NWCG Standards for Helicopter Operations, PMS

Total Page:16

File Type:pdf, Size:1020Kb

NWCG Standards for Helicopter Operations, PMS A publication of the National Wildfire Coordinating Group NWCG Standards for Helicopter Operations PMS 510 May 2019 NWCG Standards for Helicopter Operations May 2019 PMS 510 The NWCG Standards for Helicopter Operations (NSHO) establishes the standards by which helicopter operations are to be conducted under the exclusive direction and operational control of federal, state and local agencies in the accomplishment of interagency fire suppression and natural resource aviation management. These standards: Promote safe, cost-efficient and effective aviation services in support of agency and interagency goals and objectives. Define national, interagency helicopter management and operational procedures for helicopter users from participating agencies. Facilitate the ability of personnel from different agencies to work cooperatively on incidents or projects. Provide a framework within which areas, regions, states, and local units can provide supplemental, site-specific guidance. The National Wildfire Coordinating Group (NWCG) provides national leadership to enable interoperable wildland fire operations among federal, state, tribal, territorial, and local partners. NWCG operations standards are interagency by design; they are developed with the intent of universal adoption by the member agencies. However, the decision to adopt and utilize them is made independently by the individual member agencies and communicated through their respective directives systems. Table of Contents Chapter 01 – Introduction ....................................................................................................................... 1 Scope ........................................................................................................................................................... 1 Authority ..................................................................................................................................................... 1 Organization ................................................................................................................................................ 1 Chapter 02 – Personnel ............................................................................................................................ 2 Introduction ................................................................................................................................................. 2 Training, Qualification and Currency Requirements .................................................................................. 2 Helicopter Staffing Requirements ............................................................................................................... 3 Helicopter Minimum Staffing Exceptions .................................................................................................. 3 NWCG Incident Position Descriptions ....................................................................................................... 4 Non-NWCG Helicopter Management Personnel Roles and Responsibilities ............................................ 4 Chapter 03 – Operational Planning ...................................................................................................... 13 Introduction ............................................................................................................................................... 13 Developing Objectives and Contingency Planning .................................................................................. 13 Risk Management ..................................................................................................................................... 13 Specific Special Use Missions .................................................................................................................. 18 Flight Planning and Scheduling Process ................................................................................................... 19 Aircraft Cost-Comparison Analysis .......................................................................................................... 20 Aviation Project and Mission Planning .................................................................................................... 21 Project Aviation Safety Plans ................................................................................................................... 25 Chapter 04 – Communications, Flight Following, and Resource Tracking ...................................... 28 Introduction ............................................................................................................................................... 28 Flight Following........................................................................................................................................ 28 Resource Tracking .................................................................................................................................... 30 Communication Systems .......................................................................................................................... 31 Aircraft Communication Systems ............................................................................................................. 32 Helibase Communications ........................................................................................................................ 33 Incident Airspace Communications .......................................................................................................... 41 Chapter 05 – Vendor Personnel and Equipment Approval and Carding ......................................... 46 Introduction ............................................................................................................................................... 46 Approval and Documentation Process ...................................................................................................... 46 Interagency and Procurement Document Standards ................................................................................. 46 Responsibility for Checking Carding or Approval Prior to Use ............................................................... 47 Interagency Helicopter Pilot Qualification Card ...................................................................................... 47 Helicopter Data Card ................................................................................................................................ 