Ep 0665009 A1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 0665009 A1 Eu^^esP— || | MMMMI 1 1 1 1 1 1|||| 1 1 1||| || J European Patent Office _ _ _ _ _ © Publication number: 0 665 009 A1 Office europeen desj brevets © EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC © Application number: 93922625.4 © Int. CI.6: A61 K 9/00 @ Date of filing: 13.10.93 © International application number: PCT/JP93/01469 © International publication number: WO 94/08561 (28.04.94 94/10) ® Priority: 14.10.92 JP 303085/92 Koga-gun, Shiga 520-32 (JP) @ Date of publication of application: Inventor: IZUMI, Shougo 02.08.95 Bulletin 95/31 3-94, Nlshltsutsujlgaoka Mlyamadal 1-chome Kameoka-shl, © Designated Contracting States: Kyoto 621 (JP) AT BE CH DE DK ES FR GB GR IE IT LI LU MC Inventor: OKA, Masaakl NL PT SE 18-8-207, Hoshlgaoka 1-chome Hlrakata-shl, © Applicant: NIPPON SHINYAKU COMPANY, Osaka 573 (JP) LIMITED 14, Klssholn Nlshlnosho Monguchlcho Mlnaml-ku © Representative: Vogeser, Werner, Dipl.-lng. et Kyoto-shl al Kyoto 601 (JP) Patent- und Rechtsanwalte Hansmann, Vogeser, Dr. Boecker, © Inventor: NAKAMICHI, Koulchl Alber, Dr. Strych, Lledl 13-16, Kltayamadal 1-chome, Albert-Rosshaupter-Strasse 65 Koselcho D-81369 Munchen (DE) © CRYSTALLINE CONDITION DISLOCATING METHOD. © An object of this invention is to provide a meth- od of the crystalline condition of dislocating cry- \A/ < stalline medicine simply, speedily and homoge- 4 ^ 0 at neously, and, moreover, in large quantities at once. A X. X O O x.X o °o This invention is directed to a method using an x x.x O outlet side melting zonex cooling zone. extruder when crystalline medicine in a certain cry- stalline condition (A is dislocated to another cry- >- — >- CO stalline condition (O), i.e., when the dislocation of CO crystalline condition (A->0) is carried out. Fig . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) 1 EP 0 665 009 A1 2 TECHNICAL FIELD id state to stable crystals, (2) a crystallizable active substance in stable This invention relates to a method of inducing crystalline state or in amorphous solid state to a transition of crystalline state in a crystallizable metastable crystals, medicinal substance. 5 (3) a crystallizable active substance in stable As used in this specification, the term 'stable crystalline state or in metastable crystalline state crystal' means any crystal that is in ther- to an amorphous solid, or modynamically stable crystalline state and the term (4) a crystallizable active substance in 'metastable crystal' means any crystal that is in heterogenous crystalline state to homogeneous thermodynamically unstable crystalline state. The io crystals. term 'crystalline state' is used referring to any of The inventors of this invention found that the stable crystal, metastable crystal and amorphous above-mentioned object can be accomplished by (noncrystalline) solid. The term 'heterogenous cry- utilizing an extruder which enables a continuous stal' means a crystal not in a singular crystalline processing of the load and have arrived at the state. 75 present invention. The term 'extruder' means any screw extruder In the pharmaceutical field, few technologies that is in broad use chiefly in food industry for the utilizing an extruder are known. processing of food materials (cereals, proteins, ani- At this junction, the mechanism of the main mal meat, fish meat, etc.). part (work processing part) of the extruder is briefly 20 described. Generally the main part of an extruder BACKGROUND ART comprises, as illustrated in Fig. 1, a cylindrical structure called 'barrel', a die which corresponds to The conventional technology for inducing a a delivery port, and a screw. The barrel usually transition of crystalline state in a medicinal sub- comprises a plurality of unit barrels and the screw stance includes recrystallization, heating, freeze- 25 extends through them. The screw is available in drying, pulverizing and so on. various types, namely trapezoidal screw, However, none of these conventional methods trapezoidal cut screw, trapezoidal reverse cut are capable of inducing a transition of crystalline screw, ball screw, kneading paddle, etc., which can state expediently, efficiently, uniformly and on a be used in a desired combination. The load fed to mass scale and, therefore, are not well suited for 30 the extruder is forced by the screw to advance, commercial application. One of the reasons for shorn and blended by the screw within the barrel their incapability is that because these technologies structure and extruded from the orifice or orifices of are invariably batch processes, large-scale equip- the die. Usually, the temperature of each unit barrel ment is required for mass processing but the larger and that of the die can be independently controlled. the equipment, the greater is the temperature gra- 35 The extruder is available in two general types, dient created in the processing load, so that homo- namely