Forbidden Configurations in Discrete Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Forbidden Configurations in Discrete Geometry FORBIDDEN CONFIGURATIONS IN DISCRETE GEOMETRY This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry and listing many open prob- lems. It unifies these mathematical and computational views using for- bidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of fig- ures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathe- matics including number theory, graph theory, and the theory of per- mutation patterns. Pseudocode is included for many algorithms that compute properties of point sets. David Eppstein is Chancellor’s Professor of Computer Science at the University of California, Irvine. He has more than 350 publications on subjects including discrete and computational geometry, graph the- ory, graph algorithms, data structures, robust statistics, social network analysis and visualization, mesh generation, biosequence comparison, exponential algorithms, and recreational mathematics. He has been the moderator for data structures and algorithms on arXiv.org since 2006 and is a major contributor to Wikipedia’s articles on mathematics and theoretical computer science. He was elected as an ACM fellow in 2012. Forbidden Configurations in Discrete Geometry DAVID EPPSTEIN University of California, Irvine University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India 79 Anson Road, #06-04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781108423915 DOI: 10.1017/9781108529167 © David Eppstein 2018 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2018 Printed in the United States of America by Sheridan Books, Inc. A catalogue record for this publication is available from the British Library ISBN 978-1-108-42391-5 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Acknowledgments page ix 1AHappyEnding 1 2Overview 4 3 Configurations 8 3.1 Small Configurations 8 3.2 Orientations and Order Types 10 3.3 Defining Configurations 12 3.4 Example Configurations 13 3.5 Partitions by Lines 14 4 Subconfigurations 19 4.1 Definitions 19 4.2 Partial Orders and Quasi-Orders 20 4.3 Antichains 21 4.4 Well-Quasi-Ordering 22 5 Properties, Parameters, and Obstacles 24 5.1 Definitions 24 5.2 Obstacles 25 5.3 Parameters from Obstacles 27 5.4 Relation between Parameters 28 5.5 Comparing Parameters 29 6 Computing with Configurations 33 6.1 Input Representation 33 6.2 Computing the Order Type 34 6.3 Finding Subconfigurations 36 6.4 O-Notation 37 6.5 Property Testing 38 v vi Contents 7 Complexity Theory 43 7.1 Decision Problems and Complexity Classes 43 7.2 Approximation Algorithms 45 7.3 Parameterized Complexity 46 7.4 Complexity of Obstacle-Based Parameters 47 7.5 Parameterized Complexity of hitting 49 8 Collinearity 53 8.1 Planting Orchards 53 8.2 Definitions 55 8.3 Inequalities 56 8.4 Finding All Lines 57 8.5 Complexity of Line Covers 61 8.6 Property Testing 62 8.7 Obstacle Size and Well-Quasi-Ordering 63 8.8 Approximation 67 9 General Position 72 9.1 No-Three-in-Line 72 9.2 Finding General-Position Subconfigurations 75 9.3 Property Testing 78 9.4 Inequalities 79 9.5 Approximation 81 9.6 Entropy Compression 83 10 General-Position Partitions 87 10.1 Glimpses of Higher Dimensions 87 10.2 Inequalities 92 10.3 Complexity 93 10.4 Approximation 98 10.5 Configurations Covered by Few Lines 101 11 Convexity 106 11.1 Happy Endings Revisited 106 11.2 Additional Examples 110 11.3 Obstacles 113 11.4 Finding Convex Subconfigurations 115 11.5 Finding Convex Partitions 117 11.6 Inequalities 119 11.7 Well-Quasi-Ordering 122 12 More on Convexity 125 12.1 Weak Convexity 125 12.2 Complexity and Well-Quasi-Ordering 127 12.3 Crossing Families 128 12.4 Onion Layers 129 12.5 Inequalities 132 Contents vii 12.6 Polygons Containing Many Points 134 12.7 Depth and Deep Points 135 13 Integer Realizations 141 13.1 The Perles Configuration 142 13.2 Polygons 144 13.3 Points on Two Lines 145 13.4 Non-Cocircularity 147 13.5 Harborth, Erdos,˝ and Ulam 148 14 The Stretched Geometry of Permutations 151 14.1 The Stretching Transformation 151 14.2 Permutations