The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution

Total Page:16

File Type:pdf, Size:1020Kb

The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 2006 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Carleton University, Canada Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Peck, Stewart B., "The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution" (2006). Insecta Mundi. 107. https://digitalcommons.unl.edu/insectamundi/107 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. 2000, Myers 2003, Mittermeier et al. January. April is the driest month. The yearly aver- 2005). But this generalization is mostly based on a few age temperature is 26oC at the southwestern coastal better-known groups such as vascular plants, terres- capital city of Roseau, with an average maximum of trial vertebrates and perhaps butterflies (Ricklefs and 29oC and a minimum of 24oC. In the highland interior Lovette 1999). The terrestrial animal groups that are of the island the temperatures are markedly lower actually the most diverse are the insect orders Diptera (about 10oC lower at about 600 m). Large areas, (true flies), Lepidoptera (moths), Hymenoptera (bees, especially at higher elevations, are protected in Forest wasps and ants) and especially Coleoptera (beetles). Reserves and National Parks. Development has been Beetles alone are estimated to account for some 20% relatively minor in comparison to some other islands of all the worlds animal species known to science in the Lesser Antilles. The present national policy of (Wheeler 1990, Wilson 1992). The goal and purpose of Dominica is to promote ecotourism through conserva- this report is to provide a critical summary of knowl- tion practices for the generation of foreign exchange. edge of the diversity of the beetle fauna of Dominica, The geological age and origin of Dominica is and to provide a starting point for others to add to similar to that of most of the other high islands in the what is now known. mostly volcanic island arc of the Lesser Antilles. The The island. Dominica is in the Leeward Islands whole island arc lies to the west of the trench into group, near the middle of the of the Lesser Antilles which the Atlantic (North American) seafloor plate is chain of islands. It lies between 15º10' to 15º40' N being overridden by the Caribbean seafloor plate. latitude and 61º15' to 61º30' W longitude, and between Dominica is volcanic in origin and bedrock and may the French islands of Guadeloupe (45 km to the north) be, at most, only of mid-Tertiary age, and available for and Martinique (40 km to the south) (Fig. 1). It is 751 terrestrial colonization only since the Miocene. There km2 in area, with a maximum elevation of 1447 m and is no compelling evidence of continuous land connec- is roughly tear-drop in shape, with a length of 48 km tions between the major Lesser Antillean volcanic and a width of 24 km at its widest (in the southern islands from the Miocene onwards (Donnelly, 1988). half). It is a lush and comparatively undisturbed Thus, Dominica has probably always been an isolated island, with a drier leeward (western) side (with an oceanic island, never with a land bridge connection to average of 190 mm of rain annually), and a wetter other islands (Hedges 2001). The general biotic distri- 166 Volume 20, No. 3-4, September-December, 2006, INSECTA MUNDI Table 1. Early collectors of insects who provided beetle records for the island of Dominica with time of their activity (if known), based upon specimens in the collections of the USNM or literature sources. Activity from 1964-1966 was during the Bredin- Archbold-Smithsonian Biological Survey. Anderson, D. M. 1965 Kislink & Cooley September, 1931 Angus, G. F. Godman and Salvin (1884); Druce (1884) Lutz, F. E. Leng and Mutchler (1922: 461) Ballou, H. A. Fisher (1932: 49) Matthews, E. 1964 Becher, E. F. 1908; Champion (1917: 230) Miner, R. W. Leng and Mutchler (1922: 461) Blackwelder, R. E.July, 1936; Blackwelder (1943) Nicholls, H. A. Leng and Mutchler (1922: 495) Busch, A. August, 1905 Porter, R. F. November 1917 Clarke, J. F. G. March, 1956; 1964 Ramage, G. A. Leng and Mutchler (1922: 488) Clarke, T. M. 1965 Robinson, H. 1964 Evans, H. E. 1965 Scott, H. 1912; AMNH Bull. (8) 10: 430 (1912) Fennah, R. G. July, 1941 Spilman, T. J. 1964 Flint, O. L. July, 1963; 1964 Splangler, P. J. 1964 Fook, H. W. 1913, Yale Expedition Stehle, H. April, 1946 Gagne, R. 1966 Steyskal, G. 1966 Hays April 15, 1930 Verrill, A. H. 1904-1905 Hespenheide, H. 1964 Wickham, H. F. Leng and Mutchler (1922: 496) Hubbard, H. G. March, 1894 Wirth, W. W. 1965 butional patterns are of overwater dispersal, not a Barbados, with 239 species of beetles. Peck et al. vicariant separation of prior continuous biotic distri- (2002) list a very incompletely known fauna of 672 butions existing on a land bridge as in the model species of beetles from the continental shelf island of proposed by Iturralde-Vinent and MacPhee (1999). Tobago, northeast of Trinidad. The beetle fauna. The beetles of the entire West The most important recent work on presenting Indies are still very poorly known. Blackwelder (1944- a multi-family overview of the beetles of a part of the 1957) summarized beetle data for the Neotropics, Lesser Antilles may be Fleutiaux et al. (1947) on the including the West Indies, as of the date of that French Antilles, because of its scope and thorough- publication. A recent summary of the Greater Anti- ness. This was projected to be a set of volumes, but I llean island of Cuba enumerates 2673 beetle species am aware of only one volume being published. This (Peck 2005). This compares to the 4675species known covers 25 families of Polyphaga, including 118 genera in the continental beetle fauna of Florida (Peck and and 207 species, with keys for generic and species Thomas 1998). The island of Hispaniola has 1466 identification, and many descriptions and fine illus- known beetle species (Perez-Gelabert 2005). Tiny trations. It estimates the entire beetle fauna of the Guana Island in the eastern-most part of the Greater French Antilles to be about 500-600 genera and about Antilles has received intensive attention by a variety 1500 species. of workers, and now has 405 documented beetle In the first summary compilation for Dominica, species (Valentine and Ivie 2005). 57 beetle species were reported by Leng and Mutchler Within the Lesser Antilles, Leng and Mutchler (1914, 1917) and then 123 species by Blackwelder (1914, 1917), listed 705 species of beetles for the (1944-1957) according to Spilman (1971). The first Guadeloupe island group from the work of Fleutiaux focused beetle survey of Dominica is that of Black- and Sallé (1890), Grouvelle (1902), and Grouvelle and welder (1943) as a part of his study of the Staphylin- Raffray (1908, 1912). The next best-known island may idae of the West Indies. He sampled in Dominica from be St. Vincent, which was collected by Mr. H. H. 18 May to 12 July, 1936, with 26 sample stations, and Smith in 1887-1889 as a part of a project of the British found 26 species of Staphylinidae, excluding Aleo- Association for the Advancement of Science on the charinae. Spilman (1971) inaugurated a series of insects of the islands of British West India (Holland modern reviews of the beetles of Dominica, but, 1919). The beetles were described by several workers unfortunately, only a few papers on the beetle fauna (e. g. Champion 1897), and Howard (1898) summa- have appeared since then (e. g., Cartwright and rized the results of the project up to that time.
Recommended publications
  • Coleoptera) (Excluding Anthribidae
    A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCULIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis TAMI ANNE CARLOW Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1997 Major Subject; Entomology A FAUNAL SURVEY AND ZOOGEOGRAPHIC ANALYSIS OF THE CURCVLIONOIDEA (COLEOPTERA) (EXCLUDING ANTHRIBIDAE, PLATYPODINAE. AND SCOLYTINAE) OF THE LOWER RIO GRANDE VALLEY OF TEXAS A Thesis by TAMI ANNE CARLOW Submitted to Texas AgcM University in partial fulltllment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Horace R. Burke (Chair of Committee) James B. Woolley ay, Frisbie (Member) (Head of Department) Gilbert L. Schroeter (Member) August 1997 Major Subject: Entomology A Faunal Survey and Zoogeographic Analysis of the Curculionoidea (Coleoptera) (Excluding Anthribidae, Platypodinae, and Scolytinae) of the Lower Rio Grande Valley of Texas. (August 1997) Tami Anne Carlow. B.S. , Cornell University Chair of Advisory Committee: Dr. Horace R. Burke An annotated list of the Curculionoidea (Coleoptem) (excluding Anthribidae, Platypodinae, and Scolytinae) is presented for the Lower Rio Grande Valley (LRGV) of Texas. The list includes species that occur in Cameron, Hidalgo, Starr, and Wigacy counties. Each of the 23S species in 97 genera is tteated according to its geographical range. Lower Rio Grande distribution, seasonal activity, plant associations, and biology. The taxonomic atTangement follows O' Brien &, Wibmer (I og2). A table of the species occuning in patxicular areas of the Lower Rio Grande Valley, such as the Boca Chica Beach area, the Sabal Palm Grove Sanctuary, Bentsen-Rio Grande State Park, and the Falcon Dam area is included.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Fossil History of Curculionoidea (Coleoptera) from the Paleogene
    geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization.
    [Show full text]
  • Coleoptera: Leiodidae) from Jamaica and Puerto Rico, with a Discussion of Wing Dimorphism*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Carleton University's Institutional Repository NEW RECORDS AND SPECIES OF LEIODINAE AND CATOPINAE (COLEOPTERA: LEIODIDAE) FROM JAMAICA AND PUERTO RICO, WITH A DISCUSSION OF WING DIMORPHISM* BY STEWART B. PECK Department of Biology, Carleton University Ottawa, Ontario, K1S 5B6, Canada Since my earlier reports on the Leiodidae of Jamaica and Puerto Rico (Peck, 1970, 1972), I have had the opportunity to spend an additional 13 weeks in field work on these islands. In Jamaica this was from mid-December to mid-January, 1972-1973, and from late July to early September, 1974. In Puerto Rico it was from early to late May, 1973, and a week in June, 1974. This has resulted in new data on the leiodids of these islands, which are presented here. Ad- ditional data and information on forest habitat sites may be found in Peck and Kukalova-Peck (1975), and on cave sites in Peck (1974, 1975). Methods and materials are similar to those utilized for my earlier papers. Collections were primarily made in forests with pitfall traps baited with carrion and human dung (Newton and Peck, 1975); by Berlese-Tullgren funnel extraction of arthropods from sifted forest litter, and from bat guano accumulations in caves. In this work, 259 kg (770 liters) of sifted forest litter were processed for Jamaica and 93 kg (171 liters) for Puerto Rico, in addition to many other extractions from samples of bat guano. Most of the arthropod residues from these collections are deposited with the Field Mu- seum (Chicago).
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • Plantas Hospedadoras De Cerambycidae (Coleoptera) En El Noreste De Argentina
    Rev. Bio!. Trop., 44(3)145(1): 167-175, 1996-1997 Plantas hospedadoras de Cerambycidae (Coleoptera) en el noreste de Argentina Oscar E. Gonzalez' y Osvaldo R. Di Iori02 1 Museo Regional Municipal Sudoeste Chaqueño, (3730) Charata, Chaco, Argentina. Entomología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, (1428) Ciudad Universitaria, Buenos Aires, Argentina. E-mai!: Dü[email protected] (Ree. 4-1-1996. Rev. 24-IV-1996. Acep. 8-VIII-1996) Abstraet: New host p1ants and loealities are recorded for 84 species of Cerambycidae of Chaco Province (Chaquenian Dominion) and Paranaense Province (Amazonian Dominion) in northeastem Argentina and Brazil. Host p1ants belong to Anacardiaceae, Asc1epiadaceae, Apocynaceae, Bignoniaceae, Bombacaceae, Cactaceae, Caesalpinaceae, Capparidaceae, Casuarinaceae, Fabaceae, Mimosaceae, Moraceae, Nyctaginaceae, Polygonaceae, Rhamnaceae, Rutaceae, Sapindaceae, Sapotaceae and Ulmaceae.First records for Argentinaand host plants: Compsocerus barbicor­ nis Serville 1834, Desmiphora lenkoi (Lane 1959), Neocompsa serrana (Martins 1962) and Trachysomus dromedarius (Voet 1778). Fírst host plants records of rare or uncornrnon Argentine specíes of Cerambycidae are Methia tubuliven­ tris GounelIe 1913, Paraleptidea femorata GounelIe1913 and Oncideres pepotinga Martíns 1981. Key words: Cerambycidae, host plants, north-eastem Argentina. La presente contribución continúa con la in­ Cuando una localidad se visitó en más de vestigación de plantas hospedadoras de Ce­ una oportunidad, se agrega al lado del nombre rambycidae del noreste de Argentina (Di lorio el año correspondiente al de recolección de la 1994 a): se presentan nuevos registros de loca­ planta de donde emergieron los ejemplares lidades, plantas hospedadoras y correcciones a mencionados; en el caso de plantas taladas más dicha publicación. de una vez, la fecha también se incluye entre paréntesis luego de la abreviatura relativa a la planta.
    [Show full text]
  • Ethnoentomological and Distributional Notes on Cerambycidae and Other Coleoptera of Guerrero and Puebla,Mexico
    The Coleopterists Bulletin, 71(2): 301–314. 2017. ETHNOENTOMOLOGICAL AND DISTRIBUTIONAL NOTES ON CERAMBYCIDAE AND OTHER COLEOPTERA OF GUERRERO AND PUEBLA,MEXICO JONATHAN D. AMITH Research Affiliate, Department of Anthropology, Gettysburg College, Campus Box 2895, Gettysburg, PA 17325, U.S.A. and Research Associate, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, U.S.A. AND STEVEN W. LINGAFELTER Systematic Entomology Laboratory, Agriculture Research Service, United States Department of Agriculture, National Museum of Natural History, Smithsonian Institution,Washington, DC 20013-7012, U.S.A. Current address: 8920 South Bryerly Ct., Hereford, AZ 85615, U.S.A. ABSTRACT This article presents both ethnoentomological notes on Nahuatl and Mixtec language terms as they are applied to Cerambycidae (Coleoptera) and distributional records for species collected during three projects carried out in the states of Guerrero and Puebla, Mexico. Some comparative data from other Mesoamerican and Native American languages are discussed. Indigenous common names are mapped onto current taxonomic nomenclature, and an analysis is offered of the logical basis for Indigenous classification: the exclusion of some cerambycids and the inclusion of other beetles in the nominal native “cerambycid” category. New state distributional records for the Cerambycidae collected in this study are offered for Guerrero: Bebelis picta Pascoe, Callipogon senex Dupont, Neocompsa macrotricha Martins, Olenosus ser- rimanus Bates, Ornithia mexicana zapotensis Tippmann, Stenygra histrio Audinet-Serville, Strongylaspis championi Bates, Lissonotus flavocinctus puncticollis Bates, and Nothopleurus lobigenis Bates; and Puebla: Juiaparus mexicanus (Thomson), Ptychodes guttulatus Dillon and Dillon, and Steirastoma senex White. Key Words: linguistics, etymology, Nahuatl, Mixtec, longhorned beetle, wood-borer DOI.org/10.1649/0010-065X-71.2.301 The present article emerges from two language shapes.
    [Show full text]
  • THE IMMATURE STAGES of Eurymerus Eburioides AUDINET-SERVILLE, 1833 (COLEOPTERA: CERAMBYCIDAE: ECTENESSINI)
    IMMATURE STAGES OF Eurymerus eburioides AUDINET-SERVILLE, 1833 97 THE IMMATURE STAGES OF Eurymerus eburioides AUDINET-SERVILLE, 1833 (COLEOPTERA: CERAMBYCIDAE: ECTENESSINI) MORELLI, E.,1 SANCHEZ, A.2 and BIANCHI, M.2 1Sección Entomología, Facultad de Ciencias, Iguá, 4225, Montevideo 11400, Uruguay 2Protección Forestal, Facultad de Agronomía, Avda. Garzón, 780, Montevideo 12900, Uruguay Correspondence to: Enrique Morelli, Sección Entomología, Facultad de Ciencias, Iguá, 4225, Montevideo 11400, Uruguay, e-mail: [email protected] Received October 28, 2003 – Accepted July 16, 2004 – Distributed February 28, 2005 (With 13 figures) ABSTRACT Last instar larva and pupa of Eurymerus eburioides Audinet-Serville, 1833, are described and illus- trated based on specimens reared from neonate larvae on Eucalyptus globulus globulus logs in the laboratory. Characters of possible diagnostic value are presented in this work. Key words: Coleoptera, Cerambycidae, Eurymerus, larva, pupa. RESUMO Estágios imaturos de Eurymerus eburioides Audinet-serville, 1833 (Coleoptera: Cerambycidae: Ectenessini) Neste trabalho são descritas a larva do último instar e a pupa de Eurymerus eburioides Audinet-Serville, 1833, com base em espécimes criados em laboratório a partir de larvas neonatas de Eucalyptus globulus globulus. Apresentam-se, também, características com possível valor diagnóstico. Palavras-chave: Coleoptera, Cerambycidae, Eurymerus, larva, pupa. INTRODUCTION MATERIAL AND METHODS Eurymerus eburioides Audinet-Serville is a E. eburioides beetles were reared in the labo- native cerambicid often found attacking Eucalipt in ratory on one of their hosts (Eucalyptus globulus South America (Bosq, 1934; Costa, 1943; Hayward, globulus). Neonate larvae were manually transferred 1960; Bienzanko & Bosq, 1956; Berti Filho, 1985; to logs kept in a controlled-environment chamber Moraes & Berti-Filho, 1974; Monné et al., 2002).
    [Show full text]
  • Your Name Here
    RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.
    [Show full text]
  • Coleoptera, Carabidae)
    A peer-reviewed open-access journal ZooKeys 416: 77–112Taxonomic (2014) review of Cratocerus Dejean, 1829 (Coleoptera, Carabidae)... 77 doi: 10.3897/zookeys.416.6455 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Taxonomic review of Cratocerus Dejean, 1829 (Coleoptera, Carabidae) with the description of six new species Traci L. Grzymala1, Kipling W. Will1 1 ESPM Department and Essig Museum of Entomology, University of California, Berkeley, CA 94720 Corresponding author: Traci L. Grzymala ([email protected]) Academic editor: T. Erwin | Received 18 October 2013 | Accepted 12 May 2014 | Published 17 June 2014 http://zoobank.org/D81E3809-5704-4DE7-AFEC-098E7773D528 Citation: Grzymala TL, Will KW (2014) Taxonomic review of Cratocerus Dejean, 1829 (Coleoptera, Carabidae) with description of six new species. ZooKeys 416: 77–112. doi: 10.3897/zookeys.416.6455 Abstract A diagnosis of the South and Central American genus Cratocerus Dejean (Coleoptera: Carabidae) and a key to all species is provided. Eight species are recognized including six species that are newly described: Cratocerus sinesetosus sp. n. from French Guiana and Peru; Cratocerus multisetosus sp. n. from Costa Rica and Panama; Cratocerus tanyae sp. n. from Costa Rica, Guatemala, and Mexico; Cratocerus indupalmensis sp. n. a species widely distributed throughout Central and South America; Cratocerus kavanaughi sp. n. from French Guiana and Peru; and Cratocerus culpepperi sp. n. from Peru. A lectotype for Cratocerus sulcatus Chaudoir is designated. Habitus images are provided along with illustrations and images of male genitalia, female genitalia, and diagnostic morphological characters. Keywords Pterostichinae, Harpalinae, Cratocerini, Cratocerina, revision, key Introduction The genus Cratocerus (Coleoptera: Carabidae) was originally described by Dejean (1829) based on two specimens collected from Brazil.
    [Show full text]
  • Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands
    Land 2014, 3, 693-718; doi:10.3390/land3030693 OPEN ACCESS land ISSN 2073-445X www.mdpi.com/journal/land/ Article Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments Thomas O. Crist 1,2,* and Valerie E. Peters 1 1 Institute for the Environment and Sustainability, Miami University, Oxford, OH 45056, USA; E-Mail: [email protected] 2 Department of Biology, Miami University, Oxford, OH 45056, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-513-529-6187; Fax: +1-513-529-5814. Received: 3 May 2014; in revised form: 23 June 2014 / Accepted: 30 June 2014 / Published: 14 July 2014 Abstract: The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover.
    [Show full text]
  • Zootaxa, Catalogue of Family-Group Names in Cerambycidae
    Zootaxa 2321: 1–80 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2321 Catalogue of family-group names in Cerambycidae (Coleoptera) YVES BOUSQUET1, DANIEL J. HEFFERN2, PATRICE BOUCHARD1 & EUGENIO H. NEARNS3 1Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6. E-mail: [email protected]; [email protected] 2 10531 Goldfield Lane, Houston, TX 77064, USA. E-mail: [email protected] 3 Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA. E-mail: [email protected] Corresponding author: [email protected] Magnolia Press Auckland, New Zealand Accepted by Q. Wang: 2 Dec. 2009; published: 22 Dec. 2009 Yves Bousquet, Daniel J. Heffern, Patrice Bouchard & Eugenio H. Nearns CATALOGUE OF FAMILY-GROUP NAMES IN CERAMBYCIDAE (COLEOPTERA) (Zootaxa 2321) 80 pp.; 30 cm. 22 Dec. 2009 ISBN 978-1-86977-449-3 (paperback) ISBN 978-1-86977-450-9 (Online edition) FIRST PUBLISHED IN 2009 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2009 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]