The Fauna: a Place to Call Home
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reviews of the Genera Schaefferia Absolon, 1900, Deuteraphorura
TAR Terrestrial Arthropod Reviews 5 (2012) 35–85 brill.nl/tar Reviews of the genera Schaefferia Absolon, 1900, Deuteraphorura Absolon, 1901, Plutomurus Yosii, 1956 and the Anurida Laboulbène, 1865 species group without eyes, with the description of four new species of cave springtails (Collembola) from Krubera-Voronya cave, Arabika Massif, Abkhazia Rafael Jordana1, Enrique Baquero1*, Sofía Reboleira2 and Alberto Sendra3 1Department of Zoology and Ecology, University of Navarra, 31080 Pamplona, Spain e-mails: [email protected]; [email protected] *Corresponding author. 2Department of Biology, Universidade de Aveiro and CESAM Campus Universitário de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] 3Museu Valencià d’Història Natural (Fundación Entomológica Torres Sala) Paseo de la Pechina 15. 46008 Valencia, Spain e-mail: [email protected] Received on November 4, 2011. Accepted on November 21, 2011 Summary Krubera-Voronya cave and other deep systems in Arabika Massif are being explored during many speleological expeditions. A recent Ibero-Russian exploration expedition (summer of 2010) took place in this cave with the aim of providing a study of the biocenosis of the deepest known cave in the world. Four new species of Collembola were found at different depths: Schaefferia profundissima n. sp., Anurida stereoodorata n. sp., Deuteraphorura kruberaensis n. sp., and Plutomurus ortobalaganensis n. sp., the last one at -1980 m deep. The identification and description of the new species have required the careful study of all congeneric species, implying a revision of each genus. As a result of this work tables and keys to all significant characters for each species are presented. -
Collembola: Neanuridae) from Peru
Biodiversity Data Journal 8: e57743 doi: 10.3897/BDJ.8.e57743 Taxonomic Paper A new species of the genus Neotropiella Handschin, 1942 (Collembola: Neanuridae) from Peru José G. Palacios-Vargas‡, Yony T. Callohuari§,| ‡ Universidad Nacional Autónoma de México, México, D. F., Mexico § University of Illinois at Urbana-Champaign, Urbana, United States of America | Universidad Nacional Agraria La Molina, Lima, Peru Corresponding author: Yony T. Callohuari ([email protected]) Academic editor: Ľubomír Kováč Received: 18 Aug 2020 | Accepted: 15 Nov 2020 | Published: 25 Nov 2020 Citation: Palacios-Vargas JG, Callohuari YT (2020) A new species of the genus Neotropiella Handschin, 1942 (Collembola: Neanuridae) from Peru. Biodiversity Data Journal 8: e57743. https://doi.org/10.3897/BDJ.8.e57743 ZooBank: urn:lsid:zoobank.org:pub:570D8CC8-6869-464E-8358-08CDE5B3FD53 Abstract Background Neotropiella is a genus of springtails which can be of medium size (2 mm) or relatively long (5 mm). These springtails live in leaf litter, under the bark of dead trees or in decomposing wood, mainly in the Neotropical Region and are often collected by litter samples on Berlese funnels or by pitfall traps. Most species have been described, based on relatively few specimens and chaetotaxy of several species is incomplete. New information A new species within Neotropiella was discovered in recent pitfall trap collections from Peru. Neotropiella peruana sp. n. was taxonomically treated and studied under both phase contrast and scanning electron microscopy. It is similar to N. insularis from Brazil, but smaller with only 4 mandibular teeth (vs. 5) and with well-developed unguis lateral teeth. © Palacios-Vargas J, Callohuari Y. -
Niche Breadth and Feeding in Tropical Grasshoppers
ar ,? ,* 4 ’ Insect Sci. Applic. Vol. 12, No. 11213, pp. 201-208, 1991 0191-9040/91 $3.00 + 0.00 Printed in Kenya. All rights reserved O 1991 ICIPE-ICIPE Science Press NICHE BREADTH AND FEEDING IN TROPICAL GRASSHOPPERS LE GALL PHILIPPE* ORSTOM, Institut Français de Recherches pour le Développement en Co-operation, _-Laboratoire d’Entomologie Bt 446, UniversitC Paris-Sud Orsay, 914105, Orsay (-./.- (Received 30 October 1990) Abstract-Consumption indices and apparent digestibility are measured for seven species of grasshoppers from Lamto (Ivory Coast), representative of different trophic specialization steps (Le Gall and Gillon, 1989). The consumption indices vary from 0.11 to 0.34 and the apparent digestibility from 30 to 65%. Specialists are not more efficient on their host plant than are generalists on convenient host plants, but some specialists fed on plants which are not convenient for generalists. Anthermus granosus and Eucoptacra spathulacauda feeding on Lippia multiflora is not convenient for a generalist like Eucoptera anguliflava. If feeding efficiency does not seem to be a real selective pressure, it can be an important step in specialization processes, when there is an adaptation to an unusable host plant for polyphagous species. Differences in the constitution of plant parts eaten by the grasshopper play an important role in the digestibility. The differences in the efficiency observed between the two specialists of Lippia are from their differences in feeding behaviour. Key Words: Grasshoppers, Orthoptera, Acrididae, Africa, plant-insects relationships, ecology, digestibility Résumé-Une Btude a été faite sur la consom’mation et la digestibilité apparente chez 7 espèces de sauterelles à Lamto (Côte d’Ivoire) représentant différents elements de spécialisation alimentaire (Le Gall et Gillon, 1989). -
