Bounded Rationality and Mechanism Design

Total Page:16

File Type:pdf, Size:1020Kb

Bounded Rationality and Mechanism Design Bounded Rationality and Mechanism Design Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Luyao Zhang, M.A. Graduate Program in Economics The Ohio State University 2018 Dissertation Committee James Peck, Advisor Dan Levin, Co-Advisor Paul J. Healy 1 Copyrighted by Luyao Zhang 2018 2 Abstract Mechanism Design Theory, introduced by 2007 Nobel laureates Hurwicz, Maskin, and Myerson, has guided economic institutions worldwide to achieve desirable goals in allocating scarce resources. However, most of the literature on Mechanism Design Theory that guides its application, in reality, assumes that people are fully rational; this omission of people’s bounded rationality raises doubt over the reliability of the theory’s empirical implications. To bridge this gap between theory and reality, we introduce new formalizations to characterize new types of boundedly rational behavior that is missing in existing models but supported by experimental evidence. NLK, the first formalization we propose, is a new solution concept in Game Theory that connects two existing ones, Nash Equilibrium (NE) and Level-K model. Of these two, NE, introduced by 1994 Nobel Laureates John Nash has revolutionized the economics of Industrial Organization and has influenced many other branches such as the theories of monetary policy and international trade. However, there is mounting and robust evidence from laboratory experiments of substantial discrepancy between the predictions of NE and the behavior of players. Among all the alternative models that retain the individual rationality of optimization, but relax correct beliefs, Level-K model is probably the most prominent. Absent in NE, Level-K model explicitly allows players to consider their opponent as less sophisticated than themselves. But Level-K does not allow players to use ii an important element of strategic thinking, namely, “put yourself in the others’ shoes” and believe the opponent can think in the same way they do. Bridging NE and Level-K, NLK allows a player in a game to believe that her opponent may be either less- or as sophisticated as they—a view supported by various studies in Psychology. We compare the performance of NLK to that of NE and some versions of Level-K by applying it to data from three experimental papers published in top economics journals and to data from a field study. These studies allow us to test NLK on: (1). A static game of complete information, (2). A static game of incomplete information, (3). A dynamic game of perfect information, and (4). On field data. NLK provides additional insights to those of NE and Level-K. Moreover, a simple version of it explains the experimental data better in many cases. As a new solution concept, NLK shares a similar foundation to NE but is also applicable to games with players of different cognitive or reasoning abilities. As an analytical tool, NLK exists and gives a sharp prediction in general, and therefore it can be applied to empirical analysis in a broad range of settings. In the second formalization, we first propose two alternative axiomatic approaches, formalizing a distinct anomaly in hypothetical reasoning that agents fail to reason state-by- state. Our theory expands the foundation of Decision Theory and ties together a broad range of evidence documented in multiple disciplines that decision makers often choose a dominated strategy. Secondly, we extend our concept to Game Theory and Mechanism Design, where we identify a rich class of mechanisms that successfully achieve desirable goals even with boundedly rational agents and agents who mistrust the market makers. iii Thirdly, we test and verify our theory and its implications, by two laboratory experiments with a cross-over design that enables pooled data, within-subject, and cross-subject comparisons. Finally, we address how our approach contributes to accomplishing two goals simultaneously in modeling bounded rationality: providing a unified framework that subsumes existing ones as limiting cases and stimulating transdisciplinary conversations connecting the concepts of heuristics and emotions in Psychology, the utilization of eye- tracking technology in Neuroscience, and considerations of the moral foundation underlying a mechanism design in Ethics. The general insights of our work can be transferred to practical impacts on applications of Mechanism Design. Among these applications are the U.S. Federal Communications Commission auctions that raise more than 10 billion dollars yearly in government revenue; College Admissions that affect more than 10 million students every year around the world; and a Kidney Exchange Program with more than 1 million people waiting for kidney transplants. By formalizing bounded rationality into economic theory, our study honors the elegance of classic economic theory; at