and Patterns 155 14.3 Stair-Convexity 157 14.4 Characterization 160 14.5 Recognition 163 14.6 Finding Subconfigurations 164 15 Configurations from Graphs 166 15.1 Definitions 166 15.2 Convex Embeddings of Arbitrary Graphs 169 15.3 Hardness Proofs Based on Convex Embeddings 171 15.4 Three-Line Embeddings of Bipartite Graphs 172 16 Universality 177 16.1 Planarity 177 16.2 Definition 179 16.3 Obstacles 181 16.4 Relations to Other Parameters 185 17 Stabbing 188 17.1 Path and Tree Stabbing Numbers 189 17.2 Stabbing versus Shattering and Length 190 17.3 Inequalities and Complexity 195 17.4 Unstabbed Segments 197 17.5 Well-Quasi-Ordering 200 17.6 Applications of Unstabbed Segments 202 18 The Big Picture 207 18.1 Properties 207 18.2 Parameters 208 18.3 Only the Beginning 210 Bibliography 211 Index 223 Acknowledgments This book stemmed from an invitation to present the Erdos˝ Memorial Lecture at the 29th Canadian Conference on Computational Geometry (held in Ottawa in July 2017) and would not have existed without that invitation. I would like to thank the many people who have given me helpful advice on it, especially Jean Cardinal, Sariel Har-Peled, Stefan Langerman, Joe O’Rourke, János Pach, Vijay Vazirani, and several anonymous reviewers. I am also grateful for the careful copyediting of Maureen Eppstein. The research in this work was supported in part by the US National Science Foundation under grants CCF-1618301 and CCF-1616248. ix 1 A Happy Ending In the early 1930s, Hungarian mathematician Esther Klein made a discovery that, despite its apparent simplicity, would kick off two major lines of research in mathematics. Klein observed that every set of five points in the plane has either three points in a line or four points in a convex quadrilateral. This became one of the first results in the two fields of discrete geometry (the study of combinatorial properties of geometric objects such as points in the Euclidean plane, and the subject of this book) and Ramsey theory (the study of the phenomenon that unstructured mathematical systems often contain highly structured subsystems). Klein’s observation can be proven by a simple case analysis that consid- ers how many of the points belong to their convex hull. The convex hull is a convex polygon, having some of the given points as its vertices and contain- ing the others. It can be defined mathematically in many ways, for instance as the smallest-area convex polygon that contains all of the given points or as the largest-area simple polygon whose vertices all belong to the given points. The convex hull of points that are not all on a line always has at least three vertices (for otherwise it could not enclose a nonzero area) and, for five given points, at most five vertices. If it has five vertices, any four of them form a convex quadri- lateral, and if it has four vertices then it is a convex quadrilateral. The remaining possibility for the convex hull is a triangle, with the other two points either part of a line of three points or inside the triangle. When both points are inside, and the line through them misses the triangle vertices, it also misses one side of the triangle. In this case the two interior points and the two points on the missed side form a convex quadrilateral (Figure 1.1). The challenge of extending and generalizing this observation was taken up by two of Klein’s friends, Paul Erdos˝ and George Szekeres. They proved that, 1 2 A Happy Ending Figure 1.1. Five points with no three in line always contain a convex quadrilat- eral, either four vertices of the convex hull or (as shown here) two vertices of a tri- angular convex hull and two interior vertices. When the convex hull is a triangle, the line through the remaining two points has two triangle vertices on one of its sides, and those four points are in convex position. for every k,aconvexk-gon can be found in all large enough sets of points, as long as no three of the points lie on a line.1 Klein later married Szekeres, and their marriage is commemorated in the name of Erdos˝ and Szekeres’s result: the happy ending theorem.
