Index of Plant Names and Other Miscellaneous Groups References to Animals, Insects, Birds Etc

Total Page:16

File Type:pdf, Size:1020Kb

Index of Plant Names and Other Miscellaneous Groups References to Animals, Insects, Birds Etc 168 Index Index of Plant Names and Other Miscellaneous Groups References to animals, insects, birds etc. are included Abbevillea maschalantha Berg 100 Beilschmiedia spp. 7, 89, 109, 129 Abies spp. 22, 142 B. obtusifolia (F. Muell. ex Meissn.) F. Acacia spp. 89, 99, 104, 105, 106, 107, 128, Muell. 110, 124, 125, 127, 128 158 Berberis spp. 7 A. confusa Merrill 135 Betula spp. 64 A. farnesiana (L.) Willd. 90, 105, 129 Betulaceae 95, 141, 142, 145, 150, 158 A. pycnantha Benth. 134 Birds 45,64, 139, 145, 147, 151, 157, 159 Acaena spp. 90, 98, 99, Ill, 114 Brachycome spp. 95 A. anserinifolia (Forst. & Forst. f.) Druce Brachystegia spp. 150 s.!. 114 Brassicaceae 95,107,117,118,119,146, Aextoxicaceae 9 154 Aextoxicon spp. 9, 12 Brunoniaceae III Agathis australis Hort. ex Lind!. 3 Bryophytes 43, 66 Agropyron scabrum (Labil!.) Beauv. 98 Algae 67, 70, 75 Cactaceae 53 Allophylus spp. 150 Caesalpiniaceae 142, 145, 148, 149 Amaryllis belladonna L. 93 Caesalpinioideae 107 Ampelocissus spp. 95 Calandrinia polyandra Benth. 112, 129 Anacardiaceae 153 Callistemon spp. 100, 103 Aneilema spp. 152 Calocedrus spp. 150 Angiosperms 4, 9, 12, 13, 15, 19, 20, 22, 23, Campanulaceae III 28,31,43,54,60,66, 137, 140, 141, 156, Campomanesia spp. 100, 103, 122 158, 159 C. cyanea Berg 101 Animals (including amphibians, fish, C. maschalantha Kiaersk. 100 mammals, marsupials and rodents) 45, Cardamine spp. 89, 99, 107, 108, 109, 117, 54, 139, 141, 143, 145 119, 129, 131, 136 Apophlaea spp. 67, 70, 75 C. sp. C 107 A. lyallii Hook. f. & Harvey 70 C. alpina Willd. 108 A. sinclairii Harvey in Hook. f. & C. bellidifolia L. 107, 108 Harvey 70 C. bilobata Kirk 107, 108, 119 Araucaria spp. 14, 17, 150 C. cordata Barn. 107, 118 Araucariaceae 3 C. cordifolia A. Gray 108 Arbutus spp. 150 C. debilis Banks ex DC. 107,108,117,118, A. menziesii Pursh. 158 119 Archontophoenix spp. 112 C. heterophylla (Forst. f.) Schulz 107 Arctostaphylos spp. 150 C. pratensis L. 108 A. uva-ursi (L.) K. Spreng. 158 C. reniformis Ph. 107, 118 Arillastrum spp. 154 C. resedifolia L. 108 Aristotelia spp. 9 Carica papaya L. 98 A. serrata (J. R. & G. Forst.) W. R. B. Caryophyllaceae 146 Oliver 28 Cassiope spp. 151 Ascophyllum nodosum (L.) LeJo!. 75 Castanopsis spp. 4, 9, 11, 12, 20, 22, 25, 28, Asteraceae 95,98, Ill, 119, 130, 132, 146, 30, 149 154 Casuarina spp. 5 Atriplex spp. 94 Centipeda spp. 95 Austrocedrus spp. 20, 150 Centrospermae 146, 154 Avicennia marina (Forsk.) Vierh. 76 Chamaedaphne spp. 151 Chenopodiaceae 94, 111, 154 Ballia spp. 67, 68, 70 Chenopodium spp. 94 B. callitricha Ag. 70, 76 C. glaucum L. 94 B. scoparia Harv. 70 C. glaucum subsp. ambiguum (R.Br.) MUff. Banksia spp. 158 & Theil. 