48 Mechanic Qualification Card .................................................................................................................... 48 Service Truck Data Card ........................................................................................................................... 49 Aircraft Fuel Facility Inspection and Carding .......................................................................................... 50 Chapter 06 – Helicopter Capabilities and Limitations ........................................................................ 51 Introduction ............................................................................................................................................... 51 Helicopter Performance and Selection...................................................................................................... 51 Weight and Balance .................................................................................................................................. 52 NWCG Standards for Helicopter Operations i High Density Altitude ............................................................................................................................... 52 Day/Night Flight Limitations .................................................................................................................... 53 Instrument Flight Rules (IFR) Flight Limitations ..................................................................................... 54 Wind Restrictions...................................................................................................................................... 54 Helicopter Operating in Snow-Covered Areas. ........................................................................................ 54 Helicopter Flight Over Congested and Densely Populated Areas ............................................................ 55 Supplemental Oxygen Requirements ........................................................................................................ 56 Lockdown of Controls .............................................................................................................................. 56 Military Helicopter Limitations ................................................................................................................ 56 Chapter 07 – Helicopter Load Calculations and Manifests ................................................................ 57 Introduction ............................................................................................................................................... 57 Responsibility for Completion of Load Calculations ............................................................................... 58 Determining Load Capability Using Appropriate HIGE/HOGE Aircraft Performance Charts ............... 59 Manifests ................................................................................................................................................... 66
Recommended publications
  • 1.1.3 Helicopters
    Information on the Company’s Activities / 1.1 Presentation of the Company 1.1.3 Helicopters Airbus Helicopters is a global leader in the civil and military The HIL programme, for which the Airbus Helicopters’ H160 rotorcraft market, offering one of the most complete and modern was selected in 2017, was initially scheduled for launch range of helicopters and related services. This product range in 2022 by the current military budget law. Launching the currently includes light single-engine, light twin-engine, medium programme earlier will enable delivery of the fi rst H160Ms to and medium-heavy rotorcraft, which are adaptable to all kinds of the French Armed Forces to be advanced to 2026. The H160 mission types based on customer needs. See “— 1.1.1 Overview” was designed to be a modular helicopter, enabling its military for an introduction to Airbus Helicopters. version, with a single platform, to perform missions ranging from commando infi ltration to air intercept, fi re support, and anti-ship warfare in order to meet the needs of the army, the Strategy navy and the air force through the HIL programme. The new fi ve-bladed H145 is on track for EASA and FAA Business Ambition certifi cation in 2020. To ensure these certifi cations, two fi ve- bladed prototypes have clocked more than 400 fl ight hours Airbus Helicopters continues to execute its ambition to lead the in extensive fl ight test campaigns in Germany, France, Spain, helicopter market, build end-to-end solutions and grow new Finland, and in South America. First deliveries of the new H145 VTOL businesses, while being fi nancially sound.
    [Show full text]
  • United Nations Peacekeeping Missions Military Aviation Unit Manual Second Edition April 2021
    UN Military Aviation Unit Manual United Nations Peacekeeping Missions Military Aviation Unit Manual Second Edition April 2021 Second Edition 2019 DEPARTMENT OF PEACE OPERATIONS DEPARTMENT OF OPERATIONAL SUPPORT UN Military Aviation Unit Manual Produced by: Office of Military Affairs, Department of Peace Operations UN Secretariat One UN Plaza, New York, NY 10017 Tel. 917-367-2487 Approved by: Jean-Pierre Lacroix, Under-Secretary-General for Peace Operations Department of Peace Operations (DPO). Atul Khare Under-Secretary-General for Operational Support Department of Operational Support (DOS) April 2021. Contact: PDT/OMA/DPO Review date: 30/ 04 / 2026 Reference number: 2021.04 Printed at the UN, New York © UN 2021. This publication enjoys copyright under Protocol 2 of the Universal Copyright Convention. Nevertheless, governmental authorities or Member States may freely photocopy any part of this publication for exclusive use within their training institutes. However, no portion of this publication may be reproduced for sale or mass publication without the express consent, in writing, of the Office of Military Affairs, UN Department of Peace Operations. ii UN Military Aviation Unit Manual Foreword We are delighted to introduce the United Nations Peacekeeping Missions Military Aviation Unit Manual, an essential guide for commanders and staff deployed in peacekeeping operations, and an important reference for Member States and the staff at United Nations Headquarters. For several decades, United Nations peacekeeping has evolved significantly in its complexity. The spectrum of multi-dimensional UN peacekeeping operations includes challenging tasks such as restoring state authority, protecting civilians and disarming, demobilizing and reintegrating ex-combatants. In today’s context, peacekeeping missions are deploying into environments where they can expect to confront asymmetric threats and contend with armed groups over large swaths of territory.
