Cell Division Why Do You Think Cells Divide? Let’S Review

Total Page:16

File Type:pdf, Size:1020Kb

Cell Division Why Do You Think Cells Divide? Let’S Review Cell Division Why do you think cells divide? Let’s Review Before Rudolph Virchow made his contributions to cells, there was still debate over how new cells came to be. He observed new cells being made under a microscope. He saw that all cells come from pre-existing cells. He discovered cell division. Types of Cell Division Depending on the cell type, cell division occurs in different ways. Prokaryotic cells undergo Binary Fission Eukaryotic Cells undergo Mitosis Reproductive Cells undergo Meiosis We will not be learning about meiosis just yet. What is Binary Fission? The division and production of prokaryotic cells. Binary Fission- The process results in the reproduction of a living prokaryotic cell by dividing into 2 parts that each have the potential to grow to the size of the original cell. https://www.youtube.com/watch? v=Th4v_Q1iHfY https://www.youtube.com/watch?v=yiA-rHx0xGI How Does Binary Fission Occur? Binary Fission starts and ends in a 6 step process: 1. The bacteria at the start of the process is tightly coiled. 2. The DNA is replicated. 3. The DNA is pulled to separate poles of the bacteria as the cell increases in sizes and prepare for splitting. 4. The growth of the new cell begins to separate the bacteria. 5. The new cell wall fully develops, resulting in the splitting of the bacteria. 6. The new cells are fully separated and the DNA coils tightly. What is Mitosis? The division and production of most eukaryotic cells. Mitosis- chromosomes in a nucleus are separated into 2 identical sets of chromosomes, each in its own nucleus. Chromosomes- DNA that is wound up in eukaryotic cells. Once the two nuclei are formed, the cell will start to separate. https://www.youtube.com/watch?v=g wcwSZIfKlM Events During Mitosis Interphase- DNA is replicated and proteins are produced. Prophase- the nucleus fades and the replicated chromosomes (DNA) start to break away. Metaphase- DNA is aligned. Anaphase- The DNA is pulled apart more and begin moving to cell poles. Telophase- The two cells start pulling apart. Cytokinesis- The cell is completely split. Cool Discoveries That Support Cell Division Francesco Redi An Italian scientist that lived from 1626-1697. He made a discovery about cell division before cell division was created. He was one of the first scientists to refute a theory called “Spontaneous Generation” Where life of simple creatures fleas and flies can come spontaneously. Redi’s Experiment Redi placed meat in two jars , he put a lid on one and left the top of one jar exposed. He let the jars sit naturally for a few days and observed what happened in the jars. The jar that did not have a lid eventually had maggots and those maggots hatched into flies. The jar that had a lid did not get maggots. Louis Pasteur French scientists that lived from 1822- 1895. He made great discoveries in vaccinations, fermentation, and pasteurization (named after him). He also did experiments to refute the Spontaneous Generation theory. Up until Pasteur completed his work, there was still debate about whether or not microbial (cell) life can form spontaneously. Pasteur’s Experiment He placed broth in two flasks, and boiled them to kill any life. After the broths have been heated, Pasteur broke off the lid on one of the containers and left one lid intact. Over time, the broth in the exposed flask became cloudy, a sign that microbial life existed, but the container with the lid remained clear. So What? Redi and Pasteur’s experiments made significant impacts on our knowledge of life and cells. Before these scientists made these experiments, it was widely accepted that life was a spontaneous occurrence and can happen with no assistance. Because both of these men showed that when you deny dust and air from entering a source, life cannot form. This disproved the accepted science that life is a spontaneous phenomenon. Because life is not spontaneous, all life has to come from a pre-existing source (cell division). .
