Master Thesis at the Department of Computer Science, ETH Zurich, externally supervised at the Department of Computer Science, FU Berlin Spanning Trees with Low (Shallow) Stabbing Number Johannes Obenaus
[email protected] Advisors: Prof. Dr. Emo Welzl (ETH Zurich) Prof. Dr. Wolfgang Mulzer (FU Berlin) Dr. Michael Hoffmann (ETH Zurich) Berlin, September 19, 2019 Acknowledgements First of all, I’d like to express my gratitude to my advisors Prof. Dr. Emo Welzl, Prof. Dr. Wolfgang Mulzer, and Dr. Michael Hoffmann for their contin- ued support, particularly I’d like to thank Wolfgang Mulzer for his excellent supervision and guidance, always having an open door for me. I had the great opportunity to work in the environment of a fantastic team at ”AG Theoretische Informatik” at FU Berlin. I’d like to thank all team mem- bers not only for great discussions on several topics but also for a relaxed and enjoyable atmosphere. I’m particularly grateful to Prof. Laszl´ o´ Kozma and Katharina Klost for many helpful suggestions. In addition, I’m indebted to my good friend Zacharias Fisches not only for his moral support and very helpful advice but also for proofreading my thesis. Finally, it is hard to phrase in words my deep gratitude for my wife, Vivian, for her unfailing support and encouragement in every situation. Abstract For a set P ⊆ R2 of n points and a geometric graph G = (P, E) span- ning this point set, the stabbing number of G is the maximum number of intersections any line determines with the edges of G.