a single-screw extruder comprising one geneous crystals cannot be easily obtained. Taking screw and a multi-screw extruder comprising two the recrystallisation process as an example, judi- or more screws. While this invention can be carried cious selection of the recrystallization solvent, de- into practice using either type of extruder, the use tailed analysis of recrystallizing temperature and 40 of a multi-screw extruder, particularly a twin-screw other parameters, and accurate control of recrystal- extruder, is preferred. Compared with a single- lization conditions are essential. In the case of screw version, a twin-screw extruder is more effi- freeze-drying, the protracted processing time is cient in that the plural screws interferring with each also a detracting factor. other precludes follow-up movement of the active 45 substance and, moreover, the intermeshing of the DISCLOSURE OF INVENTION screws provides a high energy output physically, thus assisting in the induction of a transition of The object of this invention is to provide a crystalline state. method of inducing a transition of crystalline state In the practice of this invention, such an ex- in a crystallizable medicinal substance which over- 50 truder as is in routine use by food industry can be comes the disadvantages of the above-mentioned utilized as it is. prior art methods. Specifically, the invention has for The mode of use of the extruder in the practice its object to provide a method of inducing, expedi- of this invention is now described, referring to ently, efficiently, uniformly, continuously and on a specific embodiments. high production scale, a transition of crystalline 55 For example, in this invention, the main part of state, for example: the extruder can be utilized as divided into two (1) from a crystallizable active substance in zones, namely a melting zone and a cooling zone metastable crystalline state or in amorphous sol- as illustrated in Fig. 2. The melting zone is the 2 3 EP 0 665 009 A1 4 zone in which the medicinal substance is melted While the cooling zone temperature is de- and the cooling zone is the zone in which the pendant on the physical properties of the me- medicinal substance melted in said melting zone is dicinal substance, the type end ratings of ex- solidified. truder used, etc., the cooling zone temperature In the practice of this invention, the melting 5 can be set within the rage of ambient tempera- zone can be defined by one or more barrels. If and ture to a temperature below the melting-start when the medicinal material can be successfully temperature of stable crystals of the medicinal melted, even a single barrel can serve as the substance. It is practically useless to employ a melting zone. temperature setting lower than ambient tempera- However, the proper number of barrels defining the 10 ture, while the medicinal substance fails to cry- melting zone is dependent on the melting point of stallize at times when the setting exceeds the the medicinal substance, the crystalline state of melting-start temperature of stable crystals of said substance, the condition of the substance, the the medicinal substance. There are cases in type and ratings of the extruder used, the rotational which a transition to stable crystalline state can speed of the screw (which corresponds to the is be obtained even when the setting is below speed at which the medicinal load travels within the ambient temperature and such cases also fall barrel), screw geometry (which is related to the within the scope of this invention. pulverization of the medicinal substance) and so It is true that the higher the cooling zone on. For the processing of a medicinal substance temperature, the greater is the safety with which having a high melting point, in the case where the 20 a medicinal substance can be crystallized. How- medicinal substance is crystalline or coarse, or for ever, although it depends on physical properties increasing the rotational speed of the screw, the of the medicinal substance, a higher cooling number of barrels constituting the melting zone zone temperature setting may call for an in- may have to be increased. crease in the overall length of the barrel defining In the practice of this invention, the tempera- 25 the cooling zone or a reduction in the rotational ture of the barrel or barrels constituting the melting speed of the screw. In either case, processing zone (hereafter referred to as 'melting zone tem- efficiency tends to be sacrificed. On the other perature') can be set to the meltable temperature hand, it is not recommendable, either, to use an of the medicinal substance. However, the tempera- unnecessarily low cooling zone temperature. If ture setting is preferably equal to the melting point 30 the cooling zone temperature letting is too low, a of the medicinal substance and more preferably the amorphous solid may result or the crystals may melting start temperature.