Recommended publications
  • Knowledge Spaces Applications in Education Knowledge Spaces
    Jean-Claude Falmagne · Dietrich Albert Christopher Doble · David Eppstein Xiangen Hu Editors Knowledge Spaces Applications in Education Knowledge Spaces Jean-Claude Falmagne • Dietrich Albert Christopher Doble • David Eppstein • Xiangen Hu Editors Knowledge Spaces Applications in Education Editors Jean-Claude Falmagne Dietrich Albert School of Social Sciences, Department of Psychology Dept. Cognitive Sciences University of Graz University of California, Irvine Graz, Austria Irvine, CA, USA Christopher Doble David Eppstein ALEKS Corporation Donald Bren School of Information Irvine, CA, USA & Computer Sciences University of California, Irvine Irvine, CA, USA Xiangen Hu Department of Psychology University of Memphis Memphis, TN, USA ISBN 978-3-642-35328-4 ISBN 978-3-642-35329-1 (eBook) DOI 10.1007/978-3-642-35329-1 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013942001 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Drawing Graphs and Maps with Curves
    Report from Dagstuhl Seminar 13151 Drawing Graphs and Maps with Curves Edited by Stephen Kobourov1, Martin Nöllenburg2, and Monique Teillaud3 1 University of Arizona – Tucson, US, [email protected] 2 KIT – Karlsruhe Institute of Technology, DE, [email protected] 3 INRIA Sophia Antipolis – Méditerranée, FR, [email protected] Abstract This report documents the program and the outcomes of Dagstuhl Seminar 13151 “Drawing Graphs and Maps with Curves”. The seminar brought together 34 researchers from different areas such as graph drawing, information visualization, computational geometry, and cartography. During the seminar we started with seven overview talks on the use of curves in the different communities represented in the seminar. Abstracts of these talks are collected in this report. Six working groups formed around open research problems related to the seminar topic and we report about their findings. Finally, the seminar was accompanied by the art exhibition Bending Reality: Where Arc and Science Meet with 40 exhibits contributed by the seminar participants. Seminar 07.–12. April, 2013 – www.dagstuhl.de/13151 1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and Problems Keywords and phrases graph drawing, information visualization, computational cartography, computational geometry Digital Object Identifier 10.4230/DagRep.3.4.34 Edited in cooperation with Benjamin Niedermann 1 Executive Summary Stephen Kobourov Martin Nöllenburg Monique Teillaud License Creative Commons BY 3.0 Unported license © Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud Graphs and networks, maps and schematic map representations are frequently used in many fields of science, humanities and the arts.
    [Show full text]
  • Session 9: Pigeon Hole Principle and Ramsey Theory - Handout
    Session 9: Pigeon Hole Principle and Ramsey Theory - Handout “Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world’s best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.” image: Frank P. Ramsey (1903-1926) quote: Paul Erd¨os (1913-1996) The following dots are in general position (i.e. no three lie on a straight line). 1) If it exists, find a convex quadrilateral in this cluster of dots. 2) If it exists, find a convex pentagon in this cluster of dots. 3) If it exists, find a convex hexagon in this cluster of dots. 4) If it exists, find a convex heptagon in this cluster of dots. 5) If it exists, find a convex octagon in this cluster of dots. 6) Draw 8 points in general position in such a way that the points do not contain a convex pentagon. 7) In my family there are 2 adults and 3 children. When our family arrives home how many of us must enter the house in order to ensure there is at least one adult in the house? 8) Show that among any collection of 7 natural numbers there must be two whose sum or difference is divisible by 10. 9) Suppose a party has six people.
    [Show full text]
  • The Parameterized Complexity of Finding Point Sets with Hereditary Properties
    The Parameterized Complexity of Finding Point Sets with Hereditary Properties David Eppstein1 Computer Science Department, University of California, Irvine, USA [email protected] Daniel Lokshtanov2 Department of Informatics, University of Bergen, Norway [email protected] Abstract We consider problems where the input is a set of points in the plane and an integer k, and the task is to find a subset S of the input points of size k such that S satisfies some property. We focus on properties that depend only on the order type of the points and are monotone under point removals. We show that not all such problems are fixed-parameter tractable parameterized by k, by exhibiting a property defined by three forbidden patterns for which finding a k-point subset with the property is W[1]-complete and (assuming the exponential time hypothesis) cannot be solved in time no(k/ log k). However, we show that problems of this type are fixed-parameter tractable for all properties that include all collinear point sets, properties that exclude at least one convex polygon, and properties defined by a single forbidden pattern. 2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms Keywords and phrases parameterized complexity, fixed-parameter tractability, point set pattern matching, largest pattern-avoiding subset, order type 1 Introduction In this work, we study the parameterized complexity of finding subsets of planar point sets having hereditary properties, by analogy to past work on hereditary properties of graphs. In graph theory, a hereditary properties of graphs is a property closed under induced subgraphs.
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]
  • Mechanical Proving for ERDÖS-SZEKERES Problem
    2016 6th International Conference on Applied Science, Engineering and Technology (ICASET 2016) Mechanical Proving for ERDÖS-SZEKERES Problem 1Meijing Shan Institute of Information science and Technology, East China University of Political Science and Law, Shanghai, China. 201620 [email protected] Keywords: Erdös-Szekeres problem, Automated deduction, Mechanical proving Abstract:The Erdös-Szekeres problem was an open unsolved problem in computational geometry and related fields from 1935. Many results about it have been shown. The main concern of this paper is not only show how to prove this problem with automated deduction methods and tools but also contribute to the significance of automated theorem proving in mathematics using advanced computing technology. The present case is engaged in contributing to prove or disprove this conjecture and then solve this problem. The key advantage of our method is to utilize the mechanical proving instead of the traditional proof and this method could improve the arithmetic efficiency. Introduction The following famous problem has attracted more and more attention of many mathematicians [3, 6, 12, 16] due to its beauty and elementary character. Finding the exact value of N(n) turns out to be a very challenging problem. The problem is very easy to explain and understand. The Erdös-Szekeres Problem 1.1 [4, 15]. For any integer n ≥ 3, determine the smallest positive integer N(n) such that any set of at least N(n) points in generalposition in the plane contains n points that are the vertices of a convex n-gon. A set of points in the plane is said to be in the general position if it contains no three points on a line.