93, 94 Index 169 Chusquea spp. 11 E. viminalis Labi11. 23 Cinnamomum spp. 89, 109, 129 Euchlaena mexicana Schrad. 93, 113 C. oliveri F. M. Bail. 109, 110, 124, 125, Eucryphia spp. 9 127, 128 Eucryphiaceae 9 Cirsium vulgare (Savi) Ten. 92 Eugenia spp. 100, 101 Cissus spp. 95 E. brasiliense Lam. 100 Citrus spp. III E. edulis Veil. 101 Claytonia virginica L. 94 E. grandis Wight 100, 101 Coccoloba spp. 145 E. jambolana Lam. 100 Combretaceae 153 E. jambos L. 120, 121 Commelina spp. 152 E. pitanga Kiaersk. 102 Commelinaceae 152 E. pungens Berg 101,119,120 Compositae, see Asteraceae E. uvalha Camb. 101 Conifers 22, 31,48, 64, 112, 141, 142, 143, Euphorbia1es 152 150, 157 Cotula spp. 95 Fabaceae 94, 107 C. australis (Spreng.) Hook. f. 92 Fagaceae 4, 12, 19, 25, 27, 30, 77, 144, 145, Crepis capillaris (L.) Wa1ir. 92 147, 148, 149, 150 C. taraxacifolia Thuill. 92 Fagales 1, 28 C. virens L. 92 Fagus spp. 28, 157 Cryptocarya spp. 109, 110 F. silvatica L. 28 Cyanotis spp. 152 Feijoa sellowiana (0. Berg) O. Berg Ill, Cyathea spp. 3 130 Cyperaceae Ill, 146, 150 Ferns 30, 95, 96, 112 Ferns, tree 3,8,16, 19,31 Dacrydium spp. 7, 9, 28 Ficus spp. 156 Diapensiaceae 150 Filipendula spp. 99 Dicksonia spp. 3, 16, 31 F. ulmaria (L.) Maxim. 114 Dipterocarpaceae 57, 142, 145, 148, 149, Finschia spp. 104 150, 156 F. chloroxantha Diels 104, 122, 132 Drimys winteri Forst. 7 Freycinetia spp. 7, 28 Fuchsia spp. 9, 28 Ebenales 152 Elaeocarpus spp. 7, 9 Gaultheria spp. 150, 151 Empetraceae Ill, 143, 150 Geum spp. 99 Empetrum spp. 143, 151 Glycine spp. 92 Epacridaceae 99, Ill, 112, 150, 151 Gnetaceae 149 Epilobium cinereum A. Rich. 92 Goodeniaceae 92, III E. erectum Petrie 92 Gramineae, see Poaceae E. pedicellare Presl. 92 Griselinia spp. 9 E. 'pediculare' 92 Gymnosperms 9,15, 19,22,23,27,30,31, E. pedunculare A. Cunn. 92 139 E. rotundifolium Forst. f. 92 Ericaceae Ill, 143, 150, 151, 152 Ericales 150, 151, 152 Hakea spp. 89, 104, 121, 122 Erodium crinitum Carolin 92 H. glabella RBr. 122 E. moschatum (L.) Ait. 92 H. prostrata R.Br. 89, 122 Eucalyptus spp. 1, 2, 4, 5, 16, 20, 21, 22, Hardenbergia spp. 90, 115 29,31,98,100,103, Ill, 116, 117, 120, H. monophylla (Vent.) Benth. 98 130, 145, 148, 153, 154, 158 H. violacea (Schneev.) Stearn 98, 114, 115, E. calophylla R.Br. 20 116 E. citriodora Hook. 100, 116 Hebe spp. 95 E. deglupta Bl. 154 Helichrysum bracteatum (Vent.) Andr. 95 E. diversicolor F. Muell. 8, 20, 29 Hydrocotyle spp. 92 E. dives Schau. 23 H. callicarpa Bunge 92 E. fastigata Deane & Maid. 23 Hypochoeris glabra L. 92 E. globulus Labill. 100, 116 H. radicata L. 92, 95 E. pilularis Sm. 100, 116 E. radiata Sieb. ex DC. 23 Insects 32, 138, 144, 145, 147, 148, 155, E. regnans F. Mueil. 23 157, 158 170 Index Jambos spp. 100 M. stenocarpa Krug & Urb. 120 J. jambos Milisp. 