Recommended publications
  • Product List March 2019 - Page 1 of 53
    Wessex has been sourcing and supplying active substances to medicine manufacturers since its incorporation in 1994. We supply from known, trusted partners working to full cGMP and with full regulatory support. Please contact us for details of the following products. Product CAS No. ( R)-2-Methyl-CBS-oxazaborolidine 112022-83-0 (-) (1R) Menthyl Chloroformate 14602-86-9 (+)-Sotalol Hydrochloride 959-24-0 (2R)-2-[(4-Ethyl-2, 3-dioxopiperazinyl) carbonylamino]-2-phenylacetic 63422-71-9 acid (2R)-2-[(4-Ethyl-2-3-dioxopiperazinyl) carbonylamino]-2-(4- 62893-24-7 hydroxyphenyl) acetic acid (r)-(+)-α-Lipoic Acid 1200-22-2 (S)-1-(2-Chloroacetyl) pyrrolidine-2-carbonitrile 207557-35-5 1,1'-Carbonyl diimidazole 530-62-1 1,3-Cyclohexanedione 504-02-9 1-[2-amino-1-(4-methoxyphenyl) ethyl] cyclohexanol acetate 839705-03-2 1-[2-Amino-1-(4-methoxyphenyl) ethyl] cyclohexanol Hydrochloride 130198-05-9 1-[Cyano-(4-methoxyphenyl) methyl] cyclohexanol 93413-76-4 1-Chloroethyl-4-nitrophenyl carbonate 101623-69-2 2-(2-Aminothiazol-4-yl) acetic acid Hydrochloride 66659-20-9 2-(4-Nitrophenyl)ethanamine Hydrochloride 29968-78-3 2,4 Dichlorobenzyl Alcohol (2,4 DCBA) 1777-82-8 2,6-Dichlorophenol 87-65-0 2.6 Diamino Pyridine 136-40-3 2-Aminoheptane Sulfate 6411-75-2 2-Ethylhexanoyl Chloride 760-67-8 2-Ethylhexyl Chloroformate 24468-13-1 2-Isopropyl-4-(N-methylaminomethyl) thiazole Hydrochloride 908591-25-3 4,4,4-Trifluoro-1-(4-methylphenyl)-1,3-butane dione 720-94-5 4,5,6,7-Tetrahydrothieno[3,2,c] pyridine Hydrochloride 28783-41-7 4-Chloro-N-methyl-piperidine 5570-77-4
    [Show full text]
  • IIIHIIIUSOO5304377A Unitedo States Patent 19 (11) Patent Number: 5,304,377 Yamada Et Al
    IIIHIIIUSOO5304377A UnitedO States Patent 19 (11) Patent Number: 5,304,377 Yamada et al. (45) Date of Patent: Apr. 19, 1994 54 PROLONGED RELEASE PREPARATION 4,954,298 9/1990 Yamamoto et al. ................. 264/4.6 AND POLYMERS THEREOF 4,962,091 10/1990 Eppstein et al. ........................ 514/2 75) Inventors: Minoru Yamada; Seiko Ishiguro, both 5,061,492 10/1991 Okada et al. ........................ 424/423 Otokuni, all of Japan 0052510 11/1981 European Pat. Off. 73) Assignee: Sherical4. industries, Ltd., O256726O190833 7/19871/1986 European Pat. Off. a, Japan 0263490 10/1987 European Pat. Off. (21) Appl. No.: 986,299 0281482 3/1988 European Pat. Off. 035.0246 7/1989 European Pat. Off. 22 Filed: Dec. 7, 1992 2-212436 8/1990 Japan. Related U.S. Application Data OTHER PUBLICATIONS 63) continuation of ser. No. 777,170, oct. 16, 1991, aban- Chemical Abstracts, vol. 114/No. 6 (Feb. 11, 1991); doned. Columbus, Ohio; Abstract No. 49615R. 30 Foreign Application Priority Data Primary Ent, S. Sir Mueller & Oct. 16, 1990 (JP) Japan .................................. 2-278037 story Agent, or Firm-Wegner, Cantor, Mueller Aug. 28, 1991 JP Japan .................................. 3.217045 51 Int, Cl. ......................... A61K 9/22; A61K 9/52; ' ABSTRACT A61K 31/74 A polymer for a prolonged release preparation which 52 U.S. Cl. ................................. 424/426; 424/78.08; comprises 424/78.37; 424/434; 424/457; 424/468; (A) a polylactic acid and 424/486; 424/497; 525/450, 514/2 (B) a copolymer of glycolic acid and a hydroxycar 58) Field of Search .................. 424/426, 78.08, 78.37, boxylic acid of general formula 424/434, 457, 468, 486, 497; 525/450; 514/2 (56) References Cited R U.S.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Genl:VE 1970 © World Health Organization 1970
