico. Native/Invasive Status This species is native to the Gulf Coastal Plain and Southeastern United States, as well as Puerto Rico Wildlife Uses Anglestem primrose-willow a forage used by white-tailed deer (Odocoileus virginianus). Wood ducks (Aix sponsa) have also used this plant as a minor food source in the fall. The nutritional value of anglestem primrose-willow ranges from moderate to poor. Management & Control Techniques In many places anglestem primrose-willow is thought of as a weed. If you want to remove it from a pond, remove the seed heads and burn them.