120 Myrciaria spp. 101 J. vulgaris DC. 120, 121 M. cauliflora Berg 102 Juncaceae III, 146 Myricaceae 150 Myrtaceae 9, 19,22,31,89,99, 100, 101, Kennedia spp. 90, 115 102, 103, III, 120, 123, 124, 128, 129, K. rubicunda Vent. 98, 116 130, 131, 132, 134, 142, 145, 149, 150, 153, 157 Lactuca spp. 95 Myrtaceae Lagenophora spp. 98 subfamily Leptospermoideae 99, 103, Lauraceae 89, 109, 110, III, 125, 129, 130, III, 122, 130, 148, 153 131, 132, 153 subfamily Myrtoideae 89, 99, 103, III, Laurelia spp. 12 122, 129, 130, 153 Laurus spp. III Myrtales I L. canariensis Webb & Berth. III Myrtus communis L. 120, 121 L. nobilis L. III Lebatanthus spp. 151 Lecythidales 152 Nectandra spp. 109, 110, 128 Leguminosae sens. lat. 94, 99, III, 132 N. rigida Nees 128 Leontodon leysseri (Wallr.) G. Beck 92 N. tweediei Mez 110 Leptospermum spp. 1,2, 5,9, 16,21,22, Neopaxia australasica (Hook. f.) O. 24,31, 153, 154 Nilss. 93, 94, 112 L. ericoides A. Rich. 23 Nesodaphne obtusifolia Benth. 128 L. scoparium Forst. & Forst. f. 23 Nothofagus spp. 1,2,5,6,7,8,9, 10, 11, Lichens 43-66, 87, 128, 129, 135, 144, 146, 12, 13, 14, 16, 17, 18,20,21,22,23,24, 155 25, 2~ 2~ 3~ 33, 35, 3~ 37, 38, 45, 53, Liliales III 60,77-87,91,139, 143, 144, 145, 147, Lilium sp. 93 148, 149, 150, 152, 154, 155, 156, 157, Limosella lineata Gluck 92 158 Lithocarpus spp. 4, 9, II, 12, 20, 22, 25, 28, N. allesandri Espinosa 144 30 N. antarctica (G. Forst.) Oerst. 78, 79, 80, Livistona spp. 112 81 Lotus corniculatus L. 93 N. betuloides (Mirb.) Oerst. 8, 11, 79, 80 N. brassii van Steenis 77-81, 144 Magnolia spp. 55 N. carrii van Steenis 4, 23, 28, 29 Magnoliales 152 N. clifJortioides (Hook. f.) Oerst. 78 Malphigiaceae 101 N. cunninghamii (Hook.) Oerst. 23, 79, 80 Malva neglecta Wallr. 92 N. dombeyi (Mirb.) Oerst. 10, 12, 20, 79, 80 Man 45, 147, 153 N. fusca (Hook. f.) Oerst. 10, 21, 23, 25, 28, Mangroves 75 29,30,77,78,79,80,81, 144 Marlierea spp. 100, 101 N. glauca Espinosa 80, 81 M. edulis Niedz. 100, 101, 102, 120 N. grandis van Steenis 23, 28 Maytenus spp. 7 N. menziesii (Hook. f.) Oerst. 20, 21, 23, Medicago polymorpha L. 93 25,28, 77, 78, 79, 80, 81, 144 M. sativa L. 93 N. moorei (F. Muell.) Krasser 8, 20, 23, 28, M. truncatula Gaertn. 93 79,80 Melaleuca spp. 100, 103 N. nitida (Phil.) Reiche 79, 80 M. leucadendron (L.) L. 100 N. obliqua (Mirb.) Oerst. 79, 80, 81 Melicope simplex A. Cunn. 92 N. obliqua var. macrocarpa DC. 79, 80, 81 Melicytus spp. 9 N. procera (Poepp. & Endl.) Oerst. 10, 80, 'Melobesia antarctica' 70 81 Metrosideros spp. 9, 16, 153 N. pumilio (Poepp. & Endl.) Krasser 8, II, Mimosoideae 104, 107, 132 25, 30, 78, 79, 80, 81 Modiola caroliniana (L.) G. Don 92 N. solandri (Hook. f.) Oerst. 