    Nathan B. Eddy, Hans Friebel, Klaus-Jiirgen Hahn & Hans Halbach WORLD HEALTH ORGANIZATION ORGANISATION .MONDIALE DE LA SANT~ GENl:VE 1970 © World Health Organization 1970 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. Nevertheless governmental agencies or learned and professional societies may reproduce data or excerpts or illustrations from them without requesting an authorization from the World Health Organization. For rights of reproduction or translation of WHO publications in toto, application should be made to the Division of Editorial and Reference Services, World Health Organization, Geneva, Switzerland. The World Health Organization welcomes such applications. Authors alone are responsible for views expressed in signed articles. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Director-General of the World Health Organization concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. © Organisation mondiale de la Sante 1970 Les publications de l'Organisation mondiale de la Sante beneficient de la protection prevue par les dispositions du Protocole n° 2 de la Convention universelle pour la Protection du Droit d'Auteur. Les institutions gouvernementales et les societes savantes ou professionnelles peuvent, toutefois, reproduire des donnees, des extraits ou des illustrations provenant de ces publications, sans en demander l'autorisation a l'Organisation mondiale de la Sante. Pour toute reproduction ou traduction integrate, une autorisation doit etre demandee a la Division des Services d'Edition et de Documentation, Organisation mondiale de la Sante, Geneve, Suisse.
    [Show full text]
  • The Impact of Anaesthesia Protocols on BOLD Fmri Validity in Laboratory Rodents –A Systematic Review
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 The impact of anaesthesia protocols on BOLD fMRI validity in laboratory rodents –a systematic review Steiner, Aline Rebecca Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-175731 Dissertation Published Version Originally published at: Steiner, Aline Rebecca. The impact of anaesthesia protocols on BOLD fMRI validity in laboratory rodents –a systematic review. 2019, University of Zurich, Vetsuisse Faculty. Departement für klinische Diagnostik und Services, Abteilung für Anästhesiologie der Vetsuisse-Fakultät Universität Zürich Vorsteherin Departement: Prof. Dr. med. vet. FVH Regina Hofmann-Lehmann Leiterin Abteilung: Prof. Dr. med. vet. PhD, Dipl. ECVAA Regula Bettschart-Wolfensberger The Impact of Anaesthesia Protocols on BOLD fMRI Validity in Laboratory Rodents – a Systematic Review Inaugural-Dissertation zur Erlangung der Doktorwürde der Vetsuisse-Fakultät Universität Zürich vorgelegt von Aline Rebecca Steiner Tierärztin von Frutigen, Bern genehmigt auf Antrag von Prof. Dr. med. vet. PhD, Dipl. ECVAA Regula Bettschart-Wolfensberger, Referentin Dr. med. vet., Dipl. ECVPH Sonja Hartnack, Co-Referentin 2019 Table of Contents Table of Contents ..................................................................................................... 3 Abstract ....................................................................................................................
