Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Final Creek Basin Near Globe, Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Final Creek Basin Near Globe, Arizona Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Final Creek Basin Near Globe, Arizona United States Geological Survey Water-Supply Paper 2466 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publica­ tions released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may be no longer available. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey Earth of general interest (such as leaflets, pamphlets, booklets), single Science Information Centers (ESIC), all of which are authorized copies of Earthquakes & Volcanoes, Preliminary Determination of agents of the Superintendent of Documents: Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent ANCHORAGE, Alaska Rm. 101, 4230 University Dr. of Documents, are obtainable by mail from LAKEWOOD, Colorado Federal Center, Bldg. 810 U.S. Geological Survey, Information Services MENLO PARK, California Bldg. 3, Rm. 3128, 345 Box 25286, Federal Center, Denver, CO 80225 Middlefield Rd. RESTON, Virginia USGS National Center, Rm. 1C402, Subscriptions to periodicals (Earthquakes & Volcanoes and 12201 Sunrise Valley Dr. Preliminary Determination of Epicenters) can be obtained ONLY SALT LAKE CITY, Utah Federal Bldg., Rm. 8105, 125 from the South State St. Superintendent of Documents SPOKANE, Washington U.S. Post Office Bldg., Rm. 135, Government Printing Office West 904 Riverside Ave. Washington, DC 20402 WASHINGTON, D.C. Main Interior Bldg., Rm. 2650, 18th (Check or money order must be payable to Superintendent of and C Sts., NW. Documents.) Maps Only Maps Maps may be purchased over the counter at the following U.S. Geological Survey offices: For maps, address mail orders to U.S. Geological Survey, Information Services ROLLA, Missouri 1400 Independence Rd. Box 25286, Federal Center, Denver, CO 80225 STENNIS SPACE CENTER, Mississippi Bldg. 3101 Hydrology and Geochemistry of Aquifer and Stream Contamination Related to Acidic Water in Final Creek Basin Near Globe, Arizona Edited by JAMES G. BROWN and BARBARA FAVOR U.S. GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2466 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1996 For sale by the U.S. Geological Survey Information Services Box 25286, Federal Center Denver, CO 80225 Library of Congress Cataloging In Publication Data Hydrology and geochemistry of aquifer and stream contamination related to acidic water in Final Creek Basin near Globe, Arizona / by James G. Brown and Barbara Favor, editors. p. cm. (U.S. Geological Survey water-supply paper; 2466) Includes bibliographical references. Supt. of Docs. no.: 119.13:2466 1. Acid mine drainage Environmental aspects Arizona Final Creek Watershed. 2. Groundwater Pollution Arizona Final Creek Watershed. 3. Water Pollution Arizona Final Creek Watershed. 4. Copper mines and mining Environmental aspects Arizona Final Creek Watershed. 5. Acid mine drainage Environmental aspects Arizona Globe Region. 6. Ground- water Pollution Arizona Globe Region. 7. Water Pollution Arizona Globe Region. 8. Copper mines and mining Environmental aspects- Arizona Globe Region. I. Brown, James G. (James Gary), 1956- II. Favor, Barbara O. III. Series T0427.A28H93 1996 363.73'942'0979175 dc20 96-24416 GIF CONTENTS Chapter A. Research of Acidic Contamination of Ground Water and Surface Water, Final Creek Basin, Arizona, by James G. Brown and James H. Eychaner Abstract................ ....................................... ................................................._^ 1 Introduction .......................................................... ............................._^ 1 Purpose and Scope...................................... ........................................................... .................................................. 3 Physical Setting and Climate......... .......................................................................................................................... 3 Previous Investigations.... ........................... ..........................^^ 4 Acknowledgments ......................................................................... ......................_^ 4 Well-Numbering and Naming System..................................................................................................................... 4 Data Collection and Analysis............................................................................................................................................ 4 Well-Drilling Program and Data-Collection Network............................................................................................. 5 Data-Collection Methodology................................................................................................................................. 5 Analytical Methods and Quality Assurance............................................................................................................ 7 Geohydrology ........................................................................................................................... ......................................... 7 Deposits of Precambrian to Tertiary Age................................................................................................................ 8 Deposits of Tertiary and Quaternary Age................................................................................................................ 8 Basin-Fill Deposits........................................................................................................................................ 8 Stream Alluvium........................................................................................................................................... 9 Occurrence and Movement of Ground Water.......................................................................................................... 10 Occurrence and Movement of Surface Water.......................................................................................................... 11 Webster Lake.................. ...................................................................................................... ......................... 11 Perennial Streamflow.................. ................................................................................................................... 12 Water Chemistry.... ......................................................................................................... ......^^ 14 Mining in Pinal Creek Basin ............................................................................................................................................. 16 History of Mining ............................................................................................................................................... ^ 16 Sources of Contamination....................................................................................................................................... 18 Remedial Action.. ................................................................................. .......................^^ 18 Synopsis of Research Elements......................................................................................................................................... 19 Chapter B. Simulation of Reactions Affecting Transport of Constituents in the Acidic Plume, Pinal Creek Basin, Arizona, by Kenneth G. Stollenwerk .................................................................................»^ 21 IntKxiuction ............................................................ M........................» 22 Description of Plume.................................i.................................................................... ................................................... 22 Experimental Methods................................................................................ ....................................................................... 23 Sampling and Analytical Techniques ...................................................................................................................... 23 Column Experiments ................................. ........................................M..............................^ 25 Geochemical Modeling ..................................................................................................................................................... 26 Sorption ........................................................................................................