8, 20, 28, 80, Molluscs 138, 145, 147, 159 81 Moss 16, 19, 25 N. solandri var. clifJortioides (Hook. f.) Myrceugenia spp. 9 Poole 7, 8, II, 12, 21, 23 Myrcia spp. 101 N. truncata (Colenso) Cockayne 5, 7, 25 M. acuminata DC. 101 Nyctaginaceae 156 M. jaboticaba Berg 101, 102 Nyssa spp. 55 Index 171 Ocotea spp. 109, 110, 128 Quercus spp. 51, 141, 149 O. leucoxylon Benth. & Hook. f. 110 O. puberula Nees 110, 128 Ranunculus spp. 18 O. pulche//a Mart. 110 Restionaceae 111, 134, 157 Olearia spp. 95, 98 Rhamnaceae 89, 109, 111, 125, 129, 153 Oplismenus aemulus (R.Br.) Kunth 98 Rhizophora mangle L. 67, 68, 76 Orchidaceae 147 Rhododendron indicum (L.) Sweet 96 Oreodaphne spp. 109, 110 Rhodophyta 67, 68 Rhus spp.
Recommended publications
  • U·M·I University Microfilms International a 8Ell & Howell Information Company 300 North Zeeb Road
    Patterns of homoplasy in North American Astragalus L. (Fabaceae). Item Type text; Dissertation-Reproduction (electronic) Authors Sanderson, Michael John. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 10/10/2021 18:39:52 Link to Item http://hdl.handle.net/10150/184764 INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UIVn a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.
    [Show full text]
  • Evolutionary Relationships in Eucalyptus Sens. Lat. – a Synopsis
    Euclid - Online edition Evolutionary relationships in Eucalyptus sens. lat. – a synopsis This article complements the introductory essay about eucalypts included in the "Learn about Eucalypts" section. Its aim is to provide an up-to-date account of the outcomes of research derived from different groups during the past 5 years relating to relationships within Eucalyptus s.s. As such it includes only those publications and hypotheses relating to higher level relationships of major groupings within the eucalypts. Some of the research reported below also provides insights into biogeographic relationships of the eucalypt group – in large part these are not the focus of this article and are not discussed in detail. Introduction The first comprehensive classification of the eucalypts was published by Blakely in 1934, in which he treated more than 600 taxa, building on earlier work of Maiden and Mueller. Blakely's classification remained the critical reference for Eucalyptus taxonomists for the next 37 years when a new but informal classification was published by Pryor and Johnson (1971). In this work the authors divided the genus into seven subgenera, and although of an informal nature, presented a system of great advance on Blakely's treatment. The small genus Angophora was retained. The next 20 years saw much debate about the naturalness of Eucalyptus and whether other genera should be recognized (e.g., Johnson 1987). Based on morphological data, Hill and Johnson in 1995 proposed a split in the genus and recognition of the genus Corymbia. This new genus of c. 113 species, comprised the ghost gums and the bloodwoods, and Hill and Johnson concluded that Corymbia is the sister group to Angophora, with the synapomorphy of the distinctive cap cells on bristle glands (Ladiges 1984) being unambiguous.