    [Show full text]
  • NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment
    NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment NASA’s next Mars exploration ground vehicle, Mars 2020 Rover, will carry along what could become the first aircraft to fly on another planet. By Richard Whittle he world altitude record for a helicopter was set on June 12, 1972, when Aérospatiale chief test pilot Jean Boulet coaxed T his company’s first SA 315 Lama to a hair-raising 12,442 m (40,820 ft) above sea level at Aérodrome d’Istres, northwest of Marseille, France. Roughly a year from now, NASA hopes to fly an electric helicopter at altitudes equivalent to two and a half times Boulet’s enduring record. But NASA’s small, unmanned machine actually will fly only about five meters above the surface where it is to take off and land — the planet Mars. Members of NASA’s Mars Helicopter team prepare the flight model (the actual vehicle going to Mars) for a test in the JPL The NASA Mars Helicopter is to make a seven-month trip to its Space Simulator on Jan. 18, 2019. (NASA photo) destination folded up and attached to the underbelly of the Mars 2020 Rover, “Perseverance,” a 10-foot-long (3 m), 9-foot-wide (2.7 The atmosphere of Mars — 95% carbon dioxide — is about one m), 7-foot-tall (2.13 m), 2,260-lb (1,025-kg) ground exploration percent as dense as the atmosphere of Earth. That makes flying at vehicle. The Rover is scheduled for launch from Cape Canaveral five meters on Mars “equal to about 100,000 feet [30,480 m] above this July on a United Launch Alliance Atlas V rocket and targeted sea level here on Earth,” noted Balaram.
    [Show full text]
  • Design, Modelling and Control of a Space UAV for Mars Exploration
    Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Space Engineering, master's level (120 credits) 2021 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Department of Computer Science, Electrical and Space Engineering Faculty of Space Science and Technology Luleå University of Technology Submitted in partial satisfaction of the requirements for the Degree of Masters in Space Science and Technology Supervisor Dr George Nikolakopoulos January 2021 Acknowledgements I would like to take this opportunity to thank my thesis supervisor Dr. George Nikolakopoulos who has laid a concrete foundation for me to learn and apply the concepts of robotics and automation for this project. I would be forever grateful to George Nikolakopoulos for believing in me and for supporting me in making this master thesis a success through tough times. I am thankful to him for putting me in loop with different personnel from the robotics group of LTU to get guidance on various topics. I would like to thank Christoforos Kanellakis for guiding me in the control part of this thesis. I would also like to thank Björn Lindquist for providing me with additional research material and for explaining low level and high level controllers for UAV. I am grateful to have been a part of the robotics group at Luleå University of Technology and I thank the members of the robotics group for their time, support and considerations for my master thesis. I would also like to thank Professor Lars-Göran Westerberg from LTU for his guidance in develop- ment of fluid simulations for this master thesis project.
    [Show full text]
  • "Using Fire Extinguishers"
    PRESENTER'S GUIDE "USING FIRE EXTINGUISHERS" Part of the General Safety Series Quality Safety and Health Products, for Today... and Tomorrow OUTLINE OF MAJOR PROGRAM POINTS OUTLINE OF MAJOR PROGRAM POINTS The following outline summarizes the major points of information presented in the program. The outline can be used to review the program before conducting a classroom session, as well as in preparing to lead a class discussion about the program. You've probably heard the best way to fight a fire is to prevent it, and that's true. — But accidents do happen and fires do start. — When this occurs in a workplace, you or a coworker will often be the first to respond, and fire extinguishers become the first line of defense. Fire extinguishers can enable you to act quickly and effectively to protect people and your facility. — So you need to understand the equipment, as well as how to use it. Fire extinguishers are designed to put out small fires before they grow out of control. — Putting out fires with an extinguisher isn't always easy. — It can be hazardous if you go about it in the wrong way. To use an extinguisher effectively it’s helpful to know what causes things to burn. — Fire always needs three ingredients, fuel, oxygen and heat. The "fuel" is any material that will burn, including: — Combustible solids such as wood, paper, cardboard and some metals. — Flammable and combustible liquids such as gasoline, toluene and some solvents and cleaning solutions. — Ignitable gases such as propane and natural gas. 1 Next, a fire must be in an environment where there is oxygen that it can "breathe".
    [Show full text]
  • Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
    Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Purdue University School of Electrical Engineering Shaheen Ahmad Purdue University School of Electrical Engineering Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Pallett, Tobias J. and Ahmad, Shaheen, "Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks" (1991). Department of Electrical and Computer Engineering Technical Reports. Paper 317. https://docs.lib.purdue.edu/ecetr/317 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Shaheen Ahmad TR-EE 91-35 August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Lineal-ization and Neural Networks Tobias J. Pallett and Shaheen Ahmad Real-Time Robot Control Laboratory, School of Electrical Engineering, Purdue University West Lafayette, IN 47907 USA ABSTRACT In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed.