Recommended publications
  • The Spontaneous Generation Controversy (340 BCE–1870 CE)
    270 4. Abstraction and Unification ∗ ∗ ∗ “O`uen ˆetes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to his devoted pupils, watching over him). The Spontaneous Generation Controversy (340 BCE–1870 CE) “Omne vivium ex Vivo.” (Latin proverb) Although the theory of spontaneous generation (abiogenesis) can be traced back at least to the Ionian school (600 B.C.), it was Aristotle (384-322 B.C.) who presented the most complete arguments for and the clearest statement of this theory. In his “On the Origin of Animals”, Aristotle states not only that animals originate from other similar animals, but also that living things do arise and always have arisen from lifeless matter. Aristotle’s theory of sponta- neous generation was adopted by the Romans and Neo-Platonic philosophers and, through them, by the early fathers of the Christian Church. With only minor modifications, these philosophers’ ideas on the origin of life, supported by the full force of Christian dogma, dominated the mind of mankind for more that 2000 years. According to this theory, a great variety of organisms could arise from lifeless matter. For example, worms, fireflies, and other insects arose from morning dew or from decaying slime and manure, and earthworms originated from soil, rainwater, and humus. Even higher forms of life could originate spontaneously according to Aristotle. Eels and other kinds of fish came from the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came from slime. 1846 CE 271 Rather than examining the claims of spontaneous generation more closely, Aristotle’s followers concerned themselves with the production of even more remarkable recipes.
    [Show full text]
  • The Frog in Taffeta Pants
    Evolutionary Anthropology 13:5–10 (2004) CROTCHETS & QUIDDITIES The Frog in Taffeta Pants KENNETH WEISS What is the magic that makes dead flesh fly? himself gave up on the preformation view). These various intuitions arise natu- Where does a new life come from? manded explanation. There was no rally, if sometimes fancifully. The nat- Before there were microscopes, and compelling reason to think that what uralist Henry Bates observed that the before the cell theory, this was not a one needed to find was too small to natives in the village of Aveyros, up trivial question. Centuries of answers see. Aristotle hypothesized epigenesis, the Tapajos tributary to the Amazon, were pure guesswork by today’s stan- a kind of spontaneous generation of believed the fire ants, that plagued dards, but they had deep implications life from the required materials (pro- them horribly, sprang up from the for the understanding of life. The vided in the egg), that systematic ob- blood of slaughtered victims of the re- 5 phrase spontaneous generation has servation suggested coalesced into a bellion of 1835–1836 in Brazil. In gone out of our vocabulary except as chick. Such notions persisted for cen- fact, Greek mythology is full of beings an historical relic, reflecting a total turies into what we will see was the spontaneously arising—snakes from success of two centuries of biological critical 17th century, when the follow- Medusa’s blood, Aphrodite from sea- research.1 The realization that a new ing alchemist’s recipe was offered for foam, and others. Even when the organism is always generated from the production of mice:3,4 mix sweaty truth is known, we can be similarly one or more cells shed by parents ex- underwear and wheat husks; store in impressed with the phenomena of plained how something could arise open-mouthed jar for 21 days; the generation.
    [Show full text]
  • Microbial Growth
    7 Microbial Growth 1 7.1 Reproductive strategies 1. Describe binary fission as observed in bacteria and archaea 2. Compare the three reproductive strategies used by bacteria other than binary fission 2 Reproductive Strategies • The reproductive strategies of eukaryotic microbes – asexual and sexual, haploid or diploid • Bacteria and Archaea – haploid only, asexual - binary fission, budding, filamentous – all must replicate and segregate the genome prior to division 3 4 7.2 Bacterial cell cycle 1. Summarize the two major events in a typical bacterial cell cycle 2. State the functions of cytoskeletal proteins in a typical bacterial cell cycle and in determining cell shape 5 Bacterial Cell Cycle • Cell cycle is sequence of events from formation of new cell through the next cell division – most bacteria divide by binary fission • Two pathways function during cycle – DNA replication and partition – cytokinesis 6 Chromosome Replication and Partitioning - 1 • Most bacterial chromosomes are circular • Single origin of replication – site at which replication begins • Terminus – site at which replication is terminated, located opposite of the origin • Replisome – group of proteins needed for DNA synthesis • DNA replication proceeds in both directions from the origin • Origins move to opposite ends of the cell 7 8 Chromosome Partitioning • Replisome pushes, or condensation of, daughter chromosomes to opposite ends • MreB (murein cluster B) – an actin homolog, plays role in determination of cell shape as spiral inside cell periphery, and chromosome