the same time, by modeling human behavior even more closely, it directs us to a new way of improving human welfare. In the history of economic thought lies a dilemma for future economists: should we adopt simple models with unrealistic assumptions, or should we describe human behavior closely but give up elegant abstractions? In the projects above, we endeavor to create a middle way that synthesizes the merits in both directions and leave unanswered questions for future researchers. iv Dedication The Master said, “Virtue is not left to stand alone. He who practices it will have neighbors.” —Analects, 4:25 I dedicate my dissertation to all the fools who yet hold on to their dream, bravely strive against adversity, and seek after coordination between theory and reality. As your sentiments resonate with mine, my joy expands. v Acknowledgments I am grateful for Prof. Ariel Rubinstein’s inspiration on formal modeling of bounded rationality, in general, and its application to mechanism design, in particular. Special thanks go to Prof. Dan Levin for his tireless mentoring and steadfast support during my entire Ph.D. journey. Chapter 1 of this dissertation is developed from his original idea and based on our joint work. I am indebted to Prof. Shengwu Li for his initial and insightful idea of Obvious Strategy-proof Mechanisms. Chapter 2 and 3 are closely related to and inspired by his work. I especially thank my dissertation adviser Prof. James Peck and Prof. Paul J. Healy on my committee for their careful, patient, and instructive guide to the completion of this work. I likewise want to show gratitude to Profs. Hal Arkes, Yaron Azrieli, Pierpaolo Battigali, John Kagel, Philippe Jehiel, Ian Krajbich, Ran Shorrer and Marciano Siniscalchi for their invaluable comments on the contents of this dissertation and much more. Although, all errors are my own and should not tarnish the reputations of these esteemed scholars. I have benefited from the comments of participants in the Texas Experimental Economic Symposium 2015, the Midwest Economic Theory and Trade Conference 2015, the D-TEA workshop 2015, the Summer School of the Econometric Society 2015 and 2016, ASSA meeting 2017, the 28th Stony Brook International Conference on Game Theory 2017, and the 70th European Meeting of the Econometric Society 2017. This work is supported in part by the JMCB Research Grant for Graduate vi Students and the NSF Dissertation Grant. Last but not the least, I am grateful for all the friends who show their support during my dark days. Among them, I especially thank my parents for their meticulous caring, Michelle Chapman, Prof. Hajime Miyazaki, and Rick Tobin for their assistance in administrative issues, Prof. Gary Charness and Prof. Chun-Lei Yang for their enlightening insights and practical guidance that raise me up in desperation, and Prof. Chongsheng Yu for offering me joy of mutual empathy by striving in a similar way. vii Vita Education Jun. 2012………………………………….B.A. Economics, Peking University Jun. 2012………………………………….B.S. Mathematics, Peking University Aug. 2013…………………………………M.A. Economics, The Ohio State University Apr. 2016…………………………………Ph.D. Candidate in Economics, The Ohio State University Fellowships/Scholarships Presidential Fellowship, Ohio State University, Summer 2017–Autumn 2018 Scholarship of I.S.E.O. Summer School Featuring Three Nobel Laureates, Apr. 2017 JMCB Fellowship, Department of Economics, The Ohio State University, 2012–2013 Scholarship of the KoGuan Chinese Rule of Law and Principle Studies Center, Mar. 2012 China National Scholarship, Peking University, 2010–2011 Scholarship of the Leo KoGuan Foundation, U.S.A, Peking University, 2009–2010 The May 4th Scholarship, Peking University, 2008–2009 Awards and honors viii L. Edwin Smart Graduate Associate Teaching Award, Department of Economics, The Ohio State University, Sep. 2016 L. Edwin Smart Departmental Citation for Excellence in Teaching, Department of Economics, The Ohio State University, Sep. 2015 Outstanding first-class Award for Undergraduate Dissertations, National School of Development and China Center for Economic Research, May. 2013 Outstanding Graduates, Beijing Municipal Commission of Education, Jun. 2012 Outstanding Graduates, Peking University, May 2012 A pacemaker to Merit Student, Peking University, 2010–2011 Merit Student, Peking University, 2009–2010 Grants National Science Foundation Research Grant for Doctoral Dissertation ($15,400), December 2016 Career Development Grant, OSU Council of Graduate Student, Fall 2016 Decision Science Collaborative Research Grant ($3000, with James Wei Chen), Fall 2016 JMCB Grant
Recommended publications
  • Game Theory 2: Extensive-Form Games and Subgame Perfection
