Quasiconvex Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Knowledge Spaces Applications in Education Knowledge Spaces
Jean-Claude Falmagne · Dietrich Albert Christopher Doble · David Eppstein Xiangen Hu Editors Knowledge Spaces Applications in Education Knowledge Spaces Jean-Claude Falmagne • Dietrich Albert Christopher Doble • David Eppstein • Xiangen Hu Editors Knowledge Spaces Applications in Education Editors Jean-Claude Falmagne Dietrich Albert School of Social Sciences, Department of Psychology Dept. Cognitive Sciences University of Graz University of California, Irvine Graz, Austria Irvine, CA, USA Christopher Doble David Eppstein ALEKS Corporation Donald Bren School of Information Irvine, CA, USA & Computer Sciences University of California, Irvine Irvine, CA, USA Xiangen Hu Department of Psychology University of Memphis Memphis, TN, USA ISBN 978-3-642-35328-4 ISBN 978-3-642-35329-1 (eBook) DOI 10.1007/978-3-642-35329-1 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2013942001 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Drawing Graphs and Maps with Curves
Report from Dagstuhl Seminar 13151 Drawing Graphs and Maps with Curves Edited by Stephen Kobourov1, Martin Nöllenburg2, and Monique Teillaud3 1 University of Arizona – Tucson, US, [email protected] 2 KIT – Karlsruhe Institute of Technology, DE, [email protected] 3 INRIA Sophia Antipolis – Méditerranée, FR, [email protected] Abstract This report documents the program and the outcomes of Dagstuhl Seminar 13151 “Drawing Graphs and Maps with Curves”. The seminar brought together 34 researchers from different areas such as graph drawing, information visualization, computational geometry, and cartography. During the seminar we started with seven overview talks on the use of curves in the different communities represented in the seminar. Abstracts of these talks are collected in this report. Six working groups formed around open research problems related to the seminar topic and we report about their findings. Finally, the seminar was accompanied by the art exhibition Bending Reality: Where Arc and Science Meet with 40 exhibits contributed by the seminar participants. Seminar 07.–12. April, 2013 – www.dagstuhl.de/13151 1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and Problems Keywords and phrases graph drawing, information visualization, computational cartography, computational geometry Digital Object Identifier 10.4230/DagRep.3.4.34 Edited in cooperation with Benjamin Niedermann 1 Executive Summary Stephen Kobourov Martin Nöllenburg Monique Teillaud License Creative Commons BY 3.0 Unported license © Stephen Kobourov, Martin Nöllenburg, and Monique Teillaud Graphs and networks, maps and schematic map representations are frequently used in many fields of science, humanities and the arts. -
Robustly Quasiconvex Function
Robustly quasiconvex function Bui Thi Hoa Centre for Informatics and Applied Optimization, Federation University Australia May 21, 2018 Bui Thi Hoa (CIAO, FedUni) Robustly quasiconvex function May 21, 2018 1 / 15 Convex functions 1 All lower level sets are convex. 2 Each local minimum is a global minimum. 3 Each stationary point is a global minimizer. Bui Thi Hoa (CIAO, FedUni) Robustly quasiconvex function May 21, 2018 2 / 15 Definition f is called explicitly quasiconvex if it is quasiconvex and for all λ 2 (0; 1) f (λx + (1 − λ)y) < maxff (x); f (y)g; with f (x) 6= f (y): Example 1 f1 : R ! R; f1(x) = 0; x 6= 0; f1(0) = 1. 2 f2 : R ! R; f2(x) = 1; x 6= 0; f2(0) = 0. 3 Convex functions are quasiconvex, and explicitly quasiconvex. 4 f (x) = x3 are quasiconvex, and explicitly quasiconvex, but not convex. Generalised Convexity Definition A function f : X ! R, with a convex domf , is called quasiconvex if for all x; y 2 domf , and λ 2 [0; 1] we have f (λx + (1 − λ)y) ≤ maxff (x); f (y)g: Bui Thi Hoa (CIAO, FedUni) Robustly quasiconvex function May 21, 2018 3 / 15 Example 1 f1 : R ! R; f1(x) = 0; x 6= 0; f1(0) = 1. 2 f2 : R ! R; f2(x) = 1; x 6= 0; f2(0) = 0. 3 Convex functions are quasiconvex, and explicitly quasiconvex. 4 f (x) = x3 are quasiconvex, and explicitly quasiconvex, but not convex. Generalised Convexity Definition A function f : X ! R, with a convex domf , is called quasiconvex if for all x; y 2 domf , and λ 2 [0; 1] we have f (λx + (1 − λ)y) ≤ maxff (x); f (y)g: Definition f is called explicitly quasiconvex if it is quasiconvex and -
Local Maximum Points of Explicitly Quasiconvex Functions