    [Show full text]
  • Graphs in Nature
    Graphs in Nature David Eppstein University of California, Irvine Symposium on Geometry Processing, July 2019 Inspiration: Steinitz's theorem Purely combinatorial characterization of geometric objects: Graphs of convex polyhedra are exactly the 3-vertex-connected planar graphs Image: Kluka [2006] Overview Cracked surfaces, bubble foams, and crumpled paper also form natural graph-like structures What properties do these graphs have? How can we recognize and synthesize them? I. Cracks and Needles Motorcycle graphs: Canonical quad mesh partitioning Paper at SGP'08 [Eppstein et al. 2008] Problem: partition irregular quad-mesh into regular submeshes Inspiration: Light cycle game from TRON movies Mesh partitioning method Grow cut paths outwards from each irregular (non-degree-4) vertex Cut paths continue straight across regular (degree-4) vertices They stop when they run into another path Result: approximation to optimal partition (exact optimum is NP-complete) Mesh-free motorcycle graphs Earlier... Motorcycles move from initial points with given velocities When they hit trails of other motorcycles, they crash [Eppstein and Erickson 1999] Application of mesh-free motorcycle graphs Initially: A simplified model of the inward movement of reflex vertices in straight skeletons, a rectilinear variant of medial axes with applications including building roof construction, folding and cutting problems, surface interpolation, geographic analysis, and mesh construction Later: Subroutine for constructing straight skeletons of simple polygons [Cheng and Vigneron 2007; Huber and Held 2012] Image: Huber [2012] Construction of mesh-free motorcycle graphs Main ideas: Define asymmetric distance: Time when one motorcycle would crash into another's trail Repeatedly find closest pair and eliminate crashed motorcycle Image: Dancede [2011] O(n17=11+) [Eppstein and Erickson 1999] Improved to O(n4=3+) [Vigneron and Yan 2014] Additional log speedup using mutual nearest neighbors instead of closest pairs [Mamano et al.
    [Show full text]
  • Sparsification–A Technique for Speeding up Dynamic Graph Algorithms
    Sparsification–A Technique for Speeding Up Dynamic Graph Algorithms DAVID EPPSTEIN University of California, Irvine, Irvine, California ZVI GALIL Columbia University, New York, New York GIUSEPPE F. ITALIANO Universita` “Ca’ Foscari” di Venezia, Venice, Italy AND AMNON NISSENZWEIG Tel-Aviv University, Tel-Aviv, Israel Abstract. We provide data structures that maintain a graph as edges are inserted and deleted, and keep track of the following properties with the following times: minimum spanning forests, graph connectivity, graph 2-edge connectivity, and bipartiteness in time O(n1/2) per change; 3-edge connectivity, in time O(n2/3) per change; 4-edge connectivity, in time O(na(n)) per change; k-edge connectivity for constant k, in time O(nlogn) per change; 2-vertex connectivity, and 3-vertex connectivity, in time O(n) per change; and 4-vertex connectivity, in time O(na(n)) per change. A preliminary version of this paper was presented at the 33rd Annual IEEE Symposium on Foundations of Computer Science (Pittsburgh, Pa.), 1992. D. Eppstein was supported in part by National Science Foundation (NSF) Grant CCR 92-58355. Z. Galil was supported in part by NSF Grants CCR 90-14605 and CDA 90-24735. G. F. Italiano was supported in part by the CEE Project No. 20244 (ALCOM-IT) and by a research grant from Universita` “Ca’ Foscari” di Venezia; most of his work was done while at IBM T. J. Watson Research Center. Authors’ present addresses: D. Eppstein, Department of Information and Computer Science, University of California, Irvine, CA 92717, e-mail: [email protected], internet: http://www.ics.