    [Show full text]
  • Chromochloris Zofingiensis (Chlorophyceae) Divides By
    biology Article Chromochloris zofingiensis (Chlorophyceae) Divides by Consecutive Multiple Fission Cell-Cycle under Batch and Continuous Cultivation Idan Koren, Sammy Boussiba , Inna Khozin-Goldberg and Aliza Zarka * Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Midreshet Ben-Gurion 8499000, Israel; [email protected] (I.K.); [email protected] (S.B.); [email protected] (I.K.-G.) * Correspondence: [email protected] Simple Summary: Microalgae are plant-like micro-organisms naturally found in fresh and marine water environments, inhabiting a vast range of ecosystems. They capture light energy through photosynthesis and convert low energy inorganic compounds (carbon dioxide and water) into high energy complex organic compounds, such as carbohydrates and fats. Chromochloris zofingiensis is a unicellular microalga currently under intensive research, due to its ability to produce high value pharmaceutical and nutritional pigments. Understanding its growth characteristics is crucial for the establishment of an efficient commercial production of those pigments from this alga. Thus, we have developed a method to stain the nucleus of the alga which enabled us to follow the division pattern under commonly used cultivation methods. We found that C. zofingiensis cells conduct consecutive Citation: Koren, I.; Boussiba, S.; DNA synthesis and divisions of the nucleus to produce 8 or 16 nuclei before it divides into 8 or Khozin-Goldberg, I.; Zarka, A. 16 daughter cells, respectively. Under high light illumination, the whole process lasts several days, Chromochloris zofingiensis through which cells grow during the light period and divide during the dark period.
    [Show full text]
  • Redalyc.Joseph Achille Le Bel. His Life and Works
    Revista CENIC. Ciencias Químicas ISSN: 1015-8553 [email protected] Centro Nacional de Investigaciones Científicas Cuba Wisniak, Jaime Joseph Achille Le Bel. His Life and Works Revista CENIC. Ciencias Químicas, vol. 33, núm. 1, enero-abril, 2002, pp. 35-43 Centro Nacional de Investigaciones Científicas La Habana, Cuba Available in: http://www.redalyc.org/articulo.oa?id=181625999008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista CENIC Ciencias Químicas, Vol. 33, No. 1, 2002. RESEÑA BIOGRAFICA Joseph Achille Le Bel. His Life and Works Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105. [email protected]. Recibido: 26 de abril del 2001. Aceptado: 22 de mayo del 2001. Palabras clave: Le Bel, Química, estereoquímica, actividad óptica, cosmogonia Key words: Le Bel, Chemistry, stereoquímica, optical activity, cosmogony. RESUMEN. Joseph Achille Le Bel es un ejemplo de científicos como Réaumur The same year his father passed que investigaron muchÍsimos temas, pero solo son recordados por uno. Le Bel away and his two sisters, Marie and es un nombre bien conocido por los estudiantes de Química en general, y Emma, took charge of the family in- estereoquímica en particular. El nos dejo los principios básicos que determinan dustry and in this way allowed Le las condiciones geométricas que un compuesto de carbón debe satisfacer para Bel to continue chemical studies.
    [Show full text]
  • History and Scope of Microbiology the Story of Invisible Organisms
    A study material for M.Sc. Biochemistry (Semester: IV) Students on the topic (EC-1; Unit I) History and Scope of Microbiology The story of invisible organisms Dr. Reena Mohanka Professor & Head Department of Biochemistry Patna University Mob. No.:- +91-9334088879 E. Mail: [email protected] MICROBIOLOGY 1. WHAT IS A MICROBIOLOGY? Micro means very small and biology is the study of living things, so microbiology is the study of very small living things normally too small that are usually unable to be viewed with the naked eye. Need a microscope to see them Virus - 10 →1000 nanometers Bacteria - 0.1 → 5 micrometers (Human eye ) can see 0.1 mm to 1 mm Microbiology has become an umbrella term that encompasses many sub disciplines or fields of study. These include: - Bacteriology: The study of bacteria - Mycology: Fungi - Protozoology: Protozoa - Phycology: Algae - Parasitology: Parasites - Virology: Viruses WHAT IS THE NEED TO STUDY MICROBIOLOGY • Genetic engineering • Recycling sewage • Bioremediation: use microbes to remove toxins (oil spills) • Use of microbes to control crop pests • Maintain balance of environment (microbial ecology) • Basis of food chain • Nitrogen fixation • Manufacture of food and drink • Photosynthesis: Microbes are involved in photosynthesis and accounts for >50% of earth’s oxygen History of Microbiology Anton van Leeuwenhoek (1632-1723) (Dutch Scientist) • The credit of discovery of microbial world goes to Anton van Leeuwenhoek. He made careful observations of microscopic organisms, which he called animalcules (1670s). • Antoni van Leeuwenhoek described live microorganisms that he observed in teeth scrapings and rain water. • Major contributions to the development of microbiology was the invention of the microscope (50-300X magnification) by Anton von Leuwenhoek and the implementation of the scientific method.