    [Show full text]
  • Genera in Myrtaceae Family
    Genera in Myrtaceae Family Genera in Myrtaceae Ref: http://data.kew.org/vpfg1992/vascplnt.html R. K. Brummitt 1992. Vascular Plant Families and Genera, Royal Botanic Gardens, Kew REF: Australian – APC http://www.anbg.gov.au/chah/apc/index.html & APNI http://www.anbg.gov.au/cgi-bin/apni Some of these genera are not native but naturalised Tasmanian taxa can be found at the Census: http://tmag.tas.gov.au/index.aspx?base=1273 Future reference: http://tmag.tas.gov.au/floratasmania [Myrtaceae is being edited at mo] Acca O.Berg Euryomyrtus Schaur Osbornia F.Muell. Accara Landrum Feijoa O.Berg Paragonis J.R.Wheeler & N.G.Marchant Acmena DC. [= Syzigium] Gomidesia O.Berg Paramyrciaria Kausel Acmenosperma Kausel [= Syzigium] Gossia N.Snow & Guymer Pericalymma (Endl.) Endl. Actinodium Schauer Heteropyxis Harv. Petraeomyrtus Craven Agonis (DC.) Sweet Hexachlamys O.Berg Phymatocarpus F.Muell. Allosyncarpia S.T.Blake Homalocalyx F.Muell. Pileanthus Labill. Amomyrtella Kausel Homalospermum Schauer Pilidiostigma Burret Amomyrtus (Burret) D.Legrand & Kausel [=Leptospermum] Piliocalyx Brongn. & Gris Angasomyrtus Trudgen & Keighery Homoranthus A.Cunn. ex Schauer Pimenta Lindl. Angophora Cav. Hottea Urb. Pleurocalyptus Brongn. & Gris Archirhodomyrtus (Nied.) Burret Hypocalymma (Endl.) Endl. Plinia L. Arillastrum Pancher ex Baill. Kania Schltr. Pseudanamomis Kausel Astartea DC. Kardomia Peter G. Wilson Psidium L. [naturalised] Asteromyrtus Schauer Kjellbergiodendron Burret Psiloxylon Thouars ex Tul. Austromyrtus (Nied.) Burret Kunzea Rchb. Purpureostemon Gugerli Babingtonia Lindl. Lamarchea Gaudich. Regelia Schauer Backhousia Hook. & Harv. Legrandia Kausel Rhodamnia Jack Baeckea L. Lenwebia N.Snow & ZGuymer Rhodomyrtus (DC.) Rchb. Balaustion Hook. Leptospermum J.R.Forst. & G.Forst. Rinzia Schauer Barongia Peter G.Wilson & B.Hyland Lindsayomyrtus B.Hyland & Steenis Ristantia Peter G.Wilson & J.T.Waterh.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • Supplementary Material
    10.1071/BT11174_AC Australian Journal of Botany 60(3), 165–199. CSIRO 2012 Supplementary Material Pollen morphology of the Myrtaceae. Part 1: tribes Eucalypteae, Lophostemoneae, Syncarpieae, Xanthostemoneae and subfamily Psiloxyloideae Andrew H. Thornhill, Geoff S. Hope, Lyn A. Craven and Michael D. Crisp Supplementary Table S1. List of taxa viewed with SEM ANBG - Australian Botanic Gardens, BRI - Queensland Herbarium, CANB, CBG - Australian National Herbarium, CSIRO, Canberra, DNA - Northern Territory Herbarium L - National Herbarium Nederland (Leiden), MI - University of Michigan Herbarium, NSW - National Herbarium of New South Wales, P - Herbier National de Paris. Taxon Voucher details Allosyncarpia ternata S.T.Blake C.R. Dunlop 4626, DNA Angophora costata Britten D. Nicolle 2103, CANB Angophora floribunda (Sm.) Sweet A. Gunnell 18 & W. Bishop, CANB Angophora hispida (Sm.) Blaxell Brooker 12948, CANB Angophora melanoxylon R.T.Baker leg. ign. 841, CANB Arillastrum gummiferum (Brongn. & Gris) Pancher ex Baill. G. McPherson 3580, CANB Corymbia maculata (Hook.) K.D.Hill & L.A.S.Johnson C.R. Dunlop s.n., CANB Corymbia variegata (F. Muell.) K.D.Hill & L.A.S.Johnson M.I.H. Brooker 3360, CANB (Accepted Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson) Eucalyptopsis papuana C.T.White M. Jacobs 9032, CANB Eucalyptus barklyensis L.A.S.Johnson & K.D.Hill K. Hill 3560 & L. Stanberg, DNA Eucalyptus cosmophylla F. Muell. M. Banks 1099, CANB Eucalyptus curtisii Blakely & C.T.White L.H. Bird s.n., NSW Eucalyptus globulus subsp. globulus Labill. T.A. Halliday 609, CANB Eucalyptus gunnii Hook.f. A. Moscal 14907, CANB Eucalyptus haemastoma Sm. R. Coveny 11354 & M.