    [Show full text]
  • Development of Modern Control Laws for the AH-64D in Hover/Low Speed Flight
    Development of Modern Control Laws for the AH-64D in Hover/Low Speed Flight Jeffrey W. Harding 1 Scott J. Moody Geoffrey J. Jeram 2 Aviation Engineering Directorate U.S. Army Aviation and Missile Research, Development, and Engineering Center Redstone Arsenal, Alabama M. Hossein Mansur 3 Mark B. Tischler Aeroflightdynamics Directorate U.S. Army Aviation and Missile Research, Development, and Engineering Center Moffet Field, California ABSTRACT Modern control laws are developed for the AH-64D Longbow Apache to provide improved handling qualities for hover and low speed flight in a degraded visual environment. The control laws use a model following approach to generate commands for the existing partial authority stability augmentation system (SAS) to provide both attitude command attitude hold and translational rate command response types based on the requirements in ADS-33E. Integrated analysis tools are used to support the design process including system identification of aircraft and actuator dynamics and optimization of design parameters based on military handling qualities and control system specifications. The purpose is to demonstrate the potential for improving the low speed handling qualities of existing Army helicopters with partial authority SAS actuators through flight control law modifications as an alternative to a full authority, fly-by-wire, control system upgrade. NOTATION INTRODUCTION ACAH attitude command attitude hold The AH-64 Apache was designed in the late 70’s and went DH direction hold into service as the US Army’s most advanced day, night DVE degraded visual environment and adverse weather attack helicopter in 1986. The flight HH height hold control system was designed to meet the relevant handling HQ handling qualities qualities requirements based on MIL-F-8501 (Ref.
    [Show full text]
  • Wildland Fire Incident Management Field Guide
    A publication of the National Wildfire Coordinating Group Wildland Fire Incident Management Field Guide PMS 210 April 2013 Wildland Fire Incident Management Field Guide April 2013 PMS 210 Sponsored for NWCG publication by the NWCG Operations and Workforce Development Committee. Comments regarding the content of this product should be directed to the Operations and Workforce Development Committee, contact and other information about this committee is located on the NWCG Web site at http://www.nwcg.gov. Questions and comments may also be emailed to [email protected]. This product is available electronically from the NWCG Web site at http://www.nwcg.gov. Previous editions: this product replaces PMS 410-1, Fireline Handbook, NWCG Handbook 3, March 2004. The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else. NWCG’s intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG-authorized information. “National Wildfire Coordinating Group,” “NWCG,” and the NWCG logo are trademarks of the National Wildfire Coordinating Group. The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable.
    [Show full text]
  • Assessment of Navy Heavy-Lift Aircraft Options
    THE ARTS This PDF document was made available from www.rand.org as a public CHILD POLICY service of the RAND Corporation. CIVIL JUSTICE EDUCATION Jump down to document ENERGY AND ENVIRONMENT 6 HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS The RAND Corporation is a nonprofit research NATIONAL SECURITY POPULATION AND AGING organization providing objective analysis and effective PUBLIC SAFETY solutions that address the challenges facing the public SCIENCE AND TECHNOLOGY and private sectors around the world. SUBSTANCE ABUSE TERRORISM AND HOMELAND SECURITY TRANSPORTATION AND INFRASTRUCTURE Support RAND WORKFORCE AND WORKPLACE Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND National Defense Research Institute View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. This product is part of the RAND Corporation documented briefing series. RAND documented briefings are based on research briefed to a client, sponsor, or targeted au- dience and provide additional information on a specific topic. Although documented briefings have been peer reviewed, they are not expected to be comprehensive and may present preliminary findings. Assessment of Navy Heavy-Lift Aircraft Options John Gordon IV, Peter A. Wilson, Jon Grossman, Dan Deamon, Mark Edwards, Darryl Lenhardt, Dan Norton, William Sollfrey Prepared for the United States Navy Approved for public release; unlimited distribution The research described in this report was prepared for the United States Navy.