    Game Theory 2: Extensive-Form Games and Subgame Perfection 1 / 26 Dynamics in Games How should we think of strategic interactions that occur in sequence? Who moves when? And what can they do at different points in time? How do people react to different histories? 2 / 26 Modeling Games with Dynamics Players Player function I Who moves when Terminal histories I Possible paths through the game Preferences over terminal histories 3 / 26 Strategies A strategy is a complete contingent plan Player i's strategy specifies her action choice at each point at which she could be called on to make a choice 4 / 26 An Example: International Crises Two countries (A and B) are competing over a piece of land that B occupies Country A decides whether to make a demand If Country A makes a demand, B can either acquiesce or fight a war If A does not make a demand, B keeps land (game ends) A's best outcome is Demand followed by Acquiesce, worst outcome is Demand and War B's best outcome is No Demand and worst outcome is Demand and War 5 / 26 An Example: International Crises A can choose: Demand (D) or No Demand (ND) B can choose: Fight a war (W ) or Acquiesce (A) Preferences uA(D; A) = 3 > uA(ND; A) = uA(ND; W ) = 2 > uA(D; W ) = 1 uB(ND; A) = uB(ND; W ) = 3 > uB(D; A) = 2 > uB(D; W ) = 1 How can we represent this scenario as a game (in strategic form)? 6 / 26 International Crisis Game: NE Country B WA D 1; 1 3X; 2X Country A ND 2X; 3X 2; 3X I Is there something funny here? I Is there something funny here? I Specifically, (ND; W )? I Is there something funny here?
    [Show full text]
  • Best Experienced Payoff Dynamics and Cooperation in the Centipede Game
    Theoretical Economics 14 (2019), 1347–1385 1555-7561/20191347 Best experienced payoff dynamics and cooperation in the centipede game William H. Sandholm Department of Economics, University of Wisconsin Segismundo S. Izquierdo BioEcoUva, Department of Industrial Organization, Universidad de Valladolid Luis R. Izquierdo Department of Civil Engineering, Universidad de Burgos We study population game dynamics under which each revising agent tests each of his strategies a fixed number of times, with each play of each strategy being against a newly drawn opponent, and chooses the strategy whose total payoff was highest. In the centipede game, these best experienced payoff dynamics lead to co- operative play. When strategies are tested once, play at the almost globally stable state is concentrated on the last few nodes of the game, with the proportions of agents playing each strategy being largely independent of the length of the game. Testing strategies many times leads to cyclical play. Keywords. Evolutionary game theory, backward induction, centipede game, computational algebra. JEL classification. C72, C73. 1. Introduction The discrepancy between the conclusions of backward induction reasoning and ob- served behavior in certain canonical extensive form games is a basic puzzle of game the- ory. The centipede game (Rosenthal (1981)), the finitely repeated prisoner’s dilemma, and related examples can be viewed as models of relationships in which each partic- ipant has repeated opportunities to take costly actions that benefit his partner and in which there is a commonly known date at which the interaction will end. Experimen- tal and anecdotal evidence suggests that cooperative behavior may persist until close to William H.
    [Show full text]
  • Uniqueness and Symmetry in Bargaining Theories of Justice
    Philos Stud DOI 10.1007/s11098-013-0121-y Uniqueness and symmetry in bargaining theories of justice John Thrasher Ó Springer Science+Business Media Dordrecht 2013 Abstract For contractarians, justice is the result of a rational bargain. The goal is to show that the rules of justice are consistent with rationality. The two most important bargaining theories of justice are David Gauthier’s and those that use the Nash’s bargaining solution. I argue that both of these approaches are fatally undermined by their reliance on a symmetry condition. Symmetry is a substantive constraint, not an implication of rationality. I argue that using symmetry to generate uniqueness undermines the goal of bargaining theories of justice. Keywords David Gauthier Á John Nash Á John Harsanyi Á Thomas Schelling Á Bargaining Á Symmetry Throughout the last century and into this one, many philosophers modeled justice as a bargaining problem between rational agents. Even those who did not explicitly use a bargaining problem as their model, most notably Rawls, incorporated many of the concepts and techniques from bargaining theories into their understanding of what a theory of justice should look like. This allowed them to use the powerful tools of game theory to justify their various theories of distributive justice. The debates between partisans of different theories of distributive justice has tended to be over the respective benefits of each particular bargaining solution and whether or not the solution to the bargaining problem matches our pre-theoretical intuitions about justice. There is, however, a more serious problem that has effectively been ignored since economists originally J.