    [Show full text]
  • Full Thesis Harriet Ampt
    University of Otago The Ideal Australian: The role of the gum tree in an Australian collective cultural identity Harriet Hope Ampt A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science Communication Centre for Science Communication, University of Otago, Dunedin, New Zealand May, 2018 1 Abstract Gum trees, or eucalypts, encompass all species belonging to the genera Eucalyptus, Corymbia, Angophora, Stockwellia, Allosyncarpia, Eucalyptopsis and Arillastrum. They are the most abundant group of trees in Australia and have adapted to almost every Australian natural and urban landscape and climate. They have also found a significant place in the cultural landscape, featuring heavily in Australian art, books, stories, songs, poems, movies and television. Attempting to understand this collective cultural significance could provide insight into relationships between humans and nature, as well as better understand human motivations to protect or defend nature. This thesis explores how and why gum trees are such a strong part of Australian cultural identity, asking this of a particular group of Australians – academics whose discipline involves gum trees and/or Australian nature, within a science or social science field of study. There has been very limited research on the relationship between Australians and gum trees, and focusing on a group that has direct professional linkages to gum trees means potentially extracting deeper and more considered responses that can then be used for Australians outside this group in further research. An ‘audio diary’ methodology was used to extract data from eight participants in this study. This involved sending a series of eight questions out via email over a period of four weeks (two questions per week), asking participants to record their answers on a personal recording device such as a mobile telephone, and to send their recordings back each week.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Journal of Plant Physiology 171 (2014) 164–172 Contents lists available at ScienceDirect Journal of Plant Physiology jo urnal homepage: www.elsevier.com/locate/jplph Physiology Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake a, a a b Philippe Jourand ∗, Laure Hannibal , Clarisse Majorel , Stéphane Mengant , c d Marc Ducousso , Michel Lebrun a IRD, UR040 LSTM, TA A-82/J Campus International de Baillarguet, 34398 Montpellier Cedex 5, France b Université de Nouvelle-Calédonie, Laboratoire insulaire du vivant et de l’environnement, B.P. R4, 98851 Nouméa Cedex, New Caledonia c CIRAD, UR 82 LSTM, TA A-82/J Campus International de Baillarguet, 34398 Montpellier Cedex 5 France d Université Montpellier 2, UMR28 LSTM, TA A-82/J Campus International de Baillarguet, 34398 Montpellier Cedex 5, France a r t i c l e i n f o a b s t r a c t Article history: Ectomycorrhizal fungi (ECM) isolates of Pisolithus albus (Cooke and Massee) from nickel-rich ultramafic Received 13 September 2013 topsoils in New Caledonia were inoculated onto Acacia spirorbis Labill. (an endemic Fabaceae) and Euca- Received in revised form 25 October 2013 lyptus globulus Labill. (used as a Myrtaceae plant host model). The aim of the study was to analyze the Accepted 26 October 2013 growth of symbiotic ECM plants growing on the ultramafic substrate that is characterized by high and Available online 21 November 2013 toxic metal concentrations i.e. Co, Cr, Fe, Mn and Ni, deficient concentrations of plant essential nutrients such as N, P, K, and that presents an unbalanced Ca/Mg ratio (1/19).