    [Show full text]
  • UNIVERSITE DE NANTES Thomas Gelineau
    UNIVERSITE DE NANTES __________ FACULTE DE MEDECINE __________ Année 2011 N° 139 THESE pour le DIPLÔME D’ÉTAT DE DOCTEUR EN MÉDECINE DES de médecine générale par Thomas Gelineau né le 29 janvier 1983 à Cholet __________ Présentée et soutenue publiquement le 06/12/2011 __________ LE RHUME DE L'ENFANT ET SON TRAITEMENT: DECISION PARTAGEE AVEC LES PARENTS D'APRES UN QUESTIONNAIRE __________ Président : Monsieur le Professeur Olivier MALARD Directeur de thèse : Madame le Professeur Jacqueline LACAILLE 1 Table des matières IIntroduction................................................................................................................ 7 IIDéfinition, état des connaissances...........................................................................8 1Le rhume.......................................................................................................................................8 APhysiopathologie............................................................................................................................. 8 aL'origine virale.................................................................................................................................... 8 bLa saisonnalité................................................................................................................................... 8 cL'âge de survenue.............................................................................................................................. 9 dLe sexe..................................................................................................................................................
    [Show full text]
  • Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions Ing Treated
    Lubeluzole/Mecamylamine Hydrochloride 1331 Precautions ing treated. Mannitol infusion has also been used to de Manzanas; Pol.: Purisole SM; Port.: Purisole; Xarope de Macas Reinetas; Rus.: Rheogluman (Реоглюман); Spain: Salcemetic†; Salmagne; Switz.: Mannitol is contra-indicated in patients with pulmo- prevent acute renal failure during cardiovascular and Cital†. nary congestion or pulmonary oedema, intracranial other types of surgery, or after trauma. bleeding (except during craniotomy), heart failure (in To reduce raised intracranial or intra-ocular pres- patients with diminished cardiac reserve, expansion of sure mannitol may be given by intravenous infusion as Mebutamate (BAN, USAN, rINN) the extracellular fluid may lead to fulminating heart a 15 to 25% solution in a dose of 0.25 to 2 g/kg over 30 Mébutamate; Mebutamato; Mebutamatum; W-583. 2-sec-Butyl- failure), and in patients with renal failure unless a test to 60 minutes. Rebound increases in intracranial or 2-methyltrimethylene dicarbamate. dose has produced a diuretic response (if urine flow is intra-ocular pressure may occur but are less frequent Мебутамат inadequate, expansion of the extracellular fluid may than with urea. C10H20N2O4 = 232.3. lead to acute water intoxication). During transurethral prostatic resection a 2.5 to 5% CAS — 64-55-1. Mannitol should not be given with whole blood. ATC — N05BC04. solution of mannitol has been used for irrigating the ATC Vet — QN05BC04. All patients given mannitol should be carefully ob- bladder. served for signs of fluid and electrolyte imbalance and Ciguatera poisoning. Ciguatera poisoning occurs throughout O O renal function should be monitored. the Caribbean and Indopacific as a result of the consumption of certain fish contaminated with ciguatoxin; it is increasingly seen Pharmacokinetics in Europe, in travellers returning from these areas, or as a result H2NO O NH2 Only small amounts of mannitol are absorbed from the of eating imported fish.