Recommended publications
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Initial Assessment of Water Resources in Cobre Valley, Arizona
    Initial Assessment of Water Resources in Cobre Valley, Arizona Introduction 2 Overview of Cobre Valley 3 CLIMATE 3 TOPOGRAPHY 3 GROUNDWATER 3 SURFACE WATER 4 POPULATION 5 ECONOMY 7 POLLUTION AND CONTAMINATION 8 Status of Municipal Water Resources 10 GLOBE, AZ 10 MIAMI, AZ 12 TRI-CITIES (CLAYPOOL, CENTRAL HEIGHTS, MIDLAND CITY) AND UNINCORPORATED AREAS 15 Water Resources Uncertainty and Potential 18 INFRASTRUCTURE FUNDING 18 SUSTAINABLE WELLFIELDS AND ALTERNATIVE WATER SUPPLIES 19 PRIVATE WELL WATER SUPPLY AND WATER QUALITY 20 PUBLIC EDUCATION 20 ENVIRONMENTAL ISSUES 21 References 23 Appendices 25 1. ARIZONA WATER COMPANY VS CITY OF GLOBE LAWSUIT 25 2. AGENT ORANGE APPLICATION IN THE 1960s 26 3. INFRASTRUCTURE UPGRADES IN THE CITY OF GLOBE 27 Initial Assessment of Water Resources in Cobre Valley, Arizona 1 Introduction This initial assessment of water resources in the Cobre Valley provides a snapshot of available data and resources on various water-related topics from all known sources. This report is the first step in determining where data are lacking and what further investigation may be necessary for community planning and resource development purposes. The research has been driven by two primary questions: 1) What information and resources currently exist on water resources in Cobre Valley and 2) what further research is necessary to provide valuable and accurate information so that community members and decision makers can reach their long-term water resource management goals? Areas of investigation include: water supply, water quality, drought and floods, economic factors, and water-dependent environmental values. Research for this report was conducted through the systematic collection of data and information from numerous local, state, and federal sources.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Visionary Versus Crisis-Induced Charismatic Leadership: an Experimental Test
    VISIONARY VERSUS CRISIS-INDUCED CHARISMATIC LEADERSHIP: AN EXPERIMENTAL TEST by JOAN B. RIVERA, B.B.A., M.B.A. A DISSERTATION IN BUSINESS ADMINISTRATION Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Accepted May. 1994 //2 // ^'^¥ I ff 7 ( Copyright 1994, Joan B. Rivera ACKNOWLEDGEMENT S I extend deep gratitude to Dr. James G. (Jerry) Hunt, chairperson of this dissertation, for his guidance in producing a rewarding research project. His patience, assistance and scholarly advice were invaluable to me, a novice, as it allowed me to develop professionally. I also wish to thank Dr. Kim Boal for providing a model to be tested and for his thoughtful and useful input. He was never at a loss for creative ideas or solutions to problems encountered. I also thank my other committee members. Dr. David Hale and Dr. Richard McGlynn, and Dr. Gail Futoran for the unigue contributions they, too, provided. Special appreciation is due Dr. Futoran for her unselfish time and effort in providing detailed feedback on early drafts of this manuscript; for her involvement in every aspect from script development to pilot studies and data analysis; and for offering encouragement and assistance to the very end. Her continued friendship and support throughout my graduate career extended far beyond this project and will always be appreciated. My thanks also to those who were instrumental in helping me formulate a sample: Professor Grant Savage, Dudley Faver, Virgil Smith, Yvonne Smith, Fred Volker, and Professor Carlton Whitehead. I am very grateful to the business students at Texas Tech for their involvement in • • 11 this study, and for the leaders.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Geology of Manganese Nodules