Forest Disturbance and Arthropods: Small‐Scale Canopy Gaps Drive
Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition 1, 2,3 4 1,5 KAYLA I. PERRY , KIMBERLY F. WALLIN, JOHN W. WENZEL, AND DANIEL A. HERMS 1Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691 USA 2Rubenstein School of Environment and Natural Resources, University of Vermont, 312H Aiken Center, Burlington, Vermont 05405 USA 3USDA Forest Service, Northern Research Station, 312A, Aiken, Burlington, Vermont 05405 USA 4Powdermill Nature Reserve, Carnegie Museum of Natural History, 1847 PA-381, Rector, Pennsylvania 15677 USA 5The Davey Tree Expert Company, 1500 Mantua Street, Kent, Ohio 44240 USA Citation: Perry, K. I., K. F. Wallin, J. W. Wenzel, and D. A. Herms. 2018. Forest disturbance and arthropods: Small-scale canopy gaps drive invertebrate community structure and composition. Ecosphere 9(10):e02463. 10.1002/ecs2.2463 Abstract. In forest ecosystems, disturbances that cause tree mortality create canopy gaps, increase growth of understory vegetation, and alter the abiotic environment. These impacts may have interacting effects on populations of ground-dwelling invertebrates that regulate ecological processes such as decom- position and nutrient cycling. A manipulative experiment was designed to decouple effects of simultane- ous disturbances to the forest canopy and ground-level vegetation to understand their individual and combined impacts on ground-dwelling invertebrate communities. We quantified invertebrate abundance, richness, diversity, and community composition via pitfall traps in response to a factorial combination of two disturbance treatments: canopy gap formation via girdling and understory vegetation removal. For- mation of gaps was the primary driver of changes in invertebrate community structure, increasing activity- abundance and taxonomic richness, while understory removal had smaller effects. -
Biological Evaluation
United States Department of Agriculture Forest Service March 2018 Biological Evaluation Prospect Hamby Project Tusquitee Ranger District, Nantahala National Forest Cherokee County, North Carolina For Additional Information Contact: Tusquitee Ranger District 123 Woodland Drive Murphy, North Carolina 28906 (828) 837-5152 2-1 Table of Contents 1.0 INTRODUCTION .......................................................................................................................... 2 1.1 Proposed Action ......................................................................................................................... 2 1.2 Species Considered ..................................................................................................................... 2 2.0 PROPOSED, ENDANGERED, and THREATENED SPECIES ................................................... 3 2.1 Aquatic Resources ...................................................................................................................... 3 2.2 Botanical Resources ................................................................................................................... 6 2.3 Wildlife Resources ..................................................................................................................... 8 2.4 Effects Determinations for Proposed, Endangered, and Threatened Species ........................... 14 3.0 SENSITIVE SPECIES ................................................................................................................. 14 3.1 Aquatic -
Antarctic Bryophyte Research—Current State and Future Directions