    [Show full text]
  • Proquest Dissertations
    UNIVERSITY OF CALGARY Convexity Problems in Spaces of Constant Curvature and in Normed Spaces by Zsolt Langi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MATHEMATICS AND STATISTICS CALGARY, ALBERTA JULY, 2008 © Zsolt Langi 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-44355-2 Our file Notre reference ISBN: 978-0-494-44355-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • 1. Math Olympiad Dark Arts
    Preface In A Mathematical Olympiad Primer , Geoff Smith described the technique of inversion as a ‘dark art’. It is difficult to define precisely what is meant by this phrase, although a suitable definition is ‘an advanced technique, which can offer considerable advantage in solving certain problems’. These ideas are not usually taught in schools, mainstream olympiad textbooks or even IMO training camps. One case example is projective geometry, which does not feature in great detail in either Plane Euclidean Geometry or Crossing the Bridge , two of the most comprehensive and respected British olympiad geometry books. In this volume, I have attempted to amass an arsenal of the more obscure and interesting techniques for problem solving, together with a plethora of problems (from various sources, including many of the extant mathematical olympiads) for you to practice these techniques in conjunction with your own problem-solving abilities. Indeed, the majority of theorems are left as exercises to the reader, with solutions included at the end of each chapter. Each problem should take between 1 and 90 minutes, depending on the difficulty. The book is not exclusively aimed at contestants in mathematical olympiads; it is hoped that anyone sufficiently interested would find this an enjoyable and informative read. All areas of mathematics are interconnected, so some chapters build on ideas explored in earlier chapters. However, in order to make this book intelligible, it was necessary to order them in such a way that no knowledge is required of ideas explored in later chapters! Hence, there is what is known as a partial order imposed on the book.
    [Show full text]
  • Dynamic Generators of Topologically Embedded Graphs David Eppstein
    Dynamic Generators of Topologically Embedded Graphs David Eppstein Univ. of California, Irvine School of Information and Computer Science Dynamic generators of topologically embedded graphs D. Eppstein, UC Irvine, SODA 2003 Outline New results and related work Review of topological graph theory Solution technique: tree-cotree decomposition Dynamic generators of topologically embedded graphs D. Eppstein, UC Irvine, SODA 2003 Outline New results and related work Review of topological graph theory Solution technique: tree-cotree decomposition Dynamic generators of topologically embedded graphs D. Eppstein, UC Irvine, SODA 2003 New Results Given cellular embedding of graph on surface, construct and maintain generators of fundamental group Speed up other dynamic graph algorithms for topologically embedded graphs (connectivity, MST) Improve constant in separator theorem for low-genus graphs Construct low-treewidth tree-decompositions of low-genus low-diameter graphs Dynamic generators of topologically embedded graphs D. Eppstein, UC Irvine, SODA 2003 New Results: Fundamental Group Generators Fundamental group is formed by loops on surface Provides important topological information about surface, used as basis for all our other algorithms Can be described by a system of generators (independent loops) and relations (concatenations of loops that bound disks) Time to construct this system: O(n) Related work: Canonical schema of Vegter and Yap [SoCG 90] (set of generators satisfying prespecified relations) Time to construct canonical schema: O(gn)
    [Show full text]
  • Listing K-Cliques in Sparse Real-World Graphs Maximilien Danisch, Oana Balalau, Mauro Sozio
    Listing k-cliques in Sparse Real-World Graphs Maximilien Danisch, Oana Balalau, Mauro Sozio To cite this version: Maximilien Danisch, Oana Balalau, Mauro Sozio. Listing k-cliques in Sparse Real-World Graphs. 2018 World Wide Web Conference, Apr 2018, Lyon, France. pp.589-598, 10.1145/3178876.3186125. hal-02085353 HAL Id: hal-02085353 https://hal.archives-ouvertes.fr/hal-02085353 Submitted on 8 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Listing k-cliques in Sparse Real-World Graphs∗ Maximilien Danischy Oana Balalauz Mauro Sozio Sorbonne Université, CNRS, Max Planck Institute for Informatics, LTCI, Télécom ParisTech University Laboratoire d’Informatique de Paris 6, Saarbrücken, Germany Paris, France LIP6, F-75005 Paris, France [email protected] [email protected] [email protected] ABSTRACT of edges [36, 40, 49] within a few hours. In contrast, listing all k- Motivated by recent studies in the data mining community which cliques is often deemed not feasible with most of the works focusing require to efficiently list all k-cliques, we revisit the iconic algorithm on approximately counting cliques [31, 42]. of Chiba and Nishizeki and develop the most efficient parallel algo- Recent works in the data mining and database community call rithm for such a problem.
    [Show full text]