    [Show full text]
  • California Institute of Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main DIVISION OF THE HUM ANITIES AND SO CI AL SCIENCES CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA 91125 IMPLEMENTATION THEORY Thomas R. Palfrey � < a: 0 1891 u. "')/,.. () SOCIAL SCIENCE WORKING PAPER 912 September 1995 Implementation Theory Thomas R. Palfrey Abstract This surveys the branch of implementation theory initiated by Maskin (1977). Results for both complete and incomplete information environments are covered. JEL classification numbers: 025, 026 Key words: Implementation Theory, Mechanism Design, Game Theory, Social Choice Implementation Theory* Thomas R. Palfrey 1 Introduction Implementation theory is an area of research in economic theory that rigorously investi­ gates the correspondence between normative goals and institutions designed to achieve {implement) those goals. More precisely, given a normative goal or welfare criterion for a particular class of allocation pro blems (or domain of environments) it formally char­ acterizes organizational mechanisms that will guarantee outcomes consistent with that goal, assuming the outcomes of any such mechanism arise from some specification of equilibrium behavior. The approaches to this problem to date lie in the general domain of game theory because, as a matter of definition in the implementation theory litera­ ture, an institution is modelled as a mechanism, which is essentially a non-cooperative game. Moreover, the specific models of equilibrium behavior
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • Modeling Strategic Behavior1
    Modeling Strategic Behavior1 A Graduate Introduction to Game Theory and Mechanism Design George J. Mailath Department of Economics, University of Pennsylvania Research School of Economics, Australian National University 1September 16, 2020, copyright by George J. Mailath. World Scientific Press published the November 02, 2018 version. Any significant correc- tions or changes are listed at the back. To Loretta Preface These notes are based on my lecture notes for Economics 703, a first-year graduate course that I have been teaching at the Eco- nomics Department, University of Pennsylvania, for many years. It is impossible to understand modern economics without knowl- edge of the basic tools of game theory and mechanism design. My goal in the course (and this book) is to teach those basic tools so that students can understand and appreciate the corpus of modern economic thought, and so contribute to it. A key theme in the course is the interplay between the formal development of the tools and their use in applications. At the same time, extensions of the results that are beyond the course, but im- portant for context are (briefly) discussed. While I provide more background verbally on many of the exam- ples, I assume that students have seen some undergraduate game theory (such as covered in Osborne, 2004, Tadelis, 2013, and Wat- son, 2013). In addition, some exposure to intermediate microeco- nomics and decision making under uncertainty is helpful. Since these are lecture notes for an introductory course, I have not tried to attribute every result or model described. The result is a somewhat random pattern of citations and references.
    [Show full text]
  • Implementation Theory*
    Chapter 5 IMPLEMENTATION THEORY* ERIC MASKIN Institute for Advanced Study, Princeton, NJ, USA TOMAS SJOSTROM Department of Economics, Pennsylvania State University, University Park, PA, USA Contents Abstract 238 Keywords 238 1. Introduction 239 2. Definitions 245 3. Nash implementation 247 3.1. Definitions 248 3.2. Monotonicity and no veto power 248 3.3. Necessary and sufficient conditions 250 3.4. Weak implementation 254 3.5. Strategy-proofness and rich domains of preferences 254 3.6. Unrestricted domain of strict preferences 256 3.7. Economic environments 257 3.8. Two agent implementation 259 4. Implementation with complete information: further topics 260 4.1. Refinements of Nash equilibrium 260 4.2. Virtual implementation 264 4.3. Mixed strategies 265 4.4. Extensive form mechanisms 267 4.5. Renegotiation 269 4.6. The planner as a player 275 5. Bayesian implementation 276 5.1. Definitions 276 5.2. Closure 277 5.3. Incentive compatibility 278 5.4. Bayesian monotonicity 279 * We are grateful to Sandeep Baliga, Luis Corch6n, Matt Jackson, Byungchae Rhee, Ariel Rubinstein, Ilya Segal, Hannu Vartiainen, Masahiro Watabe, and two referees, for helpful comments. Handbook of Social Choice and Welfare, Volume 1, Edited by K.J Arrow, A.K. Sen and K. Suzumura ( 2002 Elsevier Science B. V All rights reserved 238 E. Maskin and T: Sj'str6m 5.5. Non-parametric, robust and fault tolerant implementation 281 6. Concluding remarks 281 References 282 Abstract The implementation problem is the problem of designing a mechanism (game form) such that the equilibrium outcomes satisfy a criterion of social optimality embodied in a social choice rule.