    [Show full text]
  • 2. Scientific Inquiry-S
    Scientific Inquiry What do scientists do? Why? Science is a unique way of learning about the natural world. Scientists work hard to explain events, living organisms, and changes we see around us every day. Model 1 depicts typical activities or stages scientists engage in when conducting their work. The design of the model shows how various steps in scientific inquiry are connected to one another. None of the activities stands alone—they are all interdependent. Model 1 – Scientific Inquiry Observe Communicate Define the with the wider problem community Form a Reflect study on the question findings Questions Research Analyze the problem the results State the Experiment expectations and gather (hypothesis) data Scientific Inquiry 1 1. What is the central theme of all scientific inquiry as shown in Model 1? 2. What are the nine activities that scientists engage in as part of scientific inquiry? 3. Which of the activities would require a scientist to make some observations? 4. Which of the steps would require a scientist to gather data? 5. Considering the activity described as “communicating with the wider community,” in what ways might a scientist communicate? 6. Remembering that scientists often work in teams, which activities would require a scientist to communicate with others? 7. Given your responses to Questions 1–6, do you think these activities must be carried out in a specific order or can multiple activities be carried out at the same time? Justify your response by giving examples to support your answer. 2 POGIL™ Activities for High School Biology Model 2 – Redi’s Experiment Meat Fly eggs and maggots Fly Solid cover Screen cover Container 1 Container 2 Container 3 The table below represents the ideas the Italian scientist Francesco Redi (1626–1698) might have had as he was carrying out his experiments.
    [Show full text]
  • Chemists and the School of Nature Bernadette Bensaude Vincent, Yves Bouligand, Hervé Arribart, Clément Sanchez
    Chemists and the School of nature Bernadette Bensaude Vincent, Yves Bouligand, Hervé Arribart, Clément Sanchez To cite this version: Bernadette Bensaude Vincent, Yves Bouligand, Hervé Arribart, Clément Sanchez. Chemists and the School of nature. Central European Journal of Chemistry, Springer Verlag, 2002, pp.1-5. hal- 00937207 HAL Id: hal-00937207 https://hal-paris1.archives-ouvertes.fr/hal-00937207 Submitted on 30 Jan 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemists and the school of nature B. Bensaude Vincent, Arribart, H., Bouligand, Y, Sanchez C.), New Journal of Chemistry, 26 (2002) 1-5. The term biomimicry first appeared in 1962 as a generic term including both cybernetics and bionics1. It referred to all sorts of imitation of one form of life by another one while the term "bionics" defined as "an attempt to understand sufficiently well the tricks that nature actually uses to solve her problems"2 is closer to the meaning of "biomimicry" as it has been used by material scientists since the 1980s. Biomimetism is an umbrella covering a variety of research fields ranging from the chemistry of natural products to nanocomposites, via biomaterials and supramolecular chemistry.
    [Show full text]
  • Section 1–2 How Scientists Work (Pages 8–15)
    BIO_ALL IN1_StGd_tese_ch01 8/7/03 5:42 PM Page 181 Name______________________________ Class __________________ Date ______________ Section 1–2 How Scientists Work (pages 8–15) This section explains how scientists test hypotheses. It also describes how a scientific theory develops. Designing an Experiment (pages 8–10) 1. The idea that life can arise from nonliving matter is called spontaneous generation . 2. What was Francesco Redi’s hypothesis about the appearance of maggots? Flies produce maggots. 3. What are variables in an experiment? They are factors that can change. 4. Ideally, how many variables should an experiment test at a time? It should test only one variable at a time. 5. When a variable is kept unchanged in an experiment, it is said to be controlled . 6. What is a controlled experiment? A controlled experiment is an experiment in which one variable is changed while the other variables are controlled. 7. The illustration below shows the beginning of Redi’s experiment. Complete the illustration by showing the outcome. Redi’s Experiment on Spontaneous Generation Uncovered jars Covered jars Several days pass. © Pearson Education, Inc. All rights reserved. Maggots appear No maggots appear BIO_ALL IN1_StGd_tese_ch01 8/7/03 5:42 PM Page 182 Name______________________________ Class __________________ Date ______________ 8. Complete the table about variables. VARIABLES Type of Variable Definition Manipulated variable The variable that is deliberately changed in an experiment Responding variable The variable that is observed and changes in response to the manipulated variable 9. In Redi’s experiment, what were the manipulated variable and the responding variable? The manipulated variable was the presence or absence of the gauze covering, and the responding variable was whether maggots appear.