Local maximum points of explicitly quasiconvex functions Item Type Article Authors Bagdasar, Ovidiu; Popovici, Nicolae Citation Bagdasar, O. & Popovici, (2015) 'Local maximum points of explicitly quasiconvex functions' Optimization Letters, 9: 769. doi:10.1007/s11590-014-0781-3 DOI 10.1007/s11590-014-0781-3 Publisher Springer Journal Optimization Letters Rights Archived with thanks to Optimization Letters Download date 25/09/2021 20:26:30 Link to Item http://hdl.handle.net/10545/620886 Optimization Letters manuscript No. (will be inserted by the editor) Local maximum points of explicitly quasiconvex functions Ovidiu Bagdasar · Nicolae Popovici Received: date / Accepted: date Abstract This work concerns (generalized) convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold. The first concerns explicitly quasiconvex functions. As a counterpart of some known results, it is shown that any local maximum point of such a function is actually a global minimum point whenever it belongs to the intrinsic core of the function's domain. Secondly, we establish a new characterization of strictly convex normed spaces by applying this property for a particular class of convex functions. Keywords Local maximum point · Relative algebraic interior · Convex function · Explicitly quasiconvex function · Strictly convex space · Least squares problem 1 Introduction Optimization problems involving explicitly quasiconvex objective functions, i.e., real-valued functions which are both quasiconvex and semistrictly quasiconvex, have been intensively studied in the literature, beginning with the pioneering works by Martos [6] and Karamardian [5]. These functions are of special interest since they preserve several fundamental properties of convex functions. -
A Class of Functions That Are Quasiconvex but Not Polyconvex
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2003 A Class of Functions That Are Quasiconvex But Not Polyconvex Catherine S. Remus University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Mathematics Commons Recommended Citation Remus, Catherine S., "A Class of Functions That Are Quasiconvex But Not Polyconvex. " Master's Thesis, University of Tennessee, 2003. https://trace.tennessee.edu/utk_gradthes/2219 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Catherine S. Remus entitled "A Class of Functions That Are Quasiconvex But Not Polyconvex." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Mathematics. Henry C. Simpson, Major Professor We have read this thesis and recommend its acceptance: Charles Collins, G. Samuel Jordan Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Catherine S. Remus entitled “A Class of Functions That Are Quasiconvex But Not Polyconvex”. -
Characterisations of Quasiconvex Functions
BULL. AUSTRAL. MATH. SOC. 26B25, 49J52 VOL. 48 (1993) [393-406] CHARACTERISATIONS OF QUASICONVEX FUNCTIONS DINH THE LUC In this paper we introduce the concept of quasimonotone maps and prove that a lower semicontinuous function on an infinite dimensional space is quasiconvex if and only if its generalised subdifferential or its directional derivative is quasimonotone. 1. INTRODUCTION As far as we know quasiconvex functions were first mentioned by de Finetti in his work "Sulle Straficazioni Convesse" in 1949, [6]. Since then much effort has been focused on the study of this class of functions for they have much in common with convex functions and they are used in several areas of science including mathematics, operations research, economics et cetera (see [15]). One of the most important properties of convex functions is that their level sets are convex. This property is also a fundamental geometric characterisation of quasiconvex functions which sometimes is treated as their definition. However, the most attractive characterisations of quasiconvex functions are those which involve gradients (a detailed account of the current state of research on the topic can be found in [l]). As to generalised derivatives of quasiconvex functions, very few results exist (see [1,7]). In [7], a study of quasiconvex functions is presented via Clarke's subdifferential, but the authors restrict themselves to the case of Lipschitz functions on a finite dimensional space only. The aim of our paper is to characterise lower semicontinuous quasiconvex functions in terms of generalised (Clarke-Rockafellar) subdifferentials and directional derivatives in infinite dimensional spaces. Namely, we shall first introduce a new concept of quasi- monotone maps; and then we prove the equivalence between the quasiconvexity of a function and the quasimonotonicity of its generalised subdifferential and its directional derivative. -
Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach1
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 97, No. I, pp. 29-45, APRIL 1998 Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach1 D. AUSSEL2 Communicated by M. Avriel Abstract. In this paper, we are mainly concerned with the characteriza- tion of quasiconvex or pseudoconvex nondifferentiable functions and the relationship between those two concepts. In particular, we charac- terize the quasiconvexity and pseudoconvexity of a function by mixed properties combining properties of the function and properties of its subdifferential. We also prove that a lower semicontinuous and radially continuous function is pseudoconvex if it is quasiconvex and satisfies the following optimality condition: 0sdf(x) =f has a global minimum at x. The results are proved using the abstract subdifferential introduced in Ref. 1, a concept which allows one to recover almost all the subdiffer- entials used in nonsmooth analysis. Key Words. Nonsmooth analysis, abstract subdifferential, quasicon- vexity, pseudoconvexity, mixed property. 1. Preliminaries Throughout this paper, we use the concept of abstract subdifferential introduced in Aussel et al. (Ref. 1). This definition allows one to recover almost all classical notions of nonsmooth analysis. The aim of such an approach is to show that a lot of results concerning the subdifferential prop- erties of quasiconvex and pseudoconvex functions can be proved in a unified way, and hence for a large class of subdifferentials. We are interested here in two aspects of convex analysis: the charac- terization of quasiconvex and pseudoconvex lower semicontinuous functions and the relationship between these two concepts. 1The author is indebted to Prof. M. Lassonde for many helpful discussions leading to a signifi- cant improvement in the presentation of the results. -
Forbidden Configurations in Discrete Geometry
FORBIDDEN CONFIGURATIONS IN DISCRETE GEOMETRY This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry and listing many open prob- lems. It unifies these mathematical and computational views using for- bidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of fig- ures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathe- matics including number theory, graph theory, and the theory of per- mutation patterns. Pseudocode is included for many algorithms that compute properties of point sets. David Eppstein is Chancellor’s Professor of Computer Science at the University of California, Irvine. He has more than 350 publications on subjects including discrete and computational geometry, graph the- ory, graph algorithms, data structures, robust statistics, social network analysis and visualization, mesh generation, biosequence comparison, exponential algorithms, and recreational mathematics. He has been the moderator for data structures and algorithms -
Graphs in Nature
Graphs in Nature David Eppstein University of California, Irvine Symposium on Geometry Processing, July 2019 Inspiration: Steinitz's theorem Purely combinatorial characterization of geometric objects: Graphs of convex polyhedra are exactly the 3-vertex-connected planar graphs Image: Kluka [2006] Overview Cracked surfaces, bubble foams, and crumpled paper also form natural graph-like structures What properties do these graphs have? How can we recognize and synthesize them? I. Cracks and Needles Motorcycle graphs: Canonical quad mesh partitioning Paper at SGP'08 [Eppstein et al. 2008] Problem: partition irregular quad-mesh into regular submeshes Inspiration: Light cycle game from TRON movies Mesh partitioning method Grow cut paths outwards from each irregular (non-degree-4) vertex Cut paths continue straight across regular (degree-4) vertices They stop when they run into another path Result: approximation to optimal partition (exact optimum is NP-complete) Mesh-free motorcycle graphs Earlier... Motorcycles move from initial points with given velocities When they hit trails of other motorcycles, they crash [Eppstein and Erickson 1999] Application of mesh-free motorcycle graphs Initially: A simplified model of the inward movement of reflex vertices in straight skeletons, a rectilinear variant of medial axes with applications including building roof construction, folding and cutting problems, surface interpolation, geographic analysis, and mesh construction Later: Subroutine for constructing straight skeletons of simple polygons [Cheng and Vigneron 2007; Huber and Held 2012] Image: Huber [2012] Construction of mesh-free motorcycle graphs Main ideas: Define asymmetric distance: Time when one motorcycle would crash into another's trail Repeatedly find closest pair and eliminate crashed motorcycle Image: Dancede [2011] O(n17=11+) [Eppstein and Erickson 1999] Improved to O(n4=3+) [Vigneron and Yan 2014] Additional log speedup using mutual nearest neighbors instead of closest pairs [Mamano et al. -