    [Show full text]
  • Forest Service Job Corps Civilian Conservation Center Wildland Fire
    Forest Service Job Corps Civilian Conservation Center Wildland Fire Program 2016 Annual Report Weber Basin Job Corps: Above Average Performance In an Above Average Fire Season Brandon J. Everett, Job Corps Forest Area Fire Management Officer, Uinta-Wasatch–Cache National Forest-Weber Basin Job Corps Civilian Conservation Center The year 2016 was an above average season for the Uinta- Forest Service Wasatch-Cache National Forest. Job Corps Participating in nearly every fire on the forest, the Weber Basin Fire Program Job Corps Civilian Conservation Statistics Center (JCCCC) fire program assisted in finance, fire cache and camp support, structure 1,138 students red- preparation, suppression, moni- carded for firefighting toring and rehabilitation. and camp crews Weber Basin firefighters re- sponded to 63 incidents, spend- Weber Basin Job Corps students, accompanied by Salt Lake Ranger District Module Supervisor David 412 fire assignments ing 338 days on assignment. Inskeep, perform ignition operation on the Bear River RX burn on the Bear River Bird Refuge. October 2016. Photo by Standard Examiner. One hundred and twenty-four $7,515,675.36 salary majority of the season commit- The Weber Basin Job Corps fire camp crews worked 148 days paid to students on ted to the Weber Basin Hand- program continued its partner- on assignment. Altogether, fire crew. This crew is typically orga- ship with Wasatch Helitack, fire assignments qualified students worked a nized as a 20 person Firefighter detailing two students and two total of 63,301 hours on fire Type 2 (FFT2) IA crew staffed staff to that program. Another 3,385 student work assignments during the 2016 with administratively deter- student worked the entire sea- days fire season.
    [Show full text]
  • THE FIREHOUSE SCENE Is a Publication of the Harlem-Roscoe Fire Protection District
    THE FIREHOUSE SCENE is a publication of the Harlem-Roscoe Fire Protection District November 2020 Fire Chief Don Shoevlin Editor Sheryl Drost Fire Extinguisher Class Grass Fire Harlem-Roscoe’s Fire Prevention Inspectors conducted a fire extinguisher course at Parker Hannifin in Machesney Park this month. Page 4 House Fire Pages 6 & 7 Multi-Vehicle Accident Page 5 Photo by Sheryl Drost The Firehouse Scene - Page 12 many less fortunate out there than last year and let us keep them in our hearts. In our eyes at times, it may not always look inviting or good, however there is no other place where we can be free and have the opportunities that we do. It is up to us, what we do with those opportunities. Be safe for From The Chief's Desk all, wear that mask, social distance, and wash your hands. By Fire Chief Don Shoevlin Together we can all make a difference. I wish everyone in our communities, our firefighters, and their families: October was the month of fire prevention, ghosts, and goblins. It was different as we were not out and about as we would have liked. However, we continued to reach out virtually over social media. The men and woman along with the coordination of our Fire Prevention Bureau did a tremendous job. The comments received is an Chief Don Shoevlin indication that it was successful. Training is the backbone to prepare us for what we do. Chief Shoevlin Sworn in as IFCA President We continue to train weekly and virtually and have had members able to complete courses with the Fire Marshal’s IL State Fire Marshal Matt Perez swore in Harlem- office.
    [Show full text]
  • Helicopter Physics by Harm Frederik Althuisius López
    Helicopter Physics By Harm Frederik Althuisius López Lift Happens Lift Formula Torque % & Lift is a mechanical aerodynamic force produced by the Lift is calculated using the following formula: 2 = *4 '56 Torque is a measure of how much a force acting on an motion of an aircraft through the air, it generally opposes & object causes that object to rotate. As the blades of a Where * is the air density, 4 is the velocity, '5 is the lift coefficient and 6 is gravity as a means to fly. Lift is generated mainly by the the surface area of the wing. Even though most of these components are helicopter rotate against the air, the air pushes back on the rd wings due to their shape. An Airfoil is a cross-section of a relatively easy to measure, the lift coefficient is highly dependable on the blades following Newtons 3 Law of Motion: “To every wing, it is a streamlined shape that is capable of generating shape of the airfoil. Therefore it is usually calculated through the angle of action there is an equal and opposite reaction”. This significantly more lift than drag. Drag is the air resistance attack of a specific airfoil as portrayed in charts much like the following: reaction force is translated into the fuselage of the acting as a force opposing the motion of the aircraft. helicopter via torque, and can be measured for individual % & -/ 0 blades as follows: ! = #$ = '()*+ ∫ # 1# , where $ is the & -. Drag Force. As a result the fuselage tends to rotate in the Example of a Lift opposite direction of its main rotor spin.
    [Show full text]