    [Show full text]
  • Flammable Biomes Dominated by Eucalypts Originated at the Cretaceous–Palaeogene Boundary
    ARTICLE Received 20 May 2010 | Accepted 12 Jan 2011 | Published 15 Feb 2011 DOI: 10.1038/ncomms1191 Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary Michael D. Crisp1, Geoffrey E. Burrows2, Lyn G. Cook3, Andrew H. Thornhill1 & David M. J. S. Bowman4 Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO2 compared with biomes with similar fire regimes in other continents. 1 Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia. 2 Institute for Land, Water and Society, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia. 3 School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. 4 School of Plant Science, Private Bag, Hobart, Tasmania 7001, Australia.
    [Show full text]
  • Some Observations on the Flora of New Caledonia* Mike Wilcox & Graeme Platt
    which although clearly extremely well-known now in terms of its cultivation and conservation requirements still poses seemingly intractable problems for phylogeneticists, with a multi-authored presentation showing that its position within the family remains unclear despite sequencing several genes across the group in an effort to provide resolution: is it more closely related to Agathis, to Araucaria, or equally to the two of them? A panel discussion allowed a num- ber of other questions about Agathis and Wollemia to be considered and also served as a chance to mark the recent, premature, death of T. C. Whitmore, the first and so far the last monographer of Agathis. With that, the highly success- ful first international symposium on the Araucariaceae finished, and partici- pants began to disperse, some heading home and some remaining for the post- conference tour of New Caledonia. ACKNOWLEDGMENTS I should like to thank the Council of the International Dendrology Society very much indeed for their financial support in helping me to travel to New Zealand for the field-tour and the conference: it would have been impossible for me to attend without their assistance. I also received additional funding from the UK’s Natural Environment Research Council under grant NER/S/A/2001/06066 and a travel award from Magdalen College, Oxford: I am extremely grateful to them all. I should also like to pay tribute to the organizers, Graeme Platt, Mike Wilcox and Clive Higgie, who despite their calm unflappability throughout the field tour and the conference must clearly have worked like slaves for months and years in advance for everything to have run so extraordinarily smoothly and to whom everybody who, like me, thoroughly enjoyed the entire week, owes a tremendous debt.