Chapter 2 Convex Functions
Chapter 2 Convex functions 2.1 Basic properties and examples 2.1.1 Definition A function f : Rn → R is convex if dom f is a convex set and if for all x, y ∈ dom f,and θ with 0 ≤ θ ≤ 1, we have f(θx +(1− θ)y) ≤ θf(x)+(1− θ)f(y). (2.1) Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y)) (i.e.,thechord from x to y) lies above the graph of f (figure 2.1). A function f is strictly convex if strict inequality holds in (2.1) whenever x = y and 0 <θ<1. We say f is concave if −f is convex, and strictly concave if −f is strictly convex. For an affine function we always have equality in (2.1), so all affine (and therefore also linear) functions are both convex and concave. Conversely, any function that is convex and concaveisaffine. A function is convex if and only if it is convex when restricted to any line that intersects its domain. In other words f is convex if and only if for all x ∈ dom f and all v, the function (y, f(y)) (x, f(x)) Figure 2.1: Graph of a convex function. The chord (i.e., line segment) between any two points on the graph lies above the graph. 43 44 CHAPTER 2. CONVEX FUNCTIONS h(t)=f(x + tv) is convex (on its domain, {t | x + tv ∈ dom f}). This property is very useful, since it allows us to check whether a function is convex by restrictingit to a line. -
Sparsification–A Technique for Speeding up Dynamic Graph Algorithms
Sparsification–A Technique for Speeding Up Dynamic Graph Algorithms DAVID EPPSTEIN University of California, Irvine, Irvine, California ZVI GALIL Columbia University, New York, New York GIUSEPPE F. ITALIANO Universita` “Ca’ Foscari” di Venezia, Venice, Italy AND AMNON NISSENZWEIG Tel-Aviv University, Tel-Aviv, Israel Abstract. We provide data structures that maintain a graph as edges are inserted and deleted, and keep track of the following properties with the following times: minimum spanning forests, graph connectivity, graph 2-edge connectivity, and bipartiteness in time O(n1/2) per change; 3-edge connectivity, in time O(n2/3) per change; 4-edge connectivity, in time O(na(n)) per change; k-edge connectivity for constant k, in time O(nlogn) per change; 2-vertex connectivity, and 3-vertex connectivity, in time O(n) per change; and 4-vertex connectivity, in time O(na(n)) per change. A preliminary version of this paper was presented at the 33rd Annual IEEE Symposium on Foundations of Computer Science (Pittsburgh, Pa.), 1992. D. Eppstein was supported in part by National Science Foundation (NSF) Grant CCR 92-58355. Z. Galil was supported in part by NSF Grants CCR 90-14605 and CDA 90-24735. G. F. Italiano was supported in part by the CEE Project No. 20244 (ALCOM-IT) and by a research grant from Universita` “Ca’ Foscari” di Venezia; most of his work was done while at IBM T. J. Watson Research Center. Authors’ present addresses: D. Eppstein, Department of Information and Computer Science, University of California, Irvine, CA 92717, e-mail: [email protected], internet: http://www.ics. -
Glimpses Upon Quasiconvex Analysis Jean-Paul Penot
Glimpses upon quasiconvex analysis Jean-Paul Penot To cite this version: Jean-Paul Penot. Glimpses upon quasiconvex analysis. 2007. hal-00175200 HAL Id: hal-00175200 https://hal.archives-ouvertes.fr/hal-00175200 Preprint submitted on 27 Sep 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ESAIM: PROCEEDINGS, Vol. ?, 2007, 1-10 Editors: Will be set by the publisher DOI: (will be inserted later) GLIMPSES UPON QUASICONVEX ANALYSIS Jean-Paul Penot Abstract. We review various sorts of generalized convexity and we raise some questions about them. We stress the importance of some special subclasses of quasiconvex functions. Dedicated to Marc Att´eia R´esum´e. Nous passons en revue quelques notions de convexit´eg´en´eralis´ee.Nous tentons de les relier et nous soulevons quelques questions. Nous soulignons l’importance de quelques classes particuli`eres de fonctions quasiconvexes. 1. Introduction Empires usually are well structured entities, with unified, strong rules (for instance, the length of axles of carts in the Chinese Empire and the Roman Empire, a crucial rule when building a road network). On the contrary, associated kingdoms may have diverging rules and uses.