    [Show full text]
  • Kranton Duke University
    The Devil is in the Details – Implications of Samuel Bowles’ The Moral Economy for economics and policy research October 13 2017 Rachel Kranton Duke University The Moral Economy by Samuel Bowles should be required reading by all graduate students in economics. Indeed, all economists should buy a copy and read it. The book is a stunning, critical discussion of the interplay between economic incentives and preferences. It challenges basic premises of economic theory and questions policy recommendations based on these theories. The book proposes the path forward: designing policy that combines incentives and moral appeals. And, therefore, like such as book should, The Moral Economy leaves us with much work to do. The Moral Economy concerns individual choices and economic policy, particularly microeconomic policies with goals to enhance the collective good. The book takes aim at laws, policies, and business practices that are based on the classic Homo economicus model of individual choice. The book first argues in great detail that policies that follow from the Homo economicus paradigm can backfire. While most economists would now recognize that people are not purely selfish and self-interested, The Moral Economy goes one step further. Incentives can amplify the selfishness of individuals. People might act in more self-interested ways in a system based on incentives and rewards than they would in the absence of such inducements. The Moral Economy warns economists to be especially wary of incentives because social norms, like norms of trust and honesty, are critical to economic activity. The danger is not only of incentives backfiring in a single instance; monetary incentives can generally erode ethical and moral codes and social motivations people can have towards each other.
    [Show full text]
  • Correlated Equilibria and Communication in Games Françoise Forges
    Correlated equilibria and communication in games Françoise Forges To cite this version: Françoise Forges. Correlated equilibria and communication in games. Computational Complex- ity. Theory, Techniques, and Applications, pp.295-704, 2012, 10.1007/978-1-4614-1800-9_45. hal- 01519895 HAL Id: hal-01519895 https://hal.archives-ouvertes.fr/hal-01519895 Submitted on 9 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Correlated Equilibrium and Communication in Games Françoise Forges, CEREMADE, Université Paris-Dauphine Article Outline Glossary I. De…nition of the Subject and its Importance II. Introduction III. Correlated Equilibrium: De…nition and Basic Properties IV. Correlated Equilibrium and Communication V. Correlated Equilibrium in Bayesian Games VI. Related Topics and Future Directions VII. Bibliography Acknowledgements The author wishes to thank Elchanan Ben-Porath, Frédéric Koessler, R. Vijay Krishna, Ehud Lehrer, Bob Nau, Indra Ray, Jérôme Renault, Eilon Solan, Sylvain Sorin, Bernhard von Stengel, Tristan Tomala, Amparo Ur- bano, Yannick Viossat and, especially, Olivier Gossner and Péter Vida, for useful comments and suggestions. Glossary Bayesian game: an interactive decision problem consisting of a set of n players, a set of types for every player, a probability distribution which ac- counts for the players’ beliefs over each others’ types, a set of actions for every player and a von Neumann-Morgenstern utility function de…ned over n-tuples of types and actions for every player.