    1.0 The Geology of Manganese Nodules James R. Hein1 and Sven Petersen2 1 U.S. Geological Survey, 400 Natural Bridges Dr., Santa Cruz, CA, 95060, USA 2 Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24148 Kiel, Germany MANGANESE NODULES 7 1.1 The formation and occurrence of manganese nodules Manganese nodules are mineral concretions made up of manga- • diagenetically, in which minerals precipitate from sedi- nese and iron oxides. They can be as small as golf balls or as big ment pore waters – that is, seawater that has been modi- as large potatoes. The nodules occur over extensive areas of the fied by chemical reactions within the sediment. vast, sediment-covered, abyssal plains of the global ocean in water depths of 4 000 to 6 500 metres, where temperatures are just above The metal oxides that make up the precipitate attach to a freezing, pressures are high, and no sunlight reaches (Figure 2). nucleus – perhaps something as small and common as a bit of shell or a shark’s tooth – and very slowly build up around The manganese and iron minerals in these concretions precipi- the nucleus in layers. Their mineralogy is simple: vernadite tate (form a solid) from the ambient, or surrounding, water in two (a form of manganese oxide) precipitates from seawater; ways (Figure 3): todorokite (another manganese oxide) precipitates from pore • hydrogenetically, in which the minerals precipitate from cold waters; and birnessite (a third manganese oxide) forms from ambient seawater; and the todorokite. Depth region of potential nodule development Exclusive economic zone Seabed from 0 to 2 000 metres depth Seabed from 4 000 to 6 500 metres depth - the abyssal depth at which nodules are generally formed Land area Seabed from 2 000 to 4 000 metres depth Seabed below 6 500 metres depth Figure 2.
    [Show full text]
  • Valid Unnamed Minerals, Update 2012-01
    VALID UNNAMED MINERALS, UPDATE 2012-01 IMA Subcommittee on Unnamed Minerals: Jim Ferraiolo*, Jeffrey de Fourestier**, Dorian Smith*** (Chairman) *[email protected] **[email protected] ***[email protected] Users making reference to this compilation should refer to the primary source (Dorian G.W. Smith & Ernest H. Nickel (2007): A System of Codification for Unnamed Minerals: Report of the SubCommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Canadian Mineralogist v. 45, p.983-1055), and to this website . Additions and changes to the original publication are shown in blue print; deletions are "greyed out and struck through". IMA Code Primary Reference Secondary Comments Reference UM1886-01-OC:HNNa *Bull. Soc. Minéral. 9 , 51 Dana (7th) 2 , 1104 Probably an oxalate but if not is otherwise similar to lecontite UM1892-01-F:CaY *Am. J. Sci. 44 , 386 Dana (7th) 2 , 37 Low analytical total because F not reported; unlike any other known fluoride 3+ UM1910-01-PO:CaFeMg US Geol. Surv. Bull. 419, 1 Am. Mineral. 34 , 513 (Ca,Fe,Mg)Fe 2(PO4)2(OH)2•2H2O; some similarities to mitridatite UM1913-01-AsO:CaCuV *Am. J. Sci. 35 , 441 Dana (7th) 2 , 818 Possibly As-bearing calciovolborthite UM1922-01-O:CuHUV *Izv. Ross. Akad. Nauk [6], 16 , 505 Dana (7th) 2 , 1048 Some similarities to sengierite 3+ UM1926-01-O:HNbTaTiU *Bol. Inst. Brasil Sc., 2 , 56 Dana (7th) 1 , 807 (Y,Er,U,Th,Fe )3(Ti,Nb,Ta)10O26; some similarities to samarskite-(Y) UM1927-01-O:CaTaTiW *Gornyi Zhurn.