Bry. Div. Evo. 043 (1): 221–233 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.16 Antarctic bryophyte research—current state and future directions PAULO E.A.S. CÂMARA1, MicHELine CARVALHO-SILVA1 & MicHAEL STecH2,3 1Departamento de Botânica, Universidade de Brasília, Brazil UnB; �[email protected]; http://orcid.org/0000-0002-3944-996X �[email protected]; https://orcid.org/0000-0002-2389-3804 2Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands; 3Leiden University, Leiden, Netherlands �[email protected]; https://orcid.org/0000-0001-9804-0120 Abstract Botany is one of the oldest sciences done south of parallel 60 °S, although few professional botanists have dedicated themselves to investigating the Antarctic bryoflora. After the publications of liverwort and moss floras in 2000 and 2008, respectively, new species were described. Currently, the Antarctic bryoflora comprises 28 liverwort and 116 moss species. Furthermore, Antarctic bryology has entered a new phase characterized by the use of molecular tools, in particular DNA sequencing. Although the molecular studies of Antarctic bryophytes have focused exclusively on mosses, molecular data (fingerprinting data and/or DNA sequences) have already been published for 36 % of the Antarctic moss species. In this paper we review the current state of Antarctic bryological research, focusing on molecular studies and conservation, and discuss future questions of Antarctic bryology in the light of global challenges. Keywords: Antarctic flora, conservation, future challenges, molecular phylogenetics, phylogeography Introduction The Antarctic is the most pristine, but also most extreme region on Earth in terms of environmental conditions. -
Alan Robert Templeton
Alan Robert Templeton Charles Rebstock Professor of Biology Professor of Genetics & Biomedical Engineering Department of Biology, Campus Box 1137 Washington University St. Louis, Missouri 63130-4899, USA (phone 314-935-6868; fax 314-935-4432; e-mail [email protected]) EDUCATION A.B. (Zoology) Washington University 1969 M.A. (Statistics) University of Michigan 1972 Ph.D. (Human Genetics) University of Michigan 1972 PROFESSIONAL EXPERIENCE 1972-1974. Junior Fellow, Society of Fellows of the University of Michigan. 1974. Visiting Scholar, Department of Genetics, University of Hawaii. 1974-1977. Assistant Professor, Department of Zoology, University of Texas at Austin. 1976. Visiting Assistant Professor, Dept. de Biologia, Universidade de São Paulo, Brazil. 1977-1981. Associate Professor, Departments of Biology and Genetics, Washington University. 1981-present. Professor, Departments of Biology and Genetics, Washington University. 1983-1987. Genetics Study Section, NIH (also served as an ad hoc reviewer several times). 1984-1992: 1996-1997. Head, Evolutionary and Population Biology Program, Washington University. 1985. Visiting Professor, Department of Human Genetics, University of Michigan. 1986. Distinguished Visiting Scientist, Museum of Zoology, University of Michigan. 1986-present. Research Associate of the Missouri Botanical Garden. 1992. Elected Visiting Fellow, Merton College, University of Oxford, Oxford, United Kingdom. 2000. Visiting Professor, Technion Institute of Technology, Haifa, Israel 2001-present. Charles Rebstock Professor of Biology 2001-present. Professor of Biomedical Engineering, School of Engineering, Washington University 2002-present. Visiting Professor, Rappaport Institute, Medical School of the Technion, Israel. 2007-2010. Senior Research Associate, The Institute of Evolution, University of Haifa, Israel. 2009-present. Professor, Division of Statistical Genomics, Washington University 2010-present. -
With Special Emphasis on the Equatorial Oceanic Islands
insects Article Synthesis of the Brazilian Poduromorpha (Collembola: Hexapoda) with Special Emphasis on the Equatorial Oceanic Islands Estevam C. A. de Lima 1,2,* , Maria Cleide de Mendonça 1, Gabriel Costa Queiroz 1 , Tatiana Cristina da Silveira 1 and Douglas Zeppelini 2 1 Laboratório de Apterygotologia, Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro 20940-040, Brazil; [email protected] (M.C.d.M.); [email protected] (G.C.Q.); [email protected] (T.C.d.S.) 2 Laboratório de Sistemática de Collembola e Conservação—Coleção de Referência de Fauna de Solo—CCBSA—Universidade Estadual da Paraíba Campus V, João Pessoa 58070-450, Brazil; [email protected] * Correspondence: [email protected] Simple Summary: Endemic Collembola species are bioindicators of environmental quality since native species abundance is particularly sensitive to environmental disturbances. Oceanic island biota generally present high percentages of endemic species, and the vulnerability of these species is higher than those of the continents. The objective of this work was to carry out a survey of the Collembola species of the order Poduromorpha in the Brazilian oceanic islands and synthesize a distribution list of this order for Brazil. Our results reveal four new species of Collembola Poduromorpha for Brazilian oceanic islands that may be useful for the conservation strategies of these island regions and a contributor to the knowledge of the order in Brazil. Citation: de Lima, E.C.A.; de Mendonça, M.C.; Queiroz, G.C.; da Silveira, T.C.; Abstract: We present new species and records of Poduromorpha for the Brazilian oceanic islands and Zeppelini, D. -
Going Deeper Into High and Low Phylogenetic Relationships of Protura