    [Show full text]
  • Pharmaceutical Appendix to the Harmonized Tariff Schedule
    Harmonized Tariff Schedule of the United States (2019) Revision 13 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2019) Revision 13 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130210835A1 (19) United States (12) Patent Application Publication (10) Pub. N0.2 US 2013/0210835 A1 Mitchell (43) Pub. Date: Aug. 15, 2013 (54) PHARMACEUTICAL COMPOSITIONS Publication Classi?cation (75) Inventor: Odes W. Mitchell; Arlington, TX (U S) (51) Int. Cl. A61K31/137 (2006.01) _ A611; 31/4402 (2006.01) (73) Ass1gnee: GM PHARMACEUTICAL, INC, A61K 31/485 (200601) Arhngton, TX (Us) A611; 31/09 (2006.01) _ A611; 31/495 (2006.01) (21) App1.No.. 13/703,584 A61K31/505 (200601) 22 PCT P1 d: J .13 2011 (52) us Cl ( ) 1e “n ’ CPC ........... .. A611; 31/137 (2013.01); A611;31/495 (86) PCT NO. PCT/“11,4031 (2013.01); A611;31/505 (2013.01); A611; 31/485 (2013.01); A611; 31/09 (2013.01); § 371 (0)0). A611;31/4402 (2013.01) (2), (4) Date: Feb- 2, 2013 USPC .... .. 514/255.04; 564/355; 514/653; 544/396; 544/332; 514/275; 546/74; 514/289; 514/282; Related US. Application Data 514657; 514652 (60) Provisional application No. 61/354,061; ?led on Jun. (57) ABSTRACT 11; 2010; provisional application No. 61/354,057; A composition of an antitussive; a decongestant; or an anti ?led on Jun. 11; 2010; provisional application No. histamine to treat respiratory and oral pharyngeal congestion 61/354,053; ?led on Jun. 11,2010. and related symptoms in a patient. US 2013/0210835 A1 Aug. 15,2013 PHARMACEUTICAL COMPOSITIONS mucus build-up to clear congestion in the air passages. Symp toms due to allergies or allergens are often treated With an CROSS-REFERENCES TO RELATED antihistamine.
    [Show full text]
  • Adrenoceptor Antagonistic Properties of Some 1,4-Substituted Piperazine Derivatives
    ORIGINAL ARTICLES Department of Bioorganic Chemistry, Chair of Organic Chemistry1; Department of Pharmacodynamics2; Department of Cytobiology and Histochemistry, Laboratory of Pharmacobiology3, Faculty of Pharmacy Medical College; Faculty of Chemistry4, Jagiellonian University Krakow, Poland Synthesis, ␣-adrenoceptors affinity and ␣1-adrenoceptor antagonistic properties of some 1,4-substituted piperazine derivatives H. Marona 1, M. Kubacka 2, B. Filipek 2, A. Siwek 3, M. Dybała 3, E. Szneler 4, T. Pociecha 1, A. Gunia 1, A. M. Waszkielewicz 1 Received March 24, 2011, accepted April 25, 2011 Dr. Anna M. Waszkielewicz, Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland [email protected] Pharmazie 66: 733–739 (2011) doi: 10.1691/ph.2011.1543 A series of different 1,4-substituted piperazine derivatives (1–11) was synthesized. It comprised 1- (substituted-phenoxyalkyl)-4-(2-methoxyphenyl)piperazine derivatives (1–5); 1,4-bis(substituted-phenoxy- ethyl)piperazine derivatives (6–8) and 1-(substituted-phenoxy)-3-(substituted-phenoxyalkylpiperazin-1- yl)propan-2-ol derivatives (9–11). All compounds were evaluated for affinity toward ␣1- and ␣2-receptors by radioligand binding assays on rat cerebral cortex using [3H]prazosin and [3H]clonidine as specific radioli- gand, respectively. Furthermore ␣1-antagonistic properties were checked for most promising compounds (1–5 and 10) by means of inhibition of phenylephrine induced contraction in isolated rat aorta. Antago- nistic potency stayed in agreement with radioligand binding results. The most active compounds (1–5) 3 displaced [ H]prazosin from cortical binding sites in low nanomolar range (Ki = 2.1−13.1 nM).
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]