    [Show full text]
  • Flood Insurance Study Vol. 1
    SANTA CRUZ COUNTY, ARIZONA AND INCORPORATED AREAS VOLUME 1 OF 3 Community Community Name Number SANTA CRUZ COUNTY, (UNINCORPORATED AREAS) 040090 NOGALES, CITY OF 040091 PATAGONIA, TOWN OF 040092 Santa Cruz County EFFECTIVE: DECEMBER 2, 2011 Federal Emergency Management Agency FLOOD INSURANCE STUDY NUMBER 04023CV001A NOTICE TO FLOOD INSURANCE STUDY USERS Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. Please contact the Community Map Repository for any additional data. Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS report may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS report. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS report components. Selected Flood Insurance Rate Map (FIRM) panels for this community contain information that was previously shown separately on the corresponding Flood Boundary and Floodway Map (FBFM) panels (e.g., floodways, cross sections). In addition, former flood hazard zone designations have been changed as follows: Old Zone(s) New Zone A1 through A30 AE B X C X Initial Countywide FIS Report Effective Date: December 2, 2011 TABLE OF CONTENTS – VOLUME 1 Page 1.0 INTRODUCTION
    [Show full text]
  • <PRORULE> <PREAMB> DEPARTMENT
    This document is scheduled to be published in the Federal Register on 01/25/2013 and available online at http://federalregister.gov/a/2013-01303, and on FDsys.gov <PRORULE> <PREAMB> DEPARTMENT OF THE INTERIOR Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–R2–ES–2012–0101] [4500030113] RIN 1018–AY25 Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for the Zuni Bluehead Sucker AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule. SUMMARY: We, the U.S. Fish and Wildlife Service, propose to list the Zuni bluehead sucker as an endangered species under the Endangered Species Act and propose to designate critical habitat for the species. If we finalize this rule as proposed, it would extend the Act’s protections to this subspecies and its critical habitat. The effect of these regulations will be to conserve the Zuni bluehead sucker and protect its habitat under the Act. DATES: We will accept comments received or postmarked on or before [INSERT DATE 60 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. Comments submitted electronically using the Federal eRulemaking Portal (see ADDRESSES section, below) must be received by 11:59 p.m. Eastern Time on the closing date. We must receive requests for public hearings, in writing, at the address shown in FOR FURTHER INFORMATION CONTACT by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. ADDRESSES: You may submit comments by one of the following methods: (1) Electronically: Go to the Federal eRulemaking Portal: http://www.regulations.gov. In the Search box, enter FWS–R2–ES–2012–0101, which is the docket number for this rulemaking.
    [Show full text]
  • Implications for Ni Cycling in Marine Sediments
    This is a repository copy of Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102613/ Version: Accepted Version Article: Atkins, AL, Shaw, S and Peacock, CL (2016) Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments. Geochimica et Cosmochimica Acta, 189. pp. 158-183. ISSN 0016-7037 https://doi.org/10.1016/j.gca.2016.06.007 © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ *Manuscript 1 Release of Ni from birnessite during transformation of birnessite to todorokite: 2 Implications for Ni cycling in marine sediments 3 4 Amy L.
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]
  • Habitat Suitability Criteria for Zuni Bluehead Sucker Catostomus
    Habitat Suitability Criteria for Zuni Bluehead Sucker Catostomus discobolus yarrowi and Navajo Nation Genetic Subunit Bluehead Sucker Catostomus discobolus and Comparing Efficiency of AFS Standard Snorkeling Techniques to eDNA Sampling Techniques Item Type text; Electronic Thesis Authors Ulibarri, Roy M. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 14:57:51 Link to Item http://hdl.handle.net/10150/604876 Habitat Suitability Criteria for Zuni Bluehead Sucker Catostomus discobolus yarrowi and Navajo Nation Genetic Subunit Bluehead Sucker Catostomus discobolus and Comparing Efficiency of AFS Standard Snorkeling Techniques to eDNA Sampling Techniques by Roy M. Ulibarri ____________________________ A Thesis Submitted to the Faculty of the SCHOOL OF NATURAL RESOURCES AND THE ENVIRONMENT In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN NATURAL RESOURCES In the Graduate College THE UNIVERSITY OF ARIZONA 2016 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]