    [Show full text]
  • Analyzing Just-In-Time Purchasing Strategy in Supply Chains Using an Evolutionary Game Approach
    Bulletin of the JSME Vol.14, No.5, 2020 Journal of Advanced Mechanical Design, Systems, and Manufacturing Analyzing just-in-time purchasing strategy in supply chains using an evolutionary game approach Ziang LIU* and Tatsushi NISHI** *Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-Cho, Toyonaka City, Osaka 560-8531, Japan E-mail: [email protected] **Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama 700-8530, Japan Received: 18 December 2019; Revised: 30 March 2020; Accepted: 9 April 2020 Abstract Many researchers have focused on the comparison between the JIT model and the EOQ model. However, few of them studied this problem from an evolutionary perspective. In this paper, a JIT purchasing with the single- setup-multi-delivery model is introduced to compare the total costs of the JIT model and the EOQ model. Also, we extend the classical JIT-EOQ models to a two-echelon supply chain which consists of one manufacturer and one supplier. Considering the bounded rationality of players and the quickly changing market, an evolutionary game model is proposed to discuss how these factors impact the strategy selection of the companies. And the evolutionarily stable strategy of the proposed model is analyzed. Based on the analysis, we derive the conditions when the supply chain system will choose the JIT strategy and propose a contract method to ensure that the system converges to the JIT strategy. Several numerical experiments are provided to observe the JIT and EOQ purchasing strategy selection of the manufacturer and the supplier.
    [Show full text]
  • Kahneman's Thinking, Fast and Slow from the Standpoint of Old
    Kahneman’s Thinking, Fast and Slow from the Standpoint of Old Behavioural Economics (For the 2012 HETSA Conference) Peter E. Earl School of Economics, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia, email: [email protected] Abstract Daniel Kahneman’s bestseller Thinking, Fast and Slow presents an account of his life’s work on judgment and decision-making (much of it conducted with Amos Tversky) that has been instrumental in the rise of what Sent (2004) calls ‘new behavioural economics’. This paper examines the relationship between Kahneman’s work and some key contributions within the ‘old behavioural’ literature that Kahneman fails to discuss. It show how closely aligned he is to economic orthodoxy, examining his selective use of Herbert Simon’s work in relation to his ‘two systems’ view of decision making and showing how Shackle’s model of choice under uncertainty provided an alternative way of dealing with some of the issues that Kahneman and Tversky sought to address, three decades after Shackle worked out his model, via their Prospect Theory. Aside from not including ‘loss aversion’, it was Shackle’s model that was the more original and philosophically well-founded. Keywords: Prospect Theory, satisficing, bounded rationality, choice under uncertainty JEL Classification Codes: B31, D03, D81 1. Introduction In his highly successful 2011 book Thinking, Fast and Slow Daniel Kahneman offers an excellent account of his career-long research on judgment and decision- making, much of it conducted with the late Amos Tversky. Kahneman was awarded the 2002 Bank of Sweden PriZe in Economic Sciences in Memory of Alfred Nobel for this work.
    [Show full text]
  • Game Theory 2021
    More Mechanism Design Game Theory 2021 Game Theory 2021 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 More Mechanism Design Game Theory 2021 Plan for Today In this second lecture on mechanism design we are going to generalise beyond the basic scenario of auctions|as much as we can manage: • Revelation Principle: can focus on direct-revelation mechanisms • formal model of direct-revelation mechanisms with money • incentive compatibility of the Vickrey-Clarke-Groves mechanism • other properties of VCG for special case of combinatorial auctions • impossibility of achieving incentive compatibility more generally Much of this is also (somewhat differently) covered by Nisan (2007). N. Nisan. Introduction to Mechanism Design (for Computer Scientists). In N. Nisan et al. (eds.), Algorithmic Game Theory. Cambridge University Press, 2007. Ulle Endriss 2 More Mechanism Design Game Theory 2021 Reminder Last time we saw four auction mechanisms for selling a single item: English, Dutch, first-price sealed-bid, Vickrey. The Vickrey auction was particularly interesting: • each bidder submits a bid in a sealed envelope • the bidder with the highest bid wins, but pays the price of the second highest bid (unless it's below the reservation price) It is a direct-revelation mechanism (unlike English and Dutch auctions) and it is incentive-compatible, i.e., truth-telling is a dominant strategy (unlike for Dutch and FPSB auctions). Ulle Endriss 3 More Mechanism Design Game Theory 2021 The Revelation Principle Revelation Principle: Any outcome that is implementable in dominant strategies via some mechanism can also be implemented by means of a direct-revelation mechanism making truth-telling a dominant strategy.
    [Show full text]