    [Show full text]
  • Antony Van Der Ent Guillaume Echevarria Alan J.M. Baker Jean Louis Morel Editors Extracting Unconventional Resources Using Pl
    Mineral Resource Reviews Antony van der Ent Guillaume Echevarria Alan J.M. Baker Jean Louis Morel Editors Agromining: Farming for Metals Extracting Unconventional Resources Using Plants Mineral Resource Reviews Series editor John Slack, Reston, VA, USA More information about this series at http://www.springer.com/series/11683 Antony van der Ent • Guillaume Echevarria • Alan J.M. Baker • Jean Louis Morel Editors Agromining: Farming for Metals Extracting Unconventional Resources Using Plants Editors Antony van der Ent Guillaume Echevarria Centre for Mined Land Rehabilitation, Laboratoire Sols et Environnement Sustainable Minerals Institute UMR 1120, Universite´ The University of Queensland de Lorraine-INRA Brisbane, Australia Vandoeuvre-le`s-Nancy, France and Laboratoire Sols et Environnement Jean Louis Morel UMR 1120, Universite´ Laboratoire Sols et Environnement de Lorraine-INRA UMR 1120, Universite´ Vandoeuvre-le`s-Nancy, France de Lorraine-INRA Vandoeuvre-le`s-Nancy, France Alan J.M. Baker School of BioSciences The University of Melbourne Melbourne, Australia and Centre for Mined Land Rehabilitation, Sustainable Minerals Institute The University of Queensland Brisbane, Australia and Laboratoire Sols et Environnement UMR 1120, Universite´ de Lorraine-INRA Vandoeuvre-le`s-Nancy, France ISSN 2365-0559 ISSN 2365-0567 (electronic) Mineral Resource Reviews ISBN 978-3-319-61898-2 ISBN 978-3-319-61899-9 (eBook) DOI 10.1007/978-3-319-61899-9 Library of Congress Control Number: 2017951729 # Springer International Publishing AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Forest Ecology by Van Der Valk.Pdf
    Forest Ecology A.G. Van der Valk Editor Forest Ecology Recent Advances in Plant Ecology Previously published in Plant Ecology Volume 201, Issue 1, 2009 123 Editor A.G. Van der Valk Iowa State University Department of Ecology, Evolution and Organismal Biology 141 Bessey Hall Ames IA 50011-1020 USA Cover illustration: Cover photo image: Courtesy of Photos.com All rights reserved. Library of Congress Control Number: 2009927489 DOI: 10.1007/978-90-481-2795-5 ISBN: 978-90-481-2794-8 e-ISBN: 978-90-481-2795-5 Printed on acid-free paper. © 2009 Springer Science+Business Media, B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. springer.com Contents Quantitative classification and carbon density of the forest vegetation in Lüliang Mountains of China X. Zhang, M. Wang & X. Liang . 1–9 Effects of introduced ungulates on forest understory communities in northern Patagonia are modified by timing and severity of stand mortality M.A. Relva, C.L. Westerholm & T. Kitzberger . 11–22 Tree species richness and composition 15 years after strip clear-cutting in the Peruvian Amazon X.J. Rondon, D.L. Gorchov & F. Cornejo . 23–37 Changing relationships between tree growth and climate in Northwest China Y. Zhang, M. Wilmking & X.
    [Show full text]
  • Holocrine Secretion and Kino Flow in Angiosperms
    Holocrine Secretion and Kino Flow in Angiosperms: Their Role and Physiological Advantages in Plant Defence Mechanisms Paulo Cabrita Dr. Paulo Cabrita Soderstr. 39, 64287 Darmstadt, Germany ORCID ID: 0000-0002-2620-3573 Corresponding author E-mail: [email protected] Current Address: Weserstr.36, 37081 Göttingen, Germany Telephone: +49 551 48942338 Acknowledgements This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The author would like to thank to two anonymous reviewers for the careful reading and the very helpful suggestions and criticism of this manuscript. This is a post-peer-review, pre-copyedit version of an article published in Trees. The final authenticated version is available online at: https://doi.org/10.1007/s00468-020-01990-z 1 Abstract Kino is a plant exudate, rich in polyphenols, produced by several angiosperms in reaction to injury of the cambium. It flows out of kino veins, which compose an anatomically distinct continuous system of tangentially anastomosing canals produced by the cambium upon damage, encircling plant stems and branches. Kino is loaded into the vein lumen by autolysis of a cambiform epithelium lined by suberized cells that separate kino veins from the surrounding axial parenchyma. A model describing kino flow is presented to investigate how vein distribution and structure, as well as the loading, solidification, and viscosity of kino affect flow. Considering vein anatomy, viscosity, and a time-dependent loading of kino, the unsteady Stokes equation was applied. Qualitatively, kino flow is similar to resin flow observed on conifers. There is an increase in flow towards the vein open end, with both pressure and flow depending on the vein dimensions, properties, and loading of kino.
    [Show full text]