G C A T T A C G G C A T genes Article Going Deeper into High and Low Phylogenetic Relationships of Protura 1, , 2,3, 3 1 1 Antonio Carapelli * y , Yun Bu y, Wan-Jun Chen , Francesco Nardi , Chiara Leo , Francesco Frati 1 and Yun-Xia Luan 3,4,* 1 Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; [email protected] (F.N.); [email protected] (C.L.); [email protected] (F.F.) 2 Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200041, China; [email protected] 3 Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; [email protected] 4 Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China * Correspondence: [email protected] (A.C.); [email protected] (Y.-X.L.); Tel.: +39-0577-234410 (A.C.); +86-18918100826 (Y.-X.L.) These authors contributed equally to this work. y Received: 16 March 2019; Accepted: 5 April 2019; Published: 10 April 2019 Abstract: Proturans are small, wingless, soil-dwelling arthropods, generally associated with the early diversification of Hexapoda. Their bizarre morphology, together with conflicting results of molecular studies, has nevertheless made their classification ambiguous. Furthermore, their limited dispersal capability (due to the primarily absence of wings) and their euedaphic lifestyle have greatly complicated species-level identification. -
List of Insect Species Which May Be Tallgrass Prairie Specialists
Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites -
The Entomologist's Record and Journal of Variation
M DC, — _ CO ^. E CO iliSNrNVINOSHilWS' S3ldVyan~LIBRARlES*"SMITHS0N!AN~lNSTITUTl0N N' oCO z to Z (/>*Z COZ ^RIES SMITHSONIAN_INSTITUTlON NOIiniIiSNI_NVINOSHllWS S3ldVaan_L: iiiSNi'^NviNOSHiiNS S3iavyan libraries Smithsonian institution N( — > Z r- 2 r" Z 2to LI ^R I ES^'SMITHSONIAN INSTITUTlON'"NOIini!iSNI~NVINOSHilVMS' S3 I b VM 8 11 w </» z z z n g ^^ liiiSNi NviNOSHims S3iyvyan libraries Smithsonian institution N' 2><^ =: to =: t/J t/i </> Z _J Z -I ARIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS SSIdVyan L — — </> — to >'. ± CO uiiSNi NViNosHiiws S3iyvaan libraries Smithsonian institution n CO <fi Z "ZL ~,f. 2 .V ^ oCO 0r Vo^^c>/ - -^^r- - 2 ^ > ^^^^— i ^ > CO z to * z to * z ARIES SMITHSONIAN INSTITUTION NOIinillSNl NVINOSHllWS S3iaVdan L to 2 ^ '^ ^ z "^ O v.- - NiOmst^liS^> Q Z * -J Z I ID DAD I re CH^ITUCnMIAM IMOTtTIITinM / c. — t" — (/) \ Z fj. Nl NVINOSHIIINS S3 I M Vd I 8 H L B R AR I ES, SMITHSONlAN~INSTITUTION NOIlfl :S^SMITHS0NIAN_ INSTITUTION N0liniliSNI__NIVIN0SHillMs'^S3 I 8 VM 8 nf LI B R, ^Jl"!NVINOSHimS^S3iavyan"'LIBRARIES^SMITHS0NIAN~'lNSTITUTI0N^NOIin L '~^' ^ [I ^ d 2 OJ .^ . ° /<SS^ CD /<dSi^ 2 .^^^. ro /l^2l^!^ 2 /<^ > ^'^^ ^ ..... ^ - m x^^osvAVix ^' m S SMITHSONIAN INSTITUTION — NOIlfliliSNrNVINOSHimS^SS iyvyan~LIBR/ S "^ ^ ^ c/> z 2 O _ Xto Iz JI_NVIN0SH1I1/MS^S3 I a Vd a n^LI B RAR I ES'^SMITHSONIAN JNSTITUTION "^NOlin Z -I 2 _j 2 _j S SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVaan LI BR/ 2: r- — 2 r- z NVINOSHiltNS ^1 S3 I MVy I 8 n~L B R AR I Es'^SMITHSONIAN'iNSTITUTIOn'^ NOlin ^^^>^ CO z w • z i ^^ > ^ s smithsonian_institution NoiiniiiSNi to NviNosHiiws'^ss I dVH a n^Li br; <n / .* -5^ \^A DO « ^\t PUBLISHED BI-MONTHLY ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A. -
Chapter 3-1 Sexuality: Sexual Strategies Janice M
Glime, J. M. and Bisang, I. 2017. Sexuality: Sexual Strategies. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. 3-1-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 2 April 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SEXUALITY: SEXUAL STRATEGIES JANICE M. GLIME AND IRENE BISANG TABLE OF CONTENTS Expression of Sex............................................................................................................................................... 3-1-2 Unisexual and Bisexual Taxa............................................................................................................................. 3-1-2 Sex Chromosomes....................................................................................................................................... 3-1-6 An unusual Y Chromosome........................................................................................................................ 3-1-7 Gametangial Arrangement.......................................................................................................................... 3-1-8 Origin of Bisexuality in Bryophytes ................................................................................................................ 3-1-11 Monoicy as a Derived/Advanced Character.............................................................................................. 3-1-11 Anthocerotophyta and Multiple Reversals...............................................................................................