    [Show full text]
  • Cell Theory the CELL THEORY GREW out of the WORK of MANY SCIENTISTS and IMPROVEMENTS in the MICROSCOPE
    Cell Theory THE CELL THEORY GREW OUT OF THE WORK OF MANY SCIENTISTS AND IMPROVEMENTS IN THE MICROSCOPE. Many scientists contributed to the cell theory. ROBERT HOOKE He was the first person to look at cells and named them. He looked at cork cells which are not living. It is the bark of a tree so they are dead plant cells. They are small squares and they reminded him of the small rooms in a monastery called cells ANTON VAN LEEUWENHOEK Credited with improving the microscope. (Zacharias Janssen is credited with discovering/creating microscope). Leeuwenhoek’s microscope could magnify 200x the human eye! Today’s microscopes can magnify up to 1500! MATTHIAS SCHLEIDEN was a German botanist (scientist who studies plants.) He found that the plant parts he examined were made of cells. He made the generalization that all plants were made of cells. THEODOR SCHWANN Studied animals. His microscopic investigations of animal parts led him to generalize that all animals are made of cells After looking at Schleiden’s work ,he further proposed that all organisms are made of cells. RUDOLF VIRCHOW- OMNIS CELLULA C CELLULA”: ALL CELLS FROM CELLS (1855) German doctor that said that new plant cells arise only from existing plant cells, and new animal cells arise only from existing animal cells. Building off the work of Redi (1668) who disproved the idea of spontaneous generation in his experiments about rotting meat. LOUIS PASTEUR-GERM THEORY 1856-Used the microscope to discover that tiny, one- celled (eukaryotic) yeast created alcoholic fermentation and that other one-celled, rod-shaped organisms (prokaryotic bacteria) caused beverages to spoil.
    [Show full text]
  • Unit One – What Did People Think Caused Disease?
    Unit One – What did people think caused disease? Medieval beliefs about causes Renaissance beliefs about causes 1 Hippocrates An Ancient Greek philosopher who came up with theory of the 10 Four Blood, Phlegm, Black Bile, Yellow Bile – Four elements which Four Humours. Humours medieval people believed all humans had and could cause disease if they were not balanced. 2 Four Humours Blood, Phlegm, Black Bile, Yellow Bile – Four elements which 11 Theory of Galen’s theory that diseases were caused by the Four medieval people believed all humans had and could cause Opposites Humours being in‐balanced. Treated by re‐balancing the disease if they were not balanced. Four Humours. 3 Four elements Earth, fire, water, air – the four earthly elements that the four 12 Divine The belief that diseases were caused by God as punishment humours were based on. causes for sins people had committed. 4 Galen A Roman doctor who built on Hippocrates’ idea, the Four 13 Supernatural The belief that diseases are caused by magic or witchcraft Humours. causes 5 Theory of Galen’s theory that diseases were caused by the Four Humours 14 Miasma The belief that diseases are caused by bad smells / ‘foul Opposites being in‐balanced. Treated by re‐balancing the Four Humours. smelling air’. 6 Divine causes The belief that diseases were caused by God as punishment for 15 William Discovered the heart was a pump (pumped blood around the sins people had committed. Harvey body) important new ideas about causes in later periods. 7 Sins A religious belief that any bad things you do in your life are 16 The Plague – During the Great Plague 1665, many stayed indoors to avoid sinful and you will be punished by God for them.
    [Show full text]
  • Spontaneous Generation & Origin of Life Concepts from Antiquity to The